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Abstract

In this paper, we consider counting and projected model count-
ing of extensions in abstract argumentation for various se-
mantics. When asking for projected counts we are interested
in counting the number of extensions of a given argumen-
tation framework while multiple extensions that are identi-
cal when restricted to the projected arguments count as only
one projected extension. We establish classical complexity re-
sults and parameterized complexity results when the problems
are parameterized by treewidth of the undirected argumen-
tation graph. To obtain upper bounds for counting projected
extensions, we introduce novel algorithms that exploit small
treewidth of the undirected argumentation graph of the in-
put instance by dynamic programming (DP). Our algorithms
run in time double or triple exponential in the treewidth de-
pending on the considered semantics. Finally, we take the
exponential time hypothesis (ETH) into account and establish
lower bounds of bounded treewidth algorithms for counting
extensions and projected extension.

Introduction
Abstract argumentation (Dung 1995; Rahwan 2007) is a
central framework for modeling and the evaluation of ar-
guments and its reasoning with applications to various ar-
eas in artificial intelligence (AI) (Amgoud and Prade 2009;
Rago, Cocarascu, and Toni 2018). The semantics of argumen-
tation is described in terms of arguments that are acceptable
with respect to an abstract framework, such as stable or ad-
missible. Such arguments are then called extensions of a
framework. In argumentation, one is particularly interested
in the credulous or skeptical reasoning problem, which asks,
given an argumentation framework and an argument, whether
the argument is contained in some or all extension(s) of the
framework, respectively. A very interesting, but yet entirely
unstudied question in abstract argumentation is the compu-
tation and the computational complexity of counting, which
asks for outputting the number of extensions with respect to
a certain semantics. By counting extensions, we can answer
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questions such as how many extensions are available con-
taining certain arguments. An even more interesting question
is how many extensions containing certain arguments exist
when restricted to a certain subset of the arguments which
asks for outputting the number of projected extensions.

Interestingly, the computational complexity of the deci-
sion problem is already quite hard. More precisely, the prob-
lem of credulous acceptance, which asks whether a given
argument is contained in at least one extension, is NP-
complete for the stable semantics and even Σp2-complete for
the semi-stable semantics (Dunne and Bench-Capon 2002;
Dvořák and Woltran 2010; Dvořák 2012). The high worst-
case complexity is often a major issue to establish algorithms
for frameworks of abstract argumentation. A classical way
in parameterized complexity and algorithmics is to identify
structural properties of an instance and establish efficient
algorithms under certain structural restrictions (Cygan et al.
2015). Usually, we aim for algorithms that run in time poly-
nomial in the input size and exponential in a measure of
the structure, so-called fixed-parameter tractable algorithms.
Such runtime results require more fine-grained runtime analy-
ses and more evolved reductions than in classical complexity
theory where one considers only the size of the input. Here,
we take a graph-theoretical measure of the undirected graph
of the given argumentation framework into account. As mea-
sure we take treewidth, which is arguably the most prominent
graph invariant in combinatorics of graph theory and renders
various graph problems easier if the input graph is of bounded
treewidth.

Our results are as follows:

• We establish the classical complexity of counting exten-
sions and counting projected extensions for various seman-
tics in abstract argumentation.

• We present an algorithm that solves counting projected
extensions by exploiting treewidth in runtime double ex-
ponential in the treewidth or triple exponential in the
treewidth depending on the considered semantics.

• Assuming the exponential time hypothesis (ETH), which
states that there is some real s > 0 such that we can-
not decide satisfiability of a given 3-CNF formula ϕ in
time 2s·|ϕ| · ‖ϕ‖O(1), we show that one cannot count pro-
jected extensions double exponentially in the treewidth.
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Related work. Baroni, Dunne, and Giacomin (2010)
considered general extension counting and show #P-
completeness and identify tractable cases. We generalize
these results to the reasoning problems. Lampis, Mengel, and
Mitsou (2018) considered bounded treewidth algorithms and
established lower bounds for the runtime of an algorithm that
solves reasoning in abstract argumentation under the admis-
sible and preferred semantics. These results do not trivially
extend to counting and are based on reductions to QBF. They
yield asymptotically tight bounds, but still involve a constant
factor. Unfortunately, already a small increase even by one
can amount to one order of magnitude in inference time with
dynamic programming (DP) algorithms for QBF. As a result,
a factor of just two can already render it impractical. Fichte et
al. (2018) gave DP algorithms for projected #SAT and estab-
lished that it cannot be solved in runtime double exponential
in the treewidth under ETH using results by Lampis and Mit-
sou (2017), who established lower bounds for the problem
∃∀-SAT. Dvořák, Pichler, and Woltran (2012) introduced DP
algorithms that exploit treewidth to solve decision problems
of various semantics in abstract argumentation. We employ
these results and lift them to projected counting. Further, DP
algorithms for projected counting in answer set programming
(ASP) were recently presented (Fichte and Hecher 2018a).

Formal Background
We use graphs and digraphs as usually defined (Bondy and
Murty 2008) and follow standard terminology in computa-
tional complexity (Papadimitriou 1994) and parameterized
complexity (Cygan et al. 2015). Let Σ and Σ′ be some finite
alphabets and L ⊆ Σ∗ × N be a parameterized problem. For
(I, k) ∈ L, we call I ∈ Σ∗ an instance and k the parameter.
For a set X , let 2X consist of all subsets of X . Later we use
the generalized combinatorial inclusion-exclusion principle,
which allows to compute the number of elements in the union
over all subsets (Graham, Grötschel, and Lovász 1995).

Counting Complexity. We follow standard terminology
in this area (Toda and Watanabe 1992; Hemaspaandra and
Vollmer 1995; Durand, Hermann, and Kolaitis 2005). In par-
ticular, we will make use of complexity classes preceded
with the sharp-dot operator ‘#·’. (Note the difference to
Valiant’s classes (Valiant 1979).) A witness function is a
function w : Σ∗ → P<ω(Γ∗), where Σ and Γ are alphabets,
mapping to a finite subset of Γ∗. Such functions associate
with the counting problem “given x ∈ Σ∗, find |w(x)|”. If
C is a decision complexity class then # · C is the class of
all counting problems whose witness function w satisfies
(1.) ∃ polynomial p such that for all y ∈ w(x), we have
that |y| 6 p(|x|), and (2.) the decision problem “given x
and y, is y ∈ w(x)?” is in C. A parsimonious reduction
between two counting problems #A,#B preserves the car-
dinality between the corresponding witness sets and is com-
putable in polynomial time. A subtractive reduction between
two counting problems #A and #B is composed of two
functions f, g between the instances of A and B such that
B(f(x)) ⊆ B(g(x)) and |A(x)| = |B(g(x))| − |B(f(x))|,
where A and B are respective witness functions.

drinking cocktails surfing surfing expensive

seasonal surfing pass req. cheap if once

adventure req. relaxing req.

Figure 1: Argumentation framework F : surfing vs. cocktails.

Abstract Argumentation. We consider the Argumenta-
tion Framework by Dung (1995). An argumentation frame-
work (AF), or framework for short, is a directed graph F =
(A,R) where A is a non-empty and finite set of arguments,
and R ⊆ A×A a pair arguments representing direct attacks1

of arguments. In argumentation, we are interested in com-
puting so-called extensions, which are subsets S ⊆ A of the
arguments that meet certain properties according to certain
semantics as given below. An argument s ∈ S, is called de-
fended by S in F if for every (s′, s) ∈ R, there exists s′′ ∈ S
such that (s′′, s′) ∈ R. The family defF (S) is defined by
defF (S) := { s | s ∈ A, s is defended by S in F }. We say
S ⊆ A is conflict-free in S if (S × S) ∩R = ∅; S is admis-
sible in F if (i) S is conflict-free in F , and (ii) every s ∈ S
is defended by S in F . Assume an admissible set S. Then,
(iiia) S is complete in F if defF (S) = S; (iiib) S is preferred
in F , if there is no S′ ⊃ S that is admissible in F ; (iiic) S is
semi-stable in F if there is no admissible set S′ ⊆ A in F
with S+

R ( (S′)+R where S+
R := S∪{ a | (b, a) ∈ R, b ∈ S };

(iiid) S is stable in F if every s ∈ A \ S is attacked by
some s′ ∈ S. A conflict-free set S is stage in F if there
is no conflict-free set S′ ⊆ A in F with S+

R ( (S′)+R. Let
ALL abbreviate the set {admissible, complete, preferred,
semi-stable, stable, stage}. For a semantics S ∈ ALL,
S(F ) denotes the set of all extensions of semantics S in F .
In general stable(F ) ⊆ semi-stable(F ) ⊆ preferred(F )
⊆ complete(F ) ⊆ admissible(F ) ⊆ conflict-free(F )
and stable(F ) ⊆ stage(F ) ⊆ conflict-free(F ).

Problems of Interest. In argumentation one is usually in-
terested in credulous and skeptical reasoning problems. In
this paper, we are in addition interested in counting ver-
sions of these problems. Therefore, let S ∈ ALL be an
abstract argumentation semantic, F = (A,R) be an ar-
gumentation framework, and a ∈ A an argument. The
credulous reasoning problem CredS asks to decide whether
there is an S-extension of F that contains the (credulous)
argument a. The skeptical reasoning problem SkepS asks
to decide whether all S-extensions of F contain the argu-
ment a. The credulous counting problem #CredS asks to
output the number of S-extensions of F that contain a, i.e.,
|{S | S ∈ S(F ), a ∈ S }|. The projected credulous count-
ing problem (#PCredS) asks to output the number of S-
extensions restricted to the projection arguments P , i.e.,
|{S ∩ P | S ∈ S(F ), a ∈ S }|.
Example 1. Consider framework F from Figure 1, which
depicts a framework for deciding between surfing and
drinking cocktails. Framework F admits three stable

1Given S, S′ ⊆ A. Then, S �R S′ denotes {s ∈ S | ({s} ×
S′) ∩R 6= ∅}, and S �R S′ := {s ∈ S | (S′ × {s}) ∩R 6= ∅}.
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extensions stable(F ) = {{d, r, c}, {s, a, c}, {s, a, p}}.
#Credstable for argument s equals 2, whereas #PCredstable
for argument s restricted to P := {a, r} equals 1.

Tree Decompositions (TDs). For a tree T = (N,A, n)
with root n and a node t ∈ N , we let children(t, T ) be the
sequence of all nodes t′ in arbitrarily but fixed order, which
have an edge (t, t′) ∈ A. Let G = (V,E) be a graph. A tree
decomposition (TD) of graph G is a pair T = (T, χ), where
T = (N,A, n) is a rooted tree, n ∈ N the root, and χ a
mapping that assigns to each node t ∈ N a set χ(t) ⊆ V ,
called a bag, such that the following conditions hold: (i) V =⋃
t∈N χ(t) and E ⊆

⋃
t∈N{ {u, v} | u, v ∈ χ(t) }; and (ii)

for each r, s, t, such that s lies on the path from r to t, we have
χ(r)∩χ(t) ⊆ χ(s). Then, width(T ) := maxt∈N |χ(t)|−1.
The treewidth tw(G) ofG is the minimum width(T ) over all
tree decompositions T of G. For arbitrary but fixed w ≥ 1, it
is feasible in linear time to decide if a graph has treewidth at
most w and, if so, to compute a TD of width w (Bodlaender
1996). However, in practice, heuristics (Abseher, Musliu, and
Woltran 2017; Fichte, Lodha, and Szeider 2017) to compute
a tree decomposition are often sufficient. In order to simplify
case distinctions in the algorithms, we assume nice TDs,
which can be computed in linear time without increasing the
width (Kloks 1994) and are defined as follows. For a node t ∈
N , we say that type(t) is leaf if children(t, T ) = 〈〉; join if
children(t, T ) = 〈t′, t′′〉 where χ(t) = χ(t′) = χ(t′′) 6= ∅;
int (“introduce”) if children(t, T ) = 〈t′〉, χ(t′) ⊆ χ(t) and
|χ(t)| = |χ(t′)|+1; rem (“remove”) if children(t, T ) = 〈t′〉,
χ(t′) ⊇ χ(t) and |χ(t′)| = |χ(t)| + 1. If for every node
t ∈ N , type(t) ∈ {leaf, join, int, rem} and bags of leaf nodes
and the root are empty, then the TD is called nice.

Classical Counting Complexity
In this section, we investigate the classical counting complex-
ity of the credulous reasoning problem. Proofs of marked
statements (“?”) are omitted or shortened. For full details,
see the technical report (Fichte et al. 2018).
Lemma 2 (?). #CredS is in # · P if S ∈ {conflict-free,
stable, admissible, complete}, and in # · coNP if S ∈
{preferred, semi-stable, stage}.

The next lemma does neither consider conflict-free nor
preferred extensions.
Lemma 3 (?). #CredS is # · P-hard under parsi. reduc-
tions if S ∈ {stable, admissible, complete}, and # · coNP-
hard under subtr. reductions if S ∈ {semi-stable, stage}.

Proof (Sketch). (1) Start with the case of stable or complete
extensions. Following the construction of Dunne and Bench-
Capon (2002), we parsimoniously reduce from #SAT. For
the case of admissible extensions, to count correctly, it is
crucial that for each xi either argument xi or x̄i is part of the
extension. To ensure this, we introduce arguments s1, . . . , sn
attacking t that can only be defended by one of xi or x̄i.

(2) The formalism of circumscription is well-established
in the area of AI (McCarthy 1980). Formally, one consid-
ers assignments of Boolean formulas that are minimal re-
garding the partially ordered set of truth assignments: if

s = (s1, . . . , sn), s′ = (s′1, . . . , s
′
n) ∈ {0, 1}n, then write

s < s′ if s 6= s′ and si 6 s′i for every i 6 n. Then, we define
the problem #Circumscription which asks given a Boolean
formula ϕ in CNF to output the number of minimal models
of ϕ. Durand, Hermann, and Kolaitis (2005) showed that
#Circumscription is # · coNP-complete via subtractive re-
ductions (a generalization of parsimonious reductions). The
crux is, that choosing negative literals is more valuable than
selecting positive ones. This is achieved by adding addition-
ally attacked arguments to each negative literal.

Lemma 2 and 3 together show the following theorem.
Theorem 4. #CredS is # · P-complete under parsimonious
reductions if S ∈ {stable, admissible, complete}, and
# · coNP-complete under subtractive reductions if S ∈
{semi-stable, stage}.

Now, consider the case of projected counting.
Lemma 5 (?). #PCredS is (1) in # · NP if S ∈ {stable,
admissible, complete}, and (2) in # ·ΣP

2 if S ∈ {semi-stable,
stage}.

Proof (Sketch). Given a framework, a projection set, and an
argument a. We non-deterministically branch on a possible
projected extension S. Accordingly, we have S ⊆ P . If
a ∈ S and S is of the respective semantics, then we accept.
Otherwise we make a non-deterministic guess S′ ⊇ S, verify
if P ∩ S′ = S, a ∈ S′, and S′ is of the desired semantics.
Extension verification is for (1) in P, and for (2) in coNP.
Concluding, we get an NP oracle call for the first case, and an
NPcoNP = NPNP = ΣP

2 oracle call in the second case.

Consider the problem #ΣkSAT, which asks, given
ϕ(Y ) = ∃x1∀x2 · · ·Qkxkψ(X1, . . . , Xk, Y ), where ψ is
a propositional DNF if k is even (and CNF if k is odd), Xi,
for each i, and Y are sets of variables, to output the number
of truth assignments to the variables from Y that satisfy ϕ.
Durand, Hermann, and Kolaitis (2005) have shown that the
problem is # · ΣP

k -complete via parsimonious reductions.

Lemma 6 (?). #PCredS is (1) # · ΣP
2 -hard w.r.t.

parsimonious reductions if S ∈ {stage, semi-stable}, and
(2) # · NP-hard w.r.t. parsimonious reductions if S ∈
{admissible, stable, complete}.
Proof (Sketch). (1) We state a parsimonious reduction from
#Σ2SAT to #PCredS . We use an extended version of the
construction of Dvořák and Woltran (2010). Given a for-
mula ϕ(X) = ∃Y ∀Z ψ(X,Y, Z), where X,Y, Z are sets
of variables, and ψ is a DNF. Consider now the negation of
ϕ(X), i.e., ϕ′(X) = ¬ϕ(X) ≡ ∀Y ∃Z ¬ψ(X,Y, Z). Let
ψ′(X,Y, Z) be ¬ψ(X,Y, Z) in NNF. Accordingly, ψ′ is a
CNF, ψ′(X,Y, Z) =

∧m
i=1 Ci and Ci is a disjunction of lit-

erals for 1 6 i 6 m. Note that, the formula ϕ′(X) is of
the same kind as the formula in the construction of Dvořák
and Woltran (2010). Now define an argumentation frame-
work AF = (A,R), where A = {x, x̄, y, ȳ, y′, ȳ′, z, z̄ | x ∈
X, y ∈ Y, z ∈ Z } ∪ {t, t̄, b} and

R = { (y′, y′), (ȳ′, ȳ′), (y, y′), (ȳ, ȳ′), (y, ȳ), (ȳ, y) | y∈Y }
∪ {(b, b), (t, t̄), (t̄, t), (t, b)} ∪ { (Ci, t) | 1 6 i 6 m }
∪ { (u,Ci), (ū, Ci) | u ∈ X ∪ Y ∪ Z, u ∈ Ci, 1 6 i 6 m }
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Note that, by construction, the y′, ȳ′ variables make the ex-
tensions with respect to the universally quantified variables y
incomparable. Further observe that choosing t is superior to
selecting t̄, as t increases the range by one more. If for every
assignment over the Y -variables there exists an assignment
to the Z-variables, then, each time, when there is a possible
solution to ψ′(X,Y, Z), so semantically ¬ψ(X,Y, Z), w.r.t.
the free X-variables, the extension will contain t. As a result,
the extensions containing t correspond to the unsatisfying as-
signments. Let A(ϕ(X)) be the set of assignments of a given
#Σ2SAT-formula, and B(AF,P, a) be the set of stage/semi-
stable extensions which contain a and are projected to P .
Then, one can show that |A(ϕ(X))| = |B(AF,X, t̄)| prov-
ing the desired reduction (as t̄ together with the negation
of ϕ(X) in the beginning, intuitively, is a double negation
yielding a reduction from #Σ2SAT).

(2) Now turn to the case of admissible, stable, or com-
plete extensions. Again, we provide a similar parsimonious
reduction, but this time, from #Σ1SAT to #PCredS .

Theorem 7. #PCredS is # ·NP-complete via parsi. reduc-
tions if S ∈ {stable, admissible, complete}, and # · ΣP

2 -
complete via parsi. reductions if S ∈ {stage, semi-stable}.

Similarly, one can introduce problems of the form #SkepS
and #PSkepS corresponding to the counting versions of the
skeptical reasoning problem. As skeptical is dual to credulous
reasoning, one easily obtains completeness results for the
dual counting classes.

DP for Abstract Argumentation
In this section, we recall DP techniques from the literature
to solve skeptical and credulous reasoning in abstract ar-
gumentation. Additionally, we establish lower bounds for
exploiting treewidth in algorithms that solve these problems
for the most common semantics. Therefore, let F = (A,R)
be a given argumentation framework and S be an argumen-
tation semantics. While an abstract argumentation frame-
work can already be seen as a digraph, treewidth is a mea-
sure for undirected graphs. Consequently, we consider for
framework F the underlying graph GF , where we simply
drop the direction of every edge, i.e., GF = (A,R′) where
R′ := { {u, v} | (u, v) ∈ R }. Let T = (T, χ) be a TD
of the underlying graph of F . Further, we need some aux-
iliary definitions. Let T = (N, ·, n) and t ∈ N . Then,
post-order(T, n) defines a sequence of nodes for tree T
rooted at n in post-order traversal. The bag-framework is de-
fined as Ft := (At, Rt), where At := A ∩ χ(t) and Rt :=
(At×At)∩R, the framework below t as F6t := (A6t, R6t),
where A6t := { a | a ∈ χ(t), t′ ∈ post-order(T, t) },
andR6t := (A6t×A6t)∩R. It holds that Fn = F6n = F .

A standard approach (Bodlaender and Kloks 1996) to ben-
efit algorithmically from small treewidth is to design DP
algorithms, which traverse a given TD and run at each node
a so-called local algorithm A. The local algorithm does a
case distinctions based on the types type(t) of a nice TD and
stores information in a table, which is a set of rows where a
row ~u is a sequence of fixed length (and the length is bounded
by the treewidth). Later, we traverse the TD multiple times.
We access also information in tables computed in previous

Listing 1: Local algorithm ADM(t, χt, ·, (Ft, c, ·), 〈τ1, τ2〉),
c.f., (Dvořák, Pichler, and Woltran 2012).

In: Node t, bag χt, bag-framework Ft = (At, Rt), credulous
argument c, and 〈τ1, τ2〉 is the sequence of tables
of children of t.

Out: Table τt.
1 if type(t) = leaf then τt ← {〈∅, ∅, ∅〉}
2 else if type(t) = int and a∈χt is introduced argum. then
3 τt ← {〈J,O]At�Rt

J , D
]
J�Rt

At
〉 | 〈I,O,D〉 ∈ τ1, J ∈

{I, I+a }, J �Rt J = ∅, J ∩ {c} = χ(t) ∩ {c}}
4 else if type(t) = rem and a 6∈ χt is removed argum. then
5 τt ← {〈I−a , O−a , D−a 〉 | 〈I,O,D〉 ∈ τ1, a 6∈ O \D}
6 else if type(t) = join then
7 τt ← {〈I,O1

]
O2
, D1

]
D2
〉 | 〈I,O1, D1〉∈τ1, 〈I,O2, D2〉∈τ2}

8 return τt

S]S′ :=S ∪ S′, S+
e :=S ∪ {e}, and S−e :=S \ {e}.

traversals and formalize access to previously computed tables
in tabled tree decomposition (TTD) by taking in addition to
the TD T = (T, χ) a mapping τ that assigns to a node t of T
also a table. Then, the TTD is the triple T = (T, χ, τ). Later,
for simple use in algorithms, we assume τ(t) is initialized by
the empty set for every node t of T . To solve the considered
problem, we run the following steps:
1. Compute a TD T = (T, χ) of the underlying graph of F .

2. Run algorithm DPA, which takes a TTD T = (T, χ, ι)
with T = (N, ·, n) and traverses T in post-order. At
each node t ∈ N it stores the result of algorithm A
in table o(t). Algorithm A can access only informa-
tion that is restricted to the currently considered bag,
namely, the type of the node t, the atoms in the bag χ(t),
the bag-framework Ft, and every table o(t′) for any
child t′ of t.

3. Print the solution by interpreting table o(n) for root n of
the resulting TTD (T, χ, o).

Credulous Reasoning. DP algorithms for credulous reason-
ing of various semantics have already been established in
the literature (Dvořák, Pichler, and Woltran 2012) and their
implementations are also of practical interest (Dvořák et al.
2013). While a DP algorithm for semi-stable (Bliem, Hecher,
and Woltran 2016) semantics was presented as well, stage
semantics has been missing. This section fills the gap by
introducing a local algorithm for this case. The worst case
complexity of these algorithms depends on the semantics and
ranges from single to double exponential in the treewidth. In
the following, we take these algorithms from the literature,
simplify them and adapt them to solve #PCred for the var-
ious semantics. First, we present the algorithm DPADM that
uses the algorithm in Listing 1 as local algorithm to solve
credulous reasoning for the admissible semantics. DPADM
outputs a new TTD that we use to solve our actual counting
problem. At each node t, we store in table o(t) rows of the
form ~u = 〈I,O,D〉 and construct parts of extensions. The
first position of the rows consists of a set I ⊆ χ(t) of argu-
ments that will be considered for a part of an extension; we
write E(~u) := I to address this extension part. The second
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position consists of a set O ⊆ χ(t) \ I that represents argu-
ments that attack any other argument of the extension part.
Finally, the third position is the set D ⊆ χ(t) of arguments
in the current bag that are already defeated (counterattacked)
by any argument in the extension, and therefore in a sense
compensate the set O of attacking arguments. The idea of
the algorithm is as follows. For nodes with type(t) = leaf,
Line 1 initially sets the extension part I , set O of attackers,
and set D of defeated arguments to the empty set. Intuitively,
in Line 3 whenever we encounter an argument a for the
first time while traversing the TD (type(t) = int), we guess
whether a ∈ I or a 6∈ I . Further, we ensure that I is conflict-
free and that we construct only rows where c ∈ I if a = c.
Since ultimately every argument has to be defended by the
extension, we keep track of attacking arguments in O and
defeated arguments D. In Line 5, whenever we remove an
argument a (type(t) = rem), we are not allowed to store a
in the table any more as the length of a row ~u in the table o(t)
depends on the arguments that occur in the bag χ(t); oth-
erwise we would exceed the length and loose the bound on
the treewidth. However, we have to ensure that either a is
not an attacking argument (a 6∈ O), or that a was defeated
at some point (a ∈ D). In the end, Condition (ii) of a TD
ensures that whenever an argument does not occur in the bag
any more, we encountered its entire involvement in the attack
relation. Finally, Line 7 ensures that we only combine rows
that agree on the extension and combine information concern-
ing attacks and defeats accordingly. This case can be seen
as a combination of database joins (type(t) = join). ADM
can vacuously be extended to an algorithm STAB for stable
semantics. There one simply drops the set O and ensures
in Line 5 that the removed atom a is either in the extension
part I or defeated (in a ∈ D). An algorithm COMP for the
complete semantics requires some additional technical ef-
fort. There one can distinguish five states, namely elements
that are in the extension, defeated “candidates”, already de-
feated, candidates for not being in the extension (unrelated),
or actually proven to be unrelated.

In the following proposition, we give more precise run-
time upper bounds for the algorithms presented in the litera-
ture (Dvořák, Pichler, and Woltran 2012) that can be obtained
by employing sophisticated data structures, especially for
handling nodes t with type(t) = join.

Proposition 8 (?). Algorithm DPSTAB runs in timeO(3k·k·g),
DPADM in O(4k · k · g), and DPCOMP in O(5k · k · g) where
k is the width and g the number of nodes of the TD.

The definitions of preferred, semi-stable, and stage se-
mantics involve subset-maximization. Therefore, one often
introduces a concept of witness (extension part) and counter-
witness in the rows in DP, where the counter-witness tries
to invalidate subset-maximality of the corresponding wit-
ness (Jakl, Pichler, and Woltran 2009). In the counter-witness
one stores sets of arguments that are supersets of the consid-
ered extension, such that, in the end, at the root there was no
superset of an extension in the counter-witness while travers-
ing the TD. In other words, for a witness the counter-witness
failed to invalidate maximality and accordingly the witness
is subset-maximal. In the literature, algorithms that involving

Listing 2: Local algorithm STAG(t, χt, ·, (Ft, c, ·), 〈τ1, τ2〉).
In: Node t, bag χt, bag-framework Ft = (At, Rt), credulous

argument c, and 〈τ1, τ2〉 is the sequence of tables
of children of t.

Out: Table τt.
1 if type(t) = leaf then τt ← {〈∅, ∅, ∅, ∅〉}
2 else if type(t) = int and a∈χt is introduced argum. then
3 τt ← {〈J,A]J�Rt

At
, AC, C⊕〈J,A,AC〉(a)〉 | 〈I,A,AC, C〉

∈ τ1, (J,AC) ∈ Statesa(I,AC), J ∩ {c} = χ(t) ∩ {c}}
4 else if type(t) = rem and a 6∈ χt is removed argum. then
5 τt ← {〈I−a ,A−a ,AC−a , C∼a 〉 | 〈I,A,AC, C〉 ∈ τ1, a ∈ I ∪ A}
6 else if type(t) = join then
7 τt ← {〈I,A1

]
A2
,AC, (C1 ./ C2)∪

(C1 ./ {〈u2,⊥〉}) ∪ ({〈u,⊥〉} ./ C2)〉 | u1∈τ1, u2∈τ2,
u1 = 〈I,A1,AC1, C1〉, u2 = 〈I,A2,AC2, C2〉}

8 return τt

Statesa(I,AC) :=
{

(J,AC) |
J ∈ {I, I+a }, AC ∈ {AC,AC+a }, J ∩AC = ∅,
[J �Rt J ] = ∅, [At �Rt J ] ⊆ AC

}
,

C⊕〈J′,A′,AC′〉(a) :=
{
〈〈J,A]J�Rt

At
, AC〉, (J]AC ( J ′

]
AC′) ∨ s〉

∣∣
〈〈I,A,AC〉, s〉 ∈ C+〈J,A,AC〉,⊥〉, (J,AC) ∈ Statesa(I,AC),

J∩{c} = χ(t)∩{c}},
C∼a :={ 〈〈I−a ,A−a ,AC−a 〉, σ〉 | 〈〈I,A,AC〉, σ〉 ∈ C, a ∈ I ∪ A},
C1 ./ C2 :=

{
〈〈I,A1

]
A2
,AC〉, σ1 ∨ σ2〉 |

〈〈I,A1,AC〉, σ1〉 ∈ C1, 〈〈I,A2,AC〉, σ2〉 ∈ C2
}

.

such an interplay between witnesses and counter-witnesses
have been defined for preferred and semi-stable semantics,
we simply refer to them as DPPREF and DPSEMI. For the stage
semantics, we provide the algorithm in Listing 2. Intuitively,
we compute conflict-free extensions during the TD traversal
and additionally guess candidates AC that ultimately have to
be attacked (A) by the extension part J . This allows us then
to subset-maximize upon the range part J ∪AC, by trying to
find counter-witnesses C to subset-maximality. Again a more
detailed runtime analysis yields the following result.
Proposition 9 (?). Algorithms DPPREF, DPSEMI, and DPSTAG
run in time O(22

4k+1 · g) where k is the width and g the
number of nodes of the TD.

Lower Bounds. A natural question is whether we can sig-
nificantly improve the algorithms stated in Propositions 8
and 9. In other words, we are interested in lower bounds on
the runtime of an algorithm that exploits treewidth for credu-
lous reasoning. A common method in complexity theory is
to assume that the exponential time hypothesis (ETH) holds
and establish reductions. The ETH states that there is some
real s > 0 such that we cannot decide satisfiability of a given
3-CNF formula ϕ in time 2s·|ϕ| · ‖ϕ‖O(1) (Cygan et al. 2015,
Ch.14). Subsequently, we establish lower bounds, assum-
ing ETH employing known reductions from the literature,
showing that there is no hope for a better algorithm.
Theorem 10 (?). Let S ∈ {admissible, complete, stable},
F be a framework and k the treewidth of the underlying
graph GF . Unless ETH fails, CredS cannot be solved in
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time 2o(k) · ‖F‖o(k) and for S = semi-stable, CredS and
SkepS cannot be solved in time 22

o(k) · ‖F‖o(k).

Proof (Idea). The existing reductions by Dunne and Bench-
Capon (2002) increase the treewidth only linearly and are
hence sufficient. For semi-stable statements the reductions
by Dvořák and Woltran (2010) can be applied, since preferred
and semi-stable extensions of the constructed argumentation
framework coincide.

Algorithms for Projected Credulous Counting
by Exploiting Bounded Treewidth

In the previous section, we presented algorithms to solve
the reasoning problems for abstract argumentation. These
algorithms can be extended relatively straightforward to also
count extensions without projection by adding counters to
each row at a quadratic runtime instead of linear in the size of
the input instance. One can even reconstruct extensions (Pich-
ler, Rümmele, and Woltran 2010). However, things are more
complicated for projected credulous counting.

In this section, we present an algorithm PCNTS that solves
the projected credulous counting problem (#PCredS) for
semantics S ∈ ALL. Our algorithm lifts results for pro-
jected model counting in the computationally and conceptu-
ally much easier setting of propositional satisfiability (Fichte
et al. 2018) to abstract argumentation. Our algorithm is based
on dynamic programming and traverses a TD three times.
To this end, we employ algorithms S ∈ {ADM, COMP,
PREF, STAG, SEMI, STAB} as presented in the previous
section according to the considered semantics S. The first
traversal consists of DPS, where S is a local algorithm for
credulous reasoning of the chosen semantics, which results
in TTD TS-Cred = (T, χ, τ).

In the following, let again F = (A,R) be the given
framework, a ∈ A an argument, (T, χ) a TD of GF with
T = (N, ·, n) and the root n, and TS-Cred = (T, χ, τ) be the
TTD that has been computed by the respective algorithms
as described in the previous section. Then, we intermedi-
ately traverse TS-Cred in pre-order and prune irrelevant rows,
thereby we remove all rows that cannot be extended to a
credulous extension of the corresponding semantics S. We
call the resulting TTD TS-Pruned = (T, χ, ν). Note that prun-
ing does not affect correctness, as only rows are removed
where already the count without even considering projection
is 0. However, pruning serves as a technical trick for the last
traversal to avoid corner cases, which result in correcting
counters and backtracking.

In the final traversal, we count the projected credulous ex-
tensions. Therefore, we compute a TTD TS-Proj = (T, χ, π)
using algorithm DPPROJ using local algorithm PROJ as
given in Listing 3. Algorithm PROJ stores for each node
a pair 〈σ, c〉 ∈ π(t), where σ ⊆ ν(t) is a table ν(t) from the
previous traversal and c ≥ 0 is an integer representing what
we call the intersection projected count (ipc).

Before we start with explaining how to obtain these ipc
values c, we require auxiliary notations from the literature.
First, we require a notion to reconstruct extensions from T ,
more precisely, for a given row to define its predecessor

rows in the corresponding child tables. Therefore, let t be
a node of T with children t1 and t2, if it exists. Since se-
quences used in the following depend on number of the
children assume for simplicity of the presentation that se-
quences are implicitly of corresponding length even if they
are given as of length 2. For sequence ~s = 〈s1, s2〉, let
〈{~s}〉 := 〈{s1}, {s2}〉. For a given row ~u ∈ τ(t), we de-
fine the originating rows of ~u in node t by origins(t, ~u) :=
{~s | ~s ∈ τ(t1) × τ(t2), ~u ∈ S(t, χ(t), ·, (Ft, ·), 〈{~s}〉) } and
for a table σ as the union over the origins for all rows ~u ∈ σ.
Next, let σ ⊆ ν(t). In order to combine rows and solve pro-
jection accordingly, we need equivalence classes of rows.
Let therefore relation =P ⊆ σ × σ consider equivalent
rows with respect to the projection of its extension part by
=P := { (~u,~v) | ~u,~v ∈ σ,E(~u) ∩ P = E(~v) ∩ P }. Let
bucketsP (σ) be the set of equivalence classes induced by =P

on σ, i.e., bucketsP (σ) := (σ/=P) = { [~u]P | ~u ∈ σ },
where [~u]P = {~v | ~v=P ~u,~v ∈ σ} (Wilder 1965).

When computing the ipc values c stored in each row ~u
of π(t), we compute a so-called projected count (pc) as
follows. First, we define the stored ipc of σ ⊆ ν(t) in
table π(t) by s-ipc(π(t), σ) :=

∑
〈σ,c〉∈π(t) c. We use

the ipc value in the context of “accessing” ipc values
in table π(ti) for a child ti of t. This can be general-
ized to a sequence s = 〈π(t1), π(t2)〉 of tables and a
set O = {〈σ1, σ2〉, 〈σ′1, σ′2〉, . . .} of sequences of tables by
s-ipc(s,O) = s-ipc(s(1), O(1)) · s-ipc(s(2), O(2)). Then, the
projected count pc of rows σ ⊆ ν(t) is the application of
the inclusion-exclusion principle to the stored intersection
projected counts, i.e., ipc values of children of t. Therefore,
pc determines the origins of table σ, and uses the stored
counts (s-ipc) in the PROJ-tables of the children ti of t for
all subsets of these origins. Formally, we define
pc(t, σ, 〈π(t1), π(t2)〉) :=∑

∅(O⊆origins(t,σ)(−1)(|O|−1)·s-ipc(〈π(t1), π(t2)〉, O).

Intuitively, pc defines the number of distinct projected ex-
tensions in framework F6t to which any row in σ can
be extended. Finally, the intersection projected count ipc
for σ is the result of another application of the inclusion-
exclusion principle. It describes the number of common
projected S-extensions which the rows in σ have in com-
mon in framework F6t. We define ipc(t, σ, s) := 1 if
type(t) = leaf and otherwise ipc(t, σ, s) :=

∣∣ pc(t, σ, s)

+
∑
∅(ϕ(σ(−1)|ϕ| · ipc(t, ϕ, s)

∣∣, where s = 〈π(t1), π(t2)〉.
In other words, if a node is of type leaf, ipc is one, since
bags of leaf nodes are empty. Observe that since bags χ(n)
for root node n are empty, there is only one entry in π(n)
and pc(n, ν(n), s) = ipc(n, ν(n), s), which corresponds to
the number of projected credulous extensions. In the end, we
collect pc-values for all subsets of ν(t).

Theorem 11 (?). Algorithm PCNTS is correct and solves
#PCredS for local algorithms S ∈ {ADM, COMP,
PREF,STAG,SEMI,STAB}, i.e., s-ipc(π(n), ∅) returns
the proj. credulous count at the root n for resp. semantics S .

Proof (Idea). We can establish an invariant for each row of
each table. Then, we show this invariant by simultaneous
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Listing 3: Local algorithm PROJ(t, ·, νt, (·, ·, P ), 〈π1, π2〉)
for projected counting, c.f., (Fichte et al. 2018).

In: Node t, table νt after purging, set P of projection atoms,
〈π1, π2〉 is the sequence of tables at the children of t.

