
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Forgetting in Modular Answer Set Programming

Ricardo Gonçalves,1 Tomi Janhunen,2 Matthias Knorr,1 João Leite,1 Stefan Woltran3
1Universidade Nova de Lisboa

2Aalto University
3Vienna University of Technology

Abstract

Modular programming facilitates the creation and reuse of
large software, and has recently gathered considerable inter-
est in the context of Answer Set Programming (ASP). In this
setting, forgetting, or the elimination of middle variables no
longer deemed relevant, is of importance as it allows one to,
e.g., simplify a program, make it more declarative, or even
hide some of its parts without affecting the consequences for
those parts that are relevant. While forgetting in the context
of ASP has been extensively studied, its known limitations
make it unsuitable to be used in Modular ASP. In this paper,
we present a novel class of forgetting operators and show that
such operators can always be successfully applied in Modular
ASP to forget all kinds of atoms – input, output and hidden
– overcoming the impossibility results that exist for general
ASP. Additionally, we investigate conditions under which this
class of operators preserves the module theorem in Modular
ASP, thus ensuring that answer sets of modules can still be
composed, and how the module theorem can always be pre-
served if we further allow the reconfiguration of modules.

1 Introduction
Modularity in Answer Set Programming (ASP) (Dao-Tran
et al. 2009; Harrison and Lierler 2016; Baral, Dzifcak, and
Takahashi 2006; Janhunen et al. 2009; Oikarinen and Jan-
hunen 2008), just as in many other programming paradigms,
is a fundamental concept to ease the creation and reuse of
large programs. In one of the most significant general ap-
proaches to modularity – the so-called programming-in-the-
large – compositional operators are provided for combining
separate and independent modules, i.e., essentially answer
set programs extended with well-defined input/output inter-
faces, based on standard semantics. The compositionality of
the semantics of individual modules is ensured by the so-
called module theorem (Janhunen et al. 2009).

The operation of forgetting, which aims at eliminating a
set of variables from a knowledge base while preserving
all relationships (direct and indirect) between the remain-
ing variables, has recently gained a lot of attention, not only
because it is useful, e.g., as a means to clean up a theory
by eliminating all auxiliary variables that have no relevant
declarative meaning, but also because it may be necessary,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

e.g., as a means to deal with privacy and legal issues such as
to eliