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Abstract

Modal logics are primary formalisms for multi-agent systems
but major reasoning tasks in such logics are intractable, which
impedes applications of multi-agent modal logics such as au-
tomatic planning. One technique of tackling the intractabil-
ity is to identify a fragment called a normal form of multi-
agent logics such that it is expressive but tractable for reason-
ing tasks such as entailment checking, bounded conjunction
transformation and forgetting. For instance, DNF of proposi-
tional logic is tractable for these reasoning tasks. In this pa-
per, we first introduce a notion of logical separability and then
define a novel disjunctive normal form SDNF for the multi-
agent logic Kn, which overcomes some shortcomings of exist-
ing approaches. In particular, we show that every modal for-
mula in Kn can be equivalently casted as a formula in SDNF,
major reasoning tasks tractable in propositional DNF are also
tractable in SDNF, and moreover, formulas in SDNF enjoy
the property of logical separability. To demonstrate the use-
fulness of our approach, we apply SDNF in multi-agent epis-
temic planning. Finally, we extend these results to three more
complex multi-agent logics Dn, K45n and KD45n.

1 Introduction
It is crucial for an intelligent agent system to be capable
of representing and reasoning about high-order knowledge
in the multi-agent setting. A general representative frame-
work for these scenarios is multi-agent modal logics. How-
ever, some important reasoning tasks, including satisfiabil-
ity checking and forgetting, are intractable in such logics
(Halpern and Moses 1992; Bienvenu 2009). The intractabil-
ity results impede applications of multi-agent modal logics,
e.g., multi-agent epistemic planning (Kominis and Geffner
2015; Huang et al. 2017).

Traditionally, the forward search algorithm is effective for
agent planning (Bryce, Kambhampati, and Smith 2006), in
which the search is performed in the space of knowledge
bases (KBs) proceeding forward from the initial KB towards
a goal KB entailing the goal formula. Two types of reasoning
tasks are essential to the search algorithm, namely, progres-
sion and entailment check. The progression updates KBs ac-
cording to the action effects while the entailment check is
needed to decide if the current KB entails the goal formula
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and the action preconditions. If a normal form is defined
such that its entailment check, bounded conjunction and for-
getting are tractable, then both progression and entailment
check in the normal form are tractable (Bienvenu, Fargier,
and Marquis 2010). As a result, in the normal form, an ef-
fective search algorithm is obtained. In the case of proposi-
tional logic, a normal form can be disjunctive normal form
(DNF), conjunctive normal form (CNF) or prime implicate.
Usually, a planner based on DNF is faster than those based
on CNF and prime implicate (To, Pontelli, and Son 2011;
To, Son, and Pontelli 2011). This is due to the fact that,
in propositional logic, DNF possesses tractable entailment
check, bounded conjunction and forgetting, but CNF and
prime implicate do not (Darwiche and Marquis 2002).

Thus, in order to develop effective search algorithms to
multi-agent epistemic planning, researchers aimed to de-
velop suitable DNF-like normal forms for multi-agent modal
logics such that major reasoning tasks, such as bounded
conjunction, forgetting and entailment check, are tractable.
Such a disjunctive normal form, named S5-DNF, is defined
for modal logic S5 but only for the single-agent case (Bi-
envenu, Fargier, and Marquis 2010). When this DNF is ex-
tended to multi-agent modal logics, both entailment and for-
getting will not be tractable any longer. Two other normal
forms, cover disjunctive normal forms (CDNFs) (ten Cate et
al. 2006) and prime implicate normal forms (PINFs) (Bi-
envenu 2008), have been introduced for description logic
ALC, a syntactic variant of the multi-agent modal logic
Kn. However, these two normal forms have some shortcom-
ings. CDNF is relatively less compact, that is, the CDNF
representation is exponential large for some simple formu-
las. Bounded conjunction for PINF is intractable and in
the worst case a compiled formula in PINF is double ex-
ponentially large. In addition, Moss (2007) introduced a
canonical form of modal formulas for Kn and Dn. While
modal formulas can be equivalently transformed into Moss’
canonical form, the complexity of the transformation is non-
elementary. Hence, Moss’ canonical formulas are not a prac-
tical normal form for epistemic planning.

In this paper, we first formulate the notion of logic sepa-
rability in multi-agent modal logic, which was originally in-
vestigated for first-order logic (Levesque 1998). Informally,
a conjunction φ of formulas is logically separable w.r.t. a
form of reasoning if the reasoning for φ can be reduced to
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the same reasoning for the conjuncts of φ. For example, the
formula φ = (p → q) ∧ (q → r) is not logically separable
since it logically implies a conjunct p → r that is not de-
rived by any single conjunct of φ. By conjoining φ with the
implicit conjunct, the new formula becomes logically sepa-
rable.

Based on the logical separability, we introduce a disjunc-
tive normal form, called separability-based DNF (or SDNF)
for multi-agent modal logics Kn, Dn, K45n and KD45n.
Similarly, separability-based CNF (or SCNF) can also be
defined. For these two normal forms and the two existing
normal forms for multi-agent modal logics, we investigate
the expressiveness, succinctness, queries and transforma-
tions (Darwiche and Marquis 2002). Thus we obtain an al-
most complete knowledge compilation map for multi-agent
modal logics.

The main contributions of this paper contain:
1. We formulate the concept of logical separability for

modal terms and formalise some desirable properties for
them. Thanks to the notion of logical separability, we are
able to define separability-based DNF and CNF, two novel
normal forms for Kn.

2. For the two new normal forms as well as CDNF
and PINF, we investigate the expressiveness, succinctness,
queries and transformations. To the best of our knowledge,
we are the first to construct this map for multi-agent modal
logics. Interestingly, SDNFL0 possesses all properties that
propositional DNF has, e.g., polytime satisfiability, bounded
conjunction, forgetting and so on. In this sense, SDNF is
a proper generalisation of propositional DNF for the multi-
agent modal logic Kn.

3. As a case study, we illustrate the application of our re-
sults in multi-agent epistemic planning.

4. We extend the results of knowledge compilation for
Kn to Dn without any modification on normal forms, and
to K45n and KD45n under the condition that no consecutive
modalities of the same agent appear in the given formula.

2 The multi-agent modal logic Kn

In this section, we first recall the syntax and semantics of
the multi-agent epistemic logic Kn, and then introduce two
normal forms of Kn, and major reasoning tasks in Kn.

Syntax and semantics Throughout this paper, we fix a set
A of n agents and a countable set P of variables. The set of
modal formulas, written L�, is obtained from the following
grammar:

φ ::= > | p | ¬φ | φ ∧ φ | �iφ,

where p ∈ P and i ∈ A.
The formula �iφ means that agent i knows φ. The sym-

bols ⊥, ∨,→,↔, and ♦i are defined as usual. We use i and
j for agents, B for sets of agents, p and q for variables, Q
for finite sets of variables, Φ and Ψ for finite sets of formu-
las. For an L�-formula φ, we use |φ| for the size of φ (i.e.,
the number of occurrences of variables, logical connectives,
and modalities in φ), δ(φ) for the depth of φ (i.e., the max-
imal number of nested occurrences of modalities in φ), and

P (φ) for the set of variables appearing in φ. A formula φ is
smaller than ψ, if |φ| < |ψ|.

The notions of propositional literals, terms (TE), clauses
(CL), disjunctive normal forms (DNF) and conjunctive nor-
mal forms (CNF) are defined as usual.