Out: Table πt of pairs 〈σ, c〉, where σ ⊆ νt, and c ∈ N.
1 πt←

{
〈σ, ipc(t, σ, 〈π1, π2〉)〉

∣∣ ∅ ( σ ⊆ bucketsP (νt)
}

2 return πt

structural induction on pc and ipc starting at the leaf nodes
and stepping until the root. This yields that the intersection
projected count for the empty root corresponds to #PCredS
for the semantics S. For completeness, we demonstrate by
induction from root to leaves that a well-defined row of one
table, which can indeed be obtained by the corresponding
table algorithm, always has some preceding row in the re-
spective child nodes.

Runtime Bounds (Upper and Lower). In the following,
we present upper bounds on algorithm PROJ that immedi-
ately result in runtime results for PCNTS. Let therefore γ(n)
be the number of operations required to multiply two n-bit
integers. Note that γ(n) ∈ O(n·log(n)·log(log(n))) (Knuth
1998). Note that in the following proposition m depends on
the treewidth k. However, the actual order depends on the
semantics.

Proposition 12 (?, Fichte and Hecher, 2018a). DPPROJ runs
in timeO(24m ·g ·γ(‖F‖)), where g is the number of nodes of
the given TD of the underlying graph GF of the considered
framework F and m := max{|ν(t)| | t ∈ N} for input
TTD Tpurged = (T, χ, ν) of DPPROJ.

Corollary 13. For S ∈ {ADM, COMP, STAB}, PCNTS
runs in time O(22

4k · g · γ(‖F‖)). For S ∈ {PREF, SEMI,
STAG}, runs in time O(22

24k · g · γ(‖F‖)) where k is the
treewidth of the underlying graph GF of the given AF F .

Next, we take again the exponential time hypothesis (ETH)
into account to establish lower bounds for counting projected
extensions. In particular, we obtain that under reasonable
assumptions, we cannot expect to improve the presented
algorithms significantly.

Theorem 14 (?). Let S ∈ {admissible, complete, stable}.
Unless ETH fails, we cannot solve the problem #PCredS in
time 22

o(k) ·‖F‖o(k) where k is the treewidth of the underlying
graph GF of the considered framework F .

Proof (Sketch). We establish the lower bound by reducing
an instance of ∀∃-SAT to an instance of a version of CredS
where the extension is of size exactly `. Note that under ETH
the problem ∀∃-SAT cannot be solved (Lampis and Mitsou
2017) in time 22

o(k) · ‖F‖o(k) in the worst case. We follow
the reduction from the proof of Statement 2 in Lemma 6.
Let ` = |X|, and observe that we can compute reduction in
polynomial-time and the treewidth of the projected credulous
counting instance is increased only linearly. It is easy to see
that the reduction is correct since |B(AF,X, t)| = ` = |X|

if and only if ϕ(X) = ∃Y ψ(X,Y ) holds for all assignments
using X . Consequently, the claim follows.

For semi-stable, preferred and stage semantics, we believe
that this lower bound is not tight. Hence, we apply a stronger
version (3ETH) of the ETH for quantified Boolean formulas
(QBF). However, it is open whether also ETH implies 3ETH.

Hypothesis 15 (3ETH). The problem ∃∀∃-SAT for a QBF Φ

of treewidth k can not be decided in time 22
2o(k)

· ‖Φ‖o(k).

Using this hypothesis, we establish the following result.

Theorem 16 (?). Let S ∈ {preferred, semi-stable, stage
semantics}. Unless 3ETH fails, we cannot solve the prob-

lem #PCredS in time 22
2o(k)

· ‖F‖o(k) where k is the
treewidth of the underlying graph of F .

Proof (Idea). Assuming Hypothesis 15 we cannot solve an

instance of ∀∃∀-SAT in time 22
2o(k)

· ‖F‖o(k), otherwise
we could solve an instance Φ of ∃∀∃-SAT, using a decision
procedure for ∀∃∀-SAT with the inverse of Φ and inverting

the result, in time 22
2o(k)

· ‖F‖o(k). Towards the lower bound,
we finally establish a reduction from ∀∃∀-SAT to projected
credulous count exactly ` (c.f., Theorem 14). Thereby, we
apply the reduction provided in Statement 1 of Lemma 6,
set ` := |X| and proceed analogously to Theorem 14.

Conclusion and Outlook
We established the classical complexity of counting problems
in abstract argumentation and by present an algorithm that
solves counting projected credulous extensions when exploit-
ing treewidth in runtime double exponential in the treewidth
or triple exponential in the treewidth depending on the con-
sidered semantics. Further, assuming ETH or a version for
3QBF, we establish that the runtime of the algorithms are
asymptotically tight. While the upper bounds in Lemma 2 can
be easily transferred to counting the number of extensions of
a specific kind, the corresponding lower bounds cannot be
immediately adopted from Lemma 3.

An open question is to investigate whether # · coNP-
hardness also applies for the preferred semantics. An inter-
esting further research direction is to study whether we can
obtain better runtime results by designing algorithms that
take in addition also the number (small or large) of projection
arguments into account or to study whether an implementa-
tion of our approach can benefit from massive paralleliza-
tion (Fichte et al. 2018b). Furthermore, our technique might
also be applicable to problems such as circumscription (Du-
rand, Hermann, and Kolaitis 2005), default logic (Fichte,
Hecher, and Schindler 2018), or QBFs (Charwat and Woltran
2016). Considering the (parameterized) enumeration com-
plexity (Johnson, Papadimitriou, and Yannakakis 1988;
Creignou et al. 2017; 2015) of the studied problems is also
planned as future work. Finally, other measures such as frac-
tional hypertree width might be interesting to consider (Fichte
et al. 2018a).
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