A modal literal is a formula of the form�iφ or♦iφ, where
φ is a modal formula. A modal literal is positive (resp. neg-
ative), if it is of the form �iφ (resp. ♦iφ). A formula is ba-
sic, if it is a propositional formula or modal literal. A modal
term (resp. clause) is a conjunction (resp. disjunction) of
basic formulas. For a modal term (resp. clause) φ, we use
Prop(φ) for the set of propositional components (i.e., maxi-
mal propositional subformulas) that are conjuncts (resp. dis-
juncts) of φ, Bi(φ) for the set of formulas ψ such that �iψ
is a conjunct (resp. disjunct) of φ, and Di(φ) for the set of
formulas ψ such that ♦iψ is a conjunct (resp. disjunct) of
φ. For example, consider the modal term φ = p ∧ ¬q ∧
�i¬p∧�iq∧♦i(¬p∨q)∧♦ip. Thus, Prop(φ) = {p ∧ ¬q},
Bi(φ) = {¬p, q}, and Di(φ) = {¬p ∨ q, p}.
Definition 2.1. A Kripke modelM is a tuple 〈S,R,V〉 where

• S is a non-empty set of possible worlds;
• R = {Ri | i ∈ A} where Ri is a binary relation on S;
• V is a function assigning to each s ∈ S a subset of P .

A pointed Kripke model is a pair (M, s), where M is a
Kripke model and s is a world ofM , called the actual world.

For convenience, we assume that Kripke models are
pointed. Given a Kripke model (M, s) and an L�-formula
φ, the satisfaction relation M, s |= φ is defined as usual and
in this case, we say that (M, s) is a model of φ. A modal
formula φ is satisfiable if it has a model; φ entails ψ, written
φ |= ψ, if every model of φ is also a model of ψ; φ and ψ
are equivalent, written φ ≡ ψ, if φ |= ψ and ψ |= φ.

Throughout this paper, we use L and L′ for fragments of
L�, and L0 and L′0 for propositional fragments. We also
assume that every propositional term and clause has a poly-
nomial representation in L0 and L′0. All propositional frag-
ments considered in (Darwiche and Marquis 2002) conform
with this assumption except for full DNF, that is, if each of
its variables appears exactly once in every term. We say L
and L′ are dual, if there is a polytime reduction f from L
to L′ s.t. for each φ ∈ L, f(φ) ≡ ¬φ, and vice verse. For
example, DNF and CNF are dual in propositional logic.

Normal forms The cover disjunctive normal form (ten
Cate et al. 2006) and the prime implicate normal form (Bi-
envenu 2008) for the description logic ALC can be seen as
two normal forms for Kn sinceALC is a syntactic variant of
Kn. We rephrase them in Kn.

Definition 2.2. A formula φ is in cover disjunctive normal
form (CDNF), if it is defined by

φ ::= τ ∧
∧
i∈B
OiΦi | φ ∨ φ,

where τ is a satisfiable propositional term, each Φi is in
CDNF, B ⊆ A, and OiΦi is a shorthand for �i(

∨
φ∈Φi

φ)∧∧
φ∈Φi

♦iφ.

2818



Definition 2.3. A modal clause1 c is an implicate of φ, if
φ |= c. A modal clause c is a prime implicate of φ, if c is
an implicate of φ and for all implicate c′ of φ s.t. c′ |= c,
c |= c′.

Definition 2.4. A formula φ is in prime implicate normal
form (PINF), if it is > or ⊥, or satisfies the following:

1. φ 6≡ > and φ 6≡ ⊥;
2. φ is a conjunction c1 ∧ · · · ∧ cn of modal clauses where

(a) cj 6|= ck for j 6= k;
(b) each prime implicate of φ is equivalent to some con-

junct cj ;
(c) every cj is a prime implicate of φ s.t. (i) if d is a dis-

junct of cj , then cj 6≡ cj \ {d}; (ii) |Di(cj)| ≤ 1 for
i ∈ A; (iii) for every i ∈ A, if β ∈ Bi(cj) ∪Di(cj)
then β is in PINF; (iv) for every i ∈ A, β ∈ Bi(cj)
and γ ∈ Di(cj), we have γ |= β.

Queries and Transformations Darwiche and Marquis
(2002) enumerates a set of knowledge compilation proper-
ties for propositional logics, and classifies them into two cat-
egories: queries and transformations. The basic queries in-
clude polytime tests for satisfiability (CO), validity (VA),
equivalence (EQ), sentential entailment (SE), clausal en-
tailment (CE), implicant (IM), model counting (CT) and
model enumeration (ME), while the basic transformations
are (bounded) conjunction (∧BC/∧C), (bounded) disjunc-
tion (∨BC/∨C), negation (¬C), conditioning (CD), and
(singleton) forgetting (SFO/FO). Most of them can be di-
rectly generalized to multi-agent modal logics except modal
counting and enumeration since any satisfiable formula has
infinitely many distinct models. Due to space limit, we only
present the definition of satisfiability check, bounded con-
junction and forgetting. For details, please refer to (Dar-
wiche and Marquis 2002).

Definition 2.5. A language L possesses the property CO,
if there is a polytime algorithm for deciding its satisfiability.

Definition 2.6. A language L satisfies ∧BC, if there is a
polytime algorithm generating a formula of L equivalent to
φ ∧ ψ for each pair of formulas φ, ψ ∈ L.

A definition of forgetting for modal logics is defined in
(French 2006) and it is further investigated in (Fang, Liu,
and van Ditmarsch 2016).

Definition 2.7. Let φ ∈ L� and Q ⊆ P . We say ψ is a
result of forgetting Q in φ, if

1. P (ψ) ⊆ P \Q;
2. for any formula η s.t. P (η) ⊆ P \Q, φ |= η iff ψ |= η.

As the result of forgetting is unique up to logical equiv-
alence, we use ∃Q.φ to denote the result of forgetting Q in
φ.

Definition 2.8. A languageL satisfies FO, if there is a poly-
time algorithm that maps every formula φ ∈ L and every
subset Q ⊆ P to an L-formula that is equivalent to ∃Q.φ.

1The definition of modal clauses in (Bienvenu 2008) is a bit
different from that in this paper. It is defined as a disjunction of
propositional literals and modal literals.

3 Separability-based DNF and CNF
In this section, based on logical separability, we introduce a
general framework for defining normal forms DNF and CNF
in Kn.

One might wish to define a disjunctive normal form for Kn

as a disjunction of modal terms. However, this option would
not work as none of satisfiability and forgetting is tractable
for such a normal form. The problem lies in the definition of
modal terms as a modal term can be logically inseparable.
This can be seen from the following example.

Example 1. Consider the modal term φ = �i(p ∨ q) ∧
�i(¬p ∨ q) ∧ ♦i¬q. Since φ is unsatisfiable, it holds that
φ |= ⊥. But ⊥ cannot be derived from any modal literal
of φ alone. Hence, the satisfiability problem of φ cannot be
decomposed into its conjuncts. Informally, the formula φ is
logically inseparable.

This example reveals that logical inseparable modal terms
do not enjoy the modularity property for satisfiability, i.e.,
the satisfiability problem of a modal term φ cannot be re-
duced to those of each formula in Prop(φ), Bi(φ) and
Di(φ), leading to the impossibility result of tractable sat-
isfiability check. Consequently, we consider only logically
separable modal terms in the following. Based on the above
observation, we can formalise the logical separability as fol-
lows.

Definition 3.1. A modal term φ is logically separable, iff for
every basic formula η, if φ |= η, then there is α ∈ Prop(φ)
or α is a modal literal of φ s.t. α |= η.

Intuitively, logical separability requires that no logical
puzzles are hidden within parts of modal terms.

Example 2. Continued with Example 1, the modal term φ is
logically inseparable since φ |= ⊥ but no conjunct of φ en-
tails⊥. The modal term ψ = �iq∧♦i⊥, which is equivalent
to φ, is logically separable. Thanks to the logical separabil-
ity of ψ, it is easy to observe that ψ is unsatisfiable since ⊥
is derived from one conjunct ♦i⊥.

The logical separability of modal terms enforces the mod-
ularity property for major reasoning tasks such as satisfiabil-
ity check and forgetting. The satisfiability problem of a log-
ically separable term φ can be reduced to the satisfiability
subproblems of each formula in Prop(φ) and Di(φ).

Proposition 3.1. Let φ be a logically separable modal term.
Then φ is satisfiable iff every formula α ∈ Prop(φ) ∪⋃
i∈ADi(φ) is satisfiable.

Proof. If φ is satisfiable, then each conjunct of φ is satisfi-
able. Thus each propositional formula α ∈ Prop(φ) is satis-
fiable. It also holds for any epistemic literal♦iγ where i ∈ A
and γ ∈ Di(φ). Thus, each formula γ ∈ Di(φ) is satisfiable.

Conversely, assume that for every formulaα ∈ Prop(φ)∪⋃
i∈ADi(φ), α is satisfiable, but φ is unsatisfiable. Then,

φ |= ⊥. Observe that φ is logically separable. Then there
is a propositional formula α ∈ Prop(φ) or a modal literal
α of φ s.t. α |= ⊥. It is easy to prove that α must be an
unsatisfiable propositional formula or unsatisfiable negative
modal literal. By the assumption, it is impossible that α is
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propositional. Hence, α is a negative modal literal ♦iγ. This
implies that γ is unsatisfiable, a contradiction.

Similarly, forgetting a setQ of variables in a logically sep-
arable modal term φ can be accomplished by individually
forgetting Q in each formula of Prop(φ), Bi(φ) and Di(φ).

Proposition 3.2. Let φ be a logically separable modal term
and Q a set of variables. Then ∃Q.φ ≡

∧
α∈Prop(φ)(∃Q.α)

∧
∧
i∈B[

∧
β∈Bi(φ)(�i(∃Q.βi)) ∧

∧
γ∈Di(φ)(♦i(∃Q.γ))].

To prove Proposition 3.2, we need a lemma.

Lemma 3.1. Let φ be a satisfiable logically separable modal
term. Then, the following statements hold:

1. For each propositional formula α′, φ |= α′ iff α |= α′

for some α ∈ Prop(φ);
2. For each i ∈ A and each positive modal literal �iβ′,

φ |= �iβ′ iff β |= β′ for some β ∈ Bi(φ);
3. For each i ∈ A and each negative modal literal ♦iγ′,

φ |= ♦iγ′ iff γ |= γ′ for some γ ∈ Di(φ).

Proof. We show only the second statement. The other proofs
are similar.
⇐: Since β |= β′, �iβ |= �iβ′. Note that �iβ is a con-
junction of φ. Thus, φ |= �iβ′.
⇒: Since φ is logically separable, η |= �iβ′, where η ∈
Prop(φ) or η is a modal literal of φ. Moreover, as �iβ′ is a
positive modal literal, η must be a positive modal literal too.
Suppose that η = �iβ where β ∈ Bi(φ). It follows from
�iβ |= �iβ′ that β |= β′.

We are ready to give the proof of Proposition 3.2.

Proof. Let ψ denote formula on the right-hand-side. Con-
sider two possible cases:

Case 1. φ is unsatisfiable: Then ∃Q.φ is also unsatisfi-
able, matching the requirements given in the definition of
forgetting (cf. Definition 2.7). By Proposition 3.1, there is
an unsatisfiable formula α ∈ Prop(φ), or for some i ∈ A,
there is γ ∈ Di(φ) s.t. γ is unsatisfiable. Suppose that α is
unsatisfiable. Then ψ is also unsatisfiable since ψ contains
an unsatisfiable conjunct ∃Q.α. Similarly, ψ is unsatisfiable
in the case where γ ∈ Di(φ) is unsatisfiable.

Case 2. φ is satisfiable: We only show the only-if direc-
tion of Condition 2 in Definition 2.7: for each formula η s.t.
P (η) ⊆ P \ Q, if φ |= η, then ψ |= η. It is easy to see the
other conditions.

We prove the above proposition by induction on δ(φ),
the depth of φ. By Definition 2.7, the proposition holds
for the base case δ(φ) = 1. Suppose that δ(φ) > 1. By
Theorem 2.4.9 in (Bienvenu 2009), every L�-formula can
be equivalently transformed into a conjunction of modal
clauses. So we assume without loss of generality that η is
a conjunction of modal clauses. Let c be a conjunct of η
and of the form

∨
α′∈Prop(c) α

′ ∨
∨
i∈B′ [

∨
β′∈Bi(c)

(�iβ′)∨∨
γ′∈Di(c)

(♦iγ′)]. It suffices to show that ψ |= c. For sim-
plicity, we let B = B′. Since φ |= c, it is easy to see that at
least one of the following conditions holds.

1.
∧
α∈Prop(φ) α ∧

∧
α′∈Prop(c)(¬α′) is unsatisfiable;

2. there exist i ∈ B and γ ∈ Di(φ) s.t. γ ∧
∧
β∈Bi(φ) β ∧∧

γ′∈Di(c)
(¬γ′) is unsatisfiable;

3. there exist i ∈ B and β′ ∈ Bi(c) s.t. ¬β′∧
∧
β∈Bi(φ) β∧∧

γ′∈Di(c)
(¬γ′) is unsatisfiable.

Once the conditions in Definition 2.7 are satisfied, tt fol-
lows that γ ∧

∧
β∈Bi(φ) β |=

∨
γ′∈Di(c)

γ′. So ♦i(γ ∧∧
β∈Bi(φ) β) |= ♦i(

∨
γ′∈Di(c)

γ′). Since φ entails the for-
mer formula, we get that φ |= ♦i(

∨
γ′∈Di(c)

γ′). By Lemma
3.1, there is γ∗ ∈ Di(φ) s.t. γ∗ |=

∨
γ′∈Di(c)

γ′. The
formula ∃Q.γ∗ is the result of forgetting Q in γ∗. By
the induction hypothesis, ∃Q.γ∗ |=

∨
γ′∈Di(c))

γ′. Hence,
♦i(∃Q.γ∗) |= ♦i(

∨
γ′∈Di(c))

γ′). Since ♦i(∃Q.γ∗) is a con-
junct of ψ, and ♦i

∨
γ′∈Di(c))

γ′ |= η, ψ |= η.

The following proposition gives the smallest logically
separable modal term representation. In this normal form,
there are at most one propositional part, and at most one pos-
itive modal literal for each agent. Moreover, every formula
inside ♦i entails that inside �i.

Proposition 3.3. The smallest logically separable modal
term representation of a modal term φ satisfies

1. |Prop(φ)| ≤ 1;
2. for each i ∈ A, |Bi(φ)| ≤ 1;
3. for each i ∈ A, β ∈ Bi(φ) and γ ∈ Di(φ), γ |= β.

Proof. Observe that the smallest representation of unsatis-
fiable formula is ⊥. Thus, it is easy to the statements hold
when φ is unsatisfiable. We now assume that φ is satis-
fiable, and only verify Condition 1. The other two condi-
tions can be proven similarly. On the contrary, suppose that
α1, α2 ∈ Prop(φ) but they are distinct. If α1 |= α2 or
α2 |= α1, then one of them is redundant, and φ is not the
smallest form. Otherwise, α1 6|= α2 and α2 6|= α1. Thus,
neither α1 nor α2 entails their conjunction α1 ∧ α2. This
violates Lemma 3.1.

Forgetting in a logically separable modal term φ may not
be tractably computed. This is because that some subformu-
las of φ may not be tractable for forgetting. To remedy this,
we impose further conditions on modal terms. We not only
require the logically separable modal term φ to be the small-
est form, but also restrict the propositional part of φ to be
in L0, and every formula of Bi(φ) and Di(φ) to be the dis-
junction of formulas in this form.

Definition 3.2. A modal term φ is a separability-based
term with L0 (STEL0

), if it is of the syntactic form α ∧∧
i∈B(�iβi ∧

∧
j ♦iγij) s.t.

1. α ∈ L0 and B ⊆ A;
2. βi’s and γij’s are disjunctions of STEL0 ’s;
3. γij |= βi for any i and j.

Dual to separability-based terms, it is natural to define
separability-based clauses.

Definition 3.3. A modal clause φ is a separability-based
clause with L0 (SCLL0

), if it is of the syntactic form α ∨∨
i∈B(♦iβi ∨

∨
j �iγij) s.t.
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Figure 1: Succinctnessofnormal forms inKn andDn.Anedge
L → L′ means that L is strictly more succinct than L′. No
edge between L and L′ indicates that they are incomparable.

1. α ∈ L0 and B ⊆ A;
2. βi’s and γij’s are conjunctions of SCLL0 ’s;
3. βi |= γij for any i and j.

We are ready to define separability-based DNF and CNF.

Definition 3.4. A formula φ is in separability-based dis-
junctive (resp. conjunctive) normal form with L0 (SDNFL0

(resp. SCNFL0 )), if φ is a disjunction (resp. conjunction) of
STEL0 ’s (resp. SCLL0 ’s).

We remark that the normal form SDNFTE is the form
SDNF of which propositional components are propositional
terms (TE). The normal form SCNFCL are similarly defined.
It is easy to verify that two existing normal forms CDNF and
PINF are fragments of SDNFTE and SCNFCL respectively.

Proposition 3.4. CDNF ⊂ SDNFTE and PINF ⊂ SCNFCL.

Proof. In the definition of CDNF (Definition 2.2), each
τ ∧

∧
i∈B OiΦi is an STE since each OiΦi is a shorthand

for �i(
∨
φ∈Φi

φ)∧
∧
φ∈Φi

♦iφ, and each formula inside the
modality ♦i entails

∨
φ∈Φi

φ. Thus, CDNF is a fragment of
SDNF.

In the definition of PINF (Definition 2.4), Condition 2-
(c)-(ii) implies the condition of smallest logically separable
modal clause representation. In addition, Conditions 2-(c)-
(iii) and 2-(c)-(iv) correspond to Conditions 2 and 3 in Defi-
nition 3.3, respectively. So PINF is a fragment of SCNF.

4 Expressiveness and Succinctness
In this section, we analyze spatial complexity of the four
normal forms and compare them in terms of succinctness.
Our main results include: (1) the sizes of the SDNF and
SCNF representations of a given formula φ are single-
exponential in the size of φ, and (2) we provide a full picture
of the succinctness for the four normal forms SDNF, SCNF,
CDNF and PINF.

We first show that the transformations into SDNF and
SCNF cause a single-exponential blowup and this upper
bound is optimal.

Proposition 4.1. Any L�-formula φ is equivalent to a for-
mula in SDNFL0

(resp. SCNFL0
) that is at most single-

exponentially large in the size of φ. Moreover, there is an
L�-formula φ s.t. the size of SDNFL0 (resp. SCNFL0 ) for φ
is single-exponential in |φ|.

Proof. We provide a transformation for L� into SDNFL0
:

We first compile a modal formula into a CDNF formula

and then replace all propositional components with their
equivalent L0-formulas. We note that every modal formula
is equivalent to a formula in CDNF that is at most single
exponentially large in the original formula size (ten Cate
et al. 2006). By Prop. 3.4, CDNF is a subset of SDNFTE.
Thus, every modal formula can be equivalently transformed
into a formula in SDNFTE. As each propositional term can
be turned into a polysize L0-formula, we obtain the single-
exponential upper bound of the transformation.

Since SCNF is dual to SDNF, the transformation into
SCNF has the same upper bound.

To prove that the upper bound is optimal, we observe that
the smallest SDNF representation for the formula

∧n
j=1(pj∨

♦iqj) has at least 2n modal terms, each of which is equiv-
alent to

∧n
j=1 rj where rj is either pj or ♦iqj . Dually,∨n

j=1(pj ∧�iqj) has also at least 2n modal clauses.

By Theorem 4.1.13 in (Bienvenu 2009), the size of each
PINF formula equivalent to

∧n
j=1[(�ipj ∧ ♦iqj) ∨ (�irj ∧

♦isj)] is at least double-exponential large in the size of the
given formula. Therefore, our new normal forms have a bet-
ter space complexity than PINF. We remark that, despite
the worst case complexity is exponential, the transforma-
tion can be performed effectively for some practical appli-
cations. In particular, both progression and entailment check
are tractable in SDNF for multi-agent epistemic planning,
and thus the cost of compilation phase is amortized over
subsequent progression and entailment. The details will be
discussed in Section 6.

We now analyze the relationships between different nor-
mal forms in terms of the succinctness.

Definition 4.1. A language L is at least as succinct as L′,
written L ≤ L′, if there is a polynomial f s.t. for any for-
mula φ ∈ L′, there exists a formula ψ ∈ L s.t. ψ ≡ φ and
|ψ| ≤ f(|φ|).

The relation ≤ is clear reflexive and transitive, i.e., a pre-
order over languages. A language L is strictly more succinct
than L′, written L < L′, if L ≤ L′ and L′ � L. Two lan-
guages L and L′ are incomparable, if L � L′ and L′ � L.

The results about succinctness are depicted in Figure 1.
We explicate them in the following.

We note that SDNF and SCNF are subsets of L�. By
Proposition 4.1, L� is strictly more succinct than both
SDNF and SCNF.

Proposition 4.2. L� < SDNFL0 and L� < SDNFL0 .

We show that our new normal forms SDNF and SCNF are
strictly more succinct than CDNF and PINF, respectively.

Proposition 4.3. SDNFL0 < CDNF and SCNFL0 < PINF.

Proof. Since CDNF and PINF are subsets of SDNFTE and
SCNFCL respectively (cf. Prop. 3.4) and every propositional
term and clause can be efficiently represented by L0, we
get that SDNFL0 ≤ CDNF and SCNFL0 ≤ PINF. Ev-
ery formula is equivalent to a SCNF-formula that is at
most single-exponentially larger, and converting the formula∧n
j=1[(�ipj ∧♦iqj)∨(�irj ∧♦isj)] into PINF causes an at

least double exponential blowup. Thus, PINF � SCNFL0
.
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It remains to prove CDNF � SDNFL0 . We define a class
of formulas φk inductively as follows: (1) φ0 = p ∨ q; (2)
φk = φ0 ∧ �iφk−1. The size of φk is linear in k, more
precisely, 3 + 5k. Let f be a polynomial s.t. any clause c has
a representation in L0 with size at most f(|c|). Each φk has
an SDNFL0

representation with size f(3) · (k+1)+2k. The
smallest CDNF formulaψk equivalent to φk is (p∧�iψk−1∧
♦iψk−1)∨(p∧�i⊥)∨(q∧�iψk−1∧♦iψk−1)∨(q∧�i⊥). By
induction on k, the size of ψk is single-exponential in k.

As mentioned before, no formula in SDNF (resp. SCNF)
equivalent to the formula

∧n
j=1(pj ∨♦iqj) (resp.

∨n
j=1(pj ∧

�iqj)) has size polynomial in the given formula. Moreover,
the formula

∧n
j=1(pj∨♦iqj) is in PINF. The CDNF formula∨n

j=1(pj ∧�iqj ∧♦iqj)∨
∨n
j=1(pj ∧�i⊥) is equivalent to∨n

j=1(pj ∧�iqj) and with polynomial size. Thus, we get

Proposition 4.4. SDNFL0
� PINF and SCNFL0

� CDNF.

The remaining succinctness results shown in Figure 1 are
easy consequences of Proposition 4.4 via exploiting the tran-
sitivity of ≤.

5 Queries and Transformations
In this section, we mainly examine SDNFL0

w.r.t. the knowl-
edge compilation properties proposed in (Darwiche and
Marquis 2002), and identify conditions of L0 under which
some useful properties hold in SDNFL0

. More importantly,
we provide an almost complete picture for tractability of
the four normal forms in Table 1. Interestingly, the normal
form SDNFL0 supports as many properties as propositional
DNF. From the knowledge compilation perspective, SDNF
is a proper alternative to the modal counterpart for DNF.

Queries It is well-known that the satisfiability of DNF is
tractable (Darwiche and Marquis 2002). This positive result
is still valid for SDNFL0 if L0 allows polytime satisfiability
check. We briefly introduce the procedure for the satisfiabil-
ity of an SDNF formula φ. Suppose that we are given a poly-
time subprocedure SATL0

which returns a Boolean value
stating whether or not an L0-formula is satisfiable. If φ ∈
L0, then it is satisfiable in Kn iff the subprocedure SATL0

returns yes. If φ is a disjunction of modal terms, then the
satisfiability problem of φ can be reduced to that of each dis-
junct φ. Due to the modularity property (cf. Proposition 3.1),
a logically separable modal term α∧

∧
i∈B(�iβi∧

∧
j ♦iγij)

is satisfiable iff all of α and γij’s are satisfiable. In summary,
deciding if a SDNF formula φ is satisfiable can be tractably
performed. Interestingly, even if the satisfiability of L0 is
NP-Complete, the satisfiability of SDNFL0

falls into ∆P
2

since the decision procedure calls the subprocedure SATL0

at most |φ| times.

Proposition 5.1. If L0 satisfies CO, then SDNFL0 satisfies
CO.

The negative results about other queries also carry for-
ward from DNF to SDNF.

Proposition 5.2. SDNFL0
does not satisfy VA, SE, EQ,

CE or IM unless P = NP.

Proof. VA: Let τ1 ∨ · · · ∨ τn be a DNF where τk is a
propositional term. For each τk, there exists ψk ∈ L0 s.t.
ψk ≡ τk and |ψk| < f(|τk|) for some polynomial f . Clearly,
ψ1 ∨ · · · ∨ ψn is in SDNFL0 . If we can decide whether this
disjunction is valid in polytime, then the validity of DNF
can be tractably accomplished. However, the latter problem
is coNP-complete. A contradiction.

SE and EQ: Since SE implies VA, SDNFL0 does not
satisfy SE. Similarly, SDNFL0 fails to satisfy EQ.

CE and IM: Let�iφ be a modal literal where φ is propo-
sitional. Clearly, > is in SDNFL0

and �iφ is a modal term.
We get that > |= �iφ iff φ is valid. The validity problem of
propositional logic is coNP-complete, and so is the prob-
lem that decides if > |= �iφ. Hence, SDNFL0 does not
satisfy CE. Similarly, SDNFL0 fails to satisfy IM.

Unlike DNF, even if L0 satisfies the polytime clause en-
tailment check (CE), SDNFL0

does not possess such a prop-
erty. Moreover, it is impossible to propose a normal form
permitting such a check. Let us illustrate this in the follow-
ing. Suppose that �iφ is a modal literal where φ is propo-
sitional. We get that > |= �iφ iff φ is valid. The validity
problem of propositional logic is coNP-complete, and so is
the problem that decides if > |= �iφ.

This motivates us to propose a restricted version of clausal
entailment check by restricting the form of propositional
subformulas appearing in the modal clausal.
Definition 5.1. A language L satisfies CEL0

(resp. IML0
),

if there is a polytime algorithm that maps every formula φ ∈
L and every SCLL0 (resp. STEL0 ) ψ to 1 if φ |= ψ (resp.
ψ |= φ) holds, and to 0 otherwise.

SDNFL0 supports the restricted polytime clausal entail-
ment check CEL′0 under conditions that L0 satisfies both
CO and ∧BC, and L′0 is dual to L0. Let φ ∈ SDNFL0

and ψ ∈ SCLL′0 . Due to the fact that φ |= ψ iff φ ∧ ¬ψ
is unsatisfiable, we reduce the clausal entailment problem to
the satisfiability problem. The main insight is first construct-
ing an SDNFL0

formula φ′ equivalent to φ ∧ ¬ψ, and then
checking its satisfiability. This can be achieved by first ob-
taining an STEL0

ψ′ equivalent to ¬ψ, and then conjoining
ψ′ with φ. The facts that SCLL′0 and STEL0

are dual and
that SDNFL0

satisfies bounded conjunction (cf. Proposition
5.4) imply that the construction of φ′ is tractable. Since the
satisfiability of SDNF is tractable (cf. Proposition 5.1), we
get that deciding if φ |= ψ can be accomplished in polytime.
However, SDNFL0 does not satisfy the restricted polytime
implicant check even if L′0 is dual to L0.
Proposition 5.3. Let L0 and L′0 be dual. If L0 satisfies
CO and ∧BC, then SDNFL0

satisfies CEL′0 . However,
SDNFL0

does not satisfy IML′0 unless P = NP.

Proof. The proof for the CEL0 property is illustrated above,
and the proof for the IML0 property is similar to that for the
IM property (cf. Proposition 5.2).

Transformations We now present the results about the
transformations. It follows from Definition 3.4 that the dis-
junction of SDNF formulas can be generated efficiently.
However, SDNF supports neither polytime conjunction nor
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L CO VA SE EQ CE CEL′0
IM IML′0

¬C ∧C ∧BC ∨C ∨BC CD FO SFO

SDNFL0 X∗ ◦ ◦ ◦ ◦ X∗ ◦ ◦ 5 5 X∗ X X X∗ X∗ X∗

SCNFL0 ◦ X∗ ◦ ◦ ◦ ◦ ◦ X∗ 5 X X 5 X∗ X∗ ◦ ?
CDNF X ◦ ◦ ◦ ◦ X∗ ◦ ◦ 5 5 X X X X X X

PINF X X X X ◦ X∗ ◦ X∗ 5 5 5 5 X ? X X

Table 1: Queries and transformations for normal forms in Kn and Dn. The occurrence of X (or X∗) in the cell of row r and
column c means that “the normal form Lr given in row r satisfies the property Pc given in column c (under specific conditions
in the case ofX∗)”. The symbol 5 means that “Lr does not satisfy Pc”, ◦means that “Lr does not satisfy Pc unless P = NP”,
and ? means that “the issue remains open”.

polytime negation. Fortunately, it supports bounded con-
junction. The following proposition states the above results.

Proposition 5.4. • SDNFL0
satisfies∨C, and does not sat-

isfy ∧C or ¬C.
• If L0 satisfies ∧BC, then SDNFL0

satisfies ∧BC.

Proof. • ∧C: By Proposition 4.1, any SDNF representation
of φn =

∧n
j=1(pj ∨ ♦iqj) has size exponential in n. But

the size of φn is linear in n. Hence, ∧C does not hold for
SDNFL0 .

• ¬C: On the contrary, assume that SDNFL0
satisfies ¬C.

This, together with the fact that ∨C holds for SDNFL0
,

imply that SDNFL0
satisfy ∧C, a contradiction.

• ∧BC: By assumption, there exists a polytime algorithm
that maps every pair of L0-formulas α and α′ to an L0-
formula that is equivalent to α∧α′. Let the polynomial f
be the time complexity, k the degree of f , and c the sum
of the coefficients of f . So f(|α|, |α′|) ≤ c|α|k|α′|k.
Suppose that φ =

∨n
j=1 ψj and φ′ =

∨m
l=1 ψ

′
l are two for-

mulas in SDNFL0 . Thus, any ψj and ψ′l are in STEL0 . We
can construct a formula φ′′ in SDNFL0 that is equivalent
to φ ∧ φ′ by simply taking the disjunction of all modal
terms ψ′′jl where ψ′′jl ≡ ψj ∧ ψ′l for 1 ≤ j ≤ n and
1 ≤ l ≤ m. It is easy to see that |φ′′| ≤ c|φ|k|φ′|k if
|ψ′′jl| ≤ c|ψj |k|ψ′l|k.
It remains to prove that for any two STE’s ψ and ψ′, there
is an STE ψ′′ s.t. ψ′′ ≡ ψ ∧ ψ′ and |ψ′′| ≤ c|ψ|k|ψ′|k.
Suppose that ψ = α ∧

∧
i∈B(�iβi ∧

∧mi

j=1 ♦iγij) and
ψ′ = α′∧

∧
i∈B′(�iβ

′
i∧

∧ni

l=1 ♦iγ
′
il). We assume without

loss of generality that B = B′. We construct a formula
ψ′′ = α′′∧

∧
i∈B(�iβ′′i ∧

∧mi

j=1 ♦iγ
′′
ij∧

∧ni

l=1 ♦iγ
∗
il), where

α′′ ≡ α ∧ α′, β′′i ≡ βi ∧ β′i, γ′′ij ≡ β′i ∧ γij and γ∗il ≡
βi ∧ γ′il. Then ψ′′ is an STE with size at most c|ψ|k|ψ′|k.

It is easy to design procedures for generating the results of
conditioning and forgetting of SDNF formulas respectively.
They are similar to the procedure for the satisfiability prob-
lem of SDNF formulas. Thus, we get

Proposition 5.5. If L0 satisfies CD (resp. FO/SFO), then
SDNFL0 satisfies CD (resp. FO/SFO).

Since SCNF is dual to SDNF, it is similar to obtain cor-
responding results for SCNFL0

. CDNF supports as many
knowledge compilation properties as SDNF on the ground

that it is a fragment of SDNFTE and propositional term satis-
fies the specific conditions. Most results for PINF presented
in this section originate from (Darwiche and Marquis 2002;
Bienvenu 2009). Table 1 summarizes the query and transfor-
mation properties of the four normal form.

We conclude this section by briefly discussing our main
results. Given a proper propositional fragment L0, SDNFL0

is tractable for all of queries and transformations that DNF
admits, and thus being a proper alternative to the modal
counterpart for DNF. For the similar reason, SCNF and
PINF can be viewed as the modal counterpart for CNF and
prime implicate, respectively. It is worth noting that SDNF
supports ploytime clausal entailment checking (CEL0 ),
bounded conjunction (∧BC) and forgetting (FO), which
are important for multi-agent epistemic planning. SCNF
does not satisfy polytime entailment check or forgetting
while bounded conjunction does not hold for PINF. Though
CDNF satisfy all of CEL0

, ∧BC and FO, SDNF has two
major advantages over CDNF. In theory, it is strictly more
succinct than CDNF (cf. Proposition. 4.3). On the practice
side, SDNF is more flexible then CDNF since the former can
be designed via making use of efficient and compact propo-
sitional representations, e.g., OBDD. From the knowledge
compilation perspective, SDNF is more suitable for multi-
agent epistemic planning than the other three normal forms.

6 Application to Multi-Agent Epistemic
Planning

Based on the notion of canonical formulas, Aucher (2011)
gave a syntactic representation of progression w.r.t. epis-
temic actions. Due to the high complexity of their canonical
formulas, this approach is not practical for implementation
of multi-agent epistemic planning. Bienvenu, Fargier, and
Marquis (2010) proposed a tractable approach to progres-
sion and entailment check for single-agent epistemic plan-
ning. It is challenging to extend their approach to multi-
agent case in that it is necessary to consider not only first-
order knowledge (i.e., to know what is the world), but
also high-order knowledge, (i.e., to know what other agents
know).

In this section, we briefly explain how to apply our results
in multi-agent epistemic planning. Especially, two essential
procedures (progression and entailment check) can be ac-
complished efficiently by using the form SDNF.

A multi-agent epistemic planning problem consists of the
initial KB, the goal formula, and ontic and epistemic actions.
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The main distinction between epistemic planning and tradi-
tional planning are that (1) the initial KB and the goal for-
mula are expressed in modal logics other than propositional
logics, and (2) the former involves not only ontic actions
changing the world but also epistemic actions modifying the
mental attitude of agents. We begin with a multi-agent epis-
temic planning problem adapted from (Kominis and Geffner
2015) to explain the progression and entailment check.

Example 3. There are four rooms r1, r2, r3 and r4 in a row
from left to right on a corridor. Each of two boxes b1 and b2
is located in a room. Two agents i and j can move from one
room to its left and right adjacent room. When an agent is in
a room, she can sense if a box is in the room. Initially, agent
i is in r1, j is in r4, box b1 is in r2 and b2 is in r3. Each agent
only knows where herself is (i.e., �iat(i, r1)∧�jat(j, r4)).
The goals for agents i and j are to determine the rooms in
which b1 and b2 respectively.

In the following, we discuss the progression w.r.t. ontic
and epistemic actions.

An ontic action ao is associated with a pair of functions
〈pre, eff〉 where pre ∈ L� specifies the precondition and
eff is the effect. In order to express the effect, we con-
sider two versions p and p′ of each variable p. For each
p ∈ P , the unprimed version p means that p holds before
performing the action ao, and the primed one p′ states that
p holds after. The effect is a conjunction of formulas of the
form: p′ ≡ δ+ ∨ (p ∧ ¬δ−). Two propositional formulas
δ+ and δ− are conditions that make p true and false respec-
tively. Intuitively, the effect means that p holds after exe-
cuting ao iff δ+ holds, or δ− does not hold and p holds
initially. In Example 3, if agent i knows that she is not in
the rightmost room r4, then she can move right, and thus
pre(right(i)) = �i(¬at(i, r4)); after moving right, agent i
will be in room rn+1 if she is in rn initially, and therefore
eff(right(i)) =

∧3
n=1[at′(i, rn+1) ≡ at(i, rn)].

In this paper, we assume that all ontic actions are public
and that there is no sort of imperfect information in them.
This assumption was proposed in (Kominis and Geffner
2015). To exactly capture progression under this assump-
tion, it is necessary to progress KBs according to the action
effect via high-order knowledge shared by all agents.

Definition 6.1. Let k be a natural number and φ a formula.
The formula �kφ is inductively defined:

• �1φ =
∧
i∈A�iφ;

• �kφ = �k−1φ ∧
∧
i∈A�i(�

k−1φ).

Intuitively, �1φ means that every agent knows that φ
holds, i.e., φ is the everyone knowledge; and �kφ means
that φ is the depth k everyone knowledge.

The computation of the progression ξ of the KB φ w.r.t.
an ontic action ao involves three steps:

1. Construct the formula ψ by conjoining φ with the depth
k everyone knowledge about the effect of ao where k is
the depth of φ (i.e., ψ = φ ∧�keff(ao)).

2. Obtain the formula η via forgetting the set of variablesQ
in ψ where Q is the set of unprimed variables appearing
in eff(ao) (i.e., η = ∃Q.ψ).

3. Replace each occurrence of primed variables with their
unprimed counterpart in η (i.e., ξ = η[P ′/P ]).

By expressing the initial KB and the action effects of on-
tic actions in SDNFL0 with L0 satisfying polytime bounded
conjunction (∧BC) and forgetting (FO), which is always
possible due to Propositions 4.1, the above three steps can
be accomplished in polytime, and thus the progression w.r.t.
ontic actions can be tractably computed.

The progression of epistemic actions is relatively simple.
An epistemic action ae is associated with a triple of func-
tions 〈pre, pos, neg〉 of L�-formulas, where pre, pos and
neg indicate the precondition, positive and negative sens-
ing results, respectively. For example, consider the action
sense(i, b1, r2) which means that agent i sense if box b1 in
room r2, its precondition, positive and negative sensing re-
sults are as follows: pre(sense(i, b1, r2)) = �iat(i, r2),
pos(sense(i,b1,r2))=�iin(b1,r2) and neg(sense(i,b1,r2))
= �i¬in(b1, r2). The computation of the progression is
done via firstly making two copies of φ, and then conjoin-
ing them with positive and negative results respectively, i.e.,
φ ∧ pos(ae) and φ ∧ neg(ae). Again, SDNF is suitable to
perform such progression since it supports polytime ∧BC.

Continued with Example 3, we illustrate the computation
of progression.

Example 4. Suppose that agent i first moves right, and then
senses whether b1 in room r2.

The progression of the initial KB φ = �iat(i, r1) ∧
�jat(j, r4) w.r.t. the ontic action right(i) is obtained as fol-
lows:

1. Conjoin φ with �1eff(ao), and the resulting formula ψ
is �iat(i, r1) ∧�jat(j, r4) ∧�1[

∧3
n=1(at′(i, rn+1) ≡

at(i, rn))];
2. The set of unprimed variables appearing in eff(ao) is
{at(i, r1), at(i, r2), at(i, r3)}. Forgetting them in ψ re-
sults in the formula η = �iat′(i, r2) ∧�jat(j, r4);

3. Substitute at′(i, r2) with at(i, r2) in η, leading to ξ =
�iat(i, r2) ∧�jat(j, r4).

After agent i moves right, she knows that her position is r2.
Then, the progression w.r.t. sense(i, b1, r2) splits ξ into

the two KBs: �i[at(i, r2) ∧ in(b1, r2)] ∧ �jat(j, r4) and
�i[at(i, r2)∧¬in(b1, r2)]∧�jat(j, r4). These two formulas
together means that agent i knows whether b2 is in r2.

Besides progression, another major computation effort
lies in the reasoning to decide if the current KB entails the
goal formula and the action preconditions. It follows from
Proposition 5.3 that the entailment check is tractable if the
current KB is expressed in SDNFL0 and both the goal for-
mula and the preconditions are in SCNFL′0 , where L0 and
L′0 are dual, and L0 satisfies CO and ∧BC. Thanks to the
tractability of both progression and entailment check, the
whole planning process can be done effectively.

7 Extension to Dn, K45n and KD45n
In the area of philosophy, it is ideal to assume that each
agent does not know a contradiction or/and she has intro-
spection about her own knowledge. The former assumption

2824



L CO VA SE EQ CE ACEL′0
IM AIML′0

¬C ∧C ∧BC ∨C ∨BC CD FO SFO

ASDNFL0 X∗ ◦ ◦ ◦ ◦ X∗ ◦ ◦ 5 5 X∗ X X X∗ X∗ X∗

ASCNFL0 ◦ X∗ ◦ ◦ ◦ ◦ ◦ X∗ 5 X X 5 X∗ X∗ ◦ ?
ACDNF X ◦ ◦ ◦ ◦ X∗ ◦ ◦ 5 5 X X X X X X

Table 2: Queries and transformations for normal forms in K45n and KD45n

Figure 2: Succinctness of normal forms in K45n and KD45n.

can be captured by the consistency axiom D (¬�i⊥) while
the latter can be described as the introspection axioms 4
(�iφ→ �i�iφ) and 5 (♦iφ→ �i♦iφ).

In this section, we are concerned about modal logics Dn,
K45n and KD45n that are extensions to Kn. The logic Dn is
Kn extended by the axiom D, K45n is the logic that extends
Kn with axioms 4 and 5, and KD45n is the modal logic con-
taining the above three axioms.

Let us begin with the Dn case. Both SDNF and SCNF
previously defined (cf. Def. 3.4) are suitable to Dn. This is
because that the knowledge compilation results about these
two forms (cf. Fig. 1 and Tab. 1) still hold for Dn, and thus
SDNF and SCNF support as many queries and transforma-
tions as propositional DNF and CNF respectively.
Theorem 7.1. The results in Fig. 1 and Tab. 1 hold for Dn.

Proof. The proofs of results about Kn in Figure 1 and Table
1 are applicable to the logic Dn except the following state-
ments:

1. If L0 satisfies CO, then SDNFL0
satisfies CO.

2. If L0 satisfies VA, then SCNFL0
satisfies VA.

Since SDNF and SCNF are dual, the above two statements
are equivalent. It suffices to prove the first statement. The
proof is similar to that of Proposition 5.1 except the case for
a logically separable modal termα∧

∧
i∈B(�iβi∧

∧
j ♦iγij).

It is satisfiable iff non only the formulas α and γij’s but also
βi’s are satisfiable.

Now, we turn to consider the logic K45n. It is non-trivial
to extend our proposed results for Kn to K45n since the defi-
nition of separability-based term cannot be applied in K45n.
We show this in an illustrative example.
Example 5. Suppose that a logical separable modal term
φ = ♦i(p ∧ �i¬p). By Proposition 3.1, φ is satisfiable in
Kn. However, it is not the case in K45n since φ implies that
♦i(p ∧ ¬p), which is equivalent to ⊥. This is due to the ad-
ditional axioms 4 and 5.

From the above example, we know that, in K45n, there
exist logical entanglements between two propositional sub-
formulas on different depth of formulas. Thus, the crux is

that some separability-based terms are logically inseparable
in K45n. To achieve logical separability, we need to prohibit
any consecutive occurrence of modalities of the same agent.
Definition 7.1. A formula has the alternating agent modal-
ity property if no modalities of an agent directly occur inside
those of the same agent.

We say φ is an alternating separability-based term
(ASTE), if it is an STE with the alternating agent modal-
ity property. Similarly, we can define the following no-
tions: alternating separability-based clause (ASCL), DNF
(ASDNF) and CNF (ASCNF). In addition, the alternating
version of CDNF (ACDNF) was proposed in (Hales, French,
and Davies 2012). For example, the formula�i♦ip is not an
ASTE since ♦i occurs directly within the �i modality. But
the formula�i♦j�ip is an ASTE since there is a ♦j modal-
ity inbetween two �i modalities.

We remark that all knowledge compilation results, stated
in Sec. 4 and 5, also hold for ASDNF, ASCNF and ACDNF
in the logic K45n except the following. Firstly, transforming
into ASDNF or ASCNF causes an at most double exponen-
tial blowup in the size of the original formula since strip-
ing out any occurrence of consecutive modalities with the
same agent leads to an extra single-exponential blowup. Al-
though the aforementioned transformation for arbitrary for-
mulas may cause a double-exponential blowup, its complex-
ity falls into single-exponential if the original formula pos-
sesses the alternating agent modality property. In addition,
the definitions of polytime tests for restricted clausal en-
tailment (ACEL0

) and implicant (AIML0
) are slightly ad-

justed by using ASTE and ASCL instead of STE and SCL re-
spectively. Similar to Prop. 5.3, if L0 and L′0 are dual and L0

supports CO and ∧BC, then ASDNFL0
satisfies ACEL′0 .

The above knowledge compilation results for K45n are
also hold for KD45n. We summarize them in Figure 2 and
Table 2. The meaning of symbols in Figure 2 and Table 2
are the same as Figure 1 and Table 1 respectively.
Theorem 7.2. The results in Figure 2 and Table 2 hold for
K45n and KD45n.

To prove Theorem 7.2, we need the following lemma. We
use |=L to denote the entailment relation in the logic L.
Lemma 7.1. For every alternating formula φ, φ is satisfi-
able in Kn iff it is satisfiable in K45n.

Proof. By Lemma 5 in (Lakemeyer and Lespérance 2012),
we have ⊥ |=Kn φ iff ⊥ |=K45n φ. It follows that φ is satisfi-
able in Kn iff it is satisfiable in K45n.

We are ready to present the proof of Theorem 7.2.

Proof. The formulas, introduced in Section 4 and used to
prove the relative succinctness between two languages, are
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with depth 1, and alternating formulas. Hence, the succinct-
ness results about Kn are applicable to K45n and KD45n. For
a similar reason, the negative results on queries and transfor-
mations for Kn also hold for K45n and KD45n.

The positive result on queries for K45n and KD45n can
be proved using Lemma 7.1. By Proposition 5.1 and Lemma
7.1, ASDNFL0

supports polytime satisfiability check (CO)
if L0 supports CO. Similarly, ASDNFL0

satisfies polytime
test for restricted clausal entailment (ACEL′0 ) under spe-
cific conditions.

It is easy to see that SDNF supports polytime arbitrary
disjunction (∨C) and bounded conjunction (∧BC). Finally,
the computation of forgetting and conditioning preserves the
alternating agent modality property. Hence, ASDNFL0 sup-
ports polytime forgetting (FO) and conditioning (CD).

Since SCNF is dual to SDNF, it is similar to obtain cor-
responding results for SCNFL0

. CDNF supports as many
queries and transformations as SDNF on the ground that it is
a fragment of SDNFTE and propositional term satisfies the
specific conditions.

8 Conclusions and Future Work
We have introduced a notion of logical separability for
modal terms, which is a key property to guarantee that
the satisfiability check and forgetting can be computed in
a modular way. Based on the logical separability, we have
defined a normal form SDNF for the multi-agent modal
logic Kn, which can be seen as a generalization of the
well-known propositional normal form DNF. As a dual to
SDNF, we can define the SCNF for Kn. More importantly,
we have constructed a knowledge compilation map on four
normal forms SDNF, SCNF, CDNF and PINF in terms
of their succinctness, queries and transformations. Interest-
ingly, bounded conjunction, forgetting and restricted clausal
entailment check are all tractable for SDNFL0 formulas un-
der some restrictions on L0. These three properties are cru-
cial to effective implementations of multi-agent epistemic
planning. Although SDNF and CDNF admit tractability for
the same queries and transformations, the former is a bet-
ter choice of the target compilation language for multi-agent
epistemic planning since SDNF is more succinct and flexible
than CDNF. Finally, we extend the above results to modal
logics Dn, K45n and KD45n.

For future work, we plan to implement a multi-agent epis-
temic planner based on SDNF. It is also interesting to iden-
tify tractable normal forms in other multi-agent modal log-
ics (e.g., Tn and S5n) and expressive description logics (e.g.,
ALCO and ALCOI). Since the description logic ALC is
highly-related to Kn, the results proposed in this paper is
also applicable to ALC.
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Bryce, D.; Kambhampati, S.; and Smith, D. E. 2006. Plan-
ning Graph Heuristics for Belief Space Search. Journal of
Artificial Intelligence Research 26:35–99.
Darwiche, A., and Marquis, P. 2002. A Knowledge Com-
pilation Map. Journal of Artificial Intelligence Research
17:229–264.
Fang, L.; Liu, Y.; and van Ditmarsch, H. 2016. Forgetting
in Multi-Agent Modal Logics. In IJCAI, 1066–1073.
French, T. N. 2006. Bisimulation Quantifiers for Modal
Logics. Ph.D. Dissertation, University of Western Australia.
Hales, J.; French, T.; and Davies, R. 2012. Refinement
Quantified Logics of Knowledge and Belief for Multiple
Agents. In AiML, 317–338.
Halpern, J. Y., and Moses, Y. 1992. A guide to completeness
and complexity for modal logics of knowledge and belief.
Artificial Intelligence 54:319–379.
Huang, X.; Fang, B.; Wan, H.; and Liu, Y. 2017. A Gen-
eral Multi-agent Epistemic Planner Based on Higher-order
Belief Change. In IJCAI, 3327–3334.
Kominis, F., and Geffner, H. 2015. Beliefs in Multiagent
Planning: From One Agent to Many. In ICAPS, 147–155.
Lakemeyer, G., and Lespérance, Y. 2012. Efficient Reason-
ing in Multiagent Epistemic Logics. In ECAI, 498–503.
Levesque, H. 1998. A Completeness Result for Reasoning
with Incomplete First-Order Knowledge Bases. In KR, 14–
23.
Moss, L. S. 2007. Finite models constructed from canonical
formulas. Journal of Philosophical Logic 36(6):605–640.
ten Cate, B.; Conradie, W.; Marx, M.; and Venema, Y. 2006.
Definitorially Complete Description Logics. In KR, 79–89.
To, S. T.; Pontelli, E.; and Son, T. C. 2011. On the Ef-
fectiveness of CNF and DNF Representations in Contingent
Planning. In IJCAI, 2033–2038.
To, S. T.; Son, T. C.; and Pontelli, E. 2011. Conjunctive
Representations in Contingent Planning: Prime Implicates
versus Minimal CNF Formula. In AAAI, 1023–1028.

2826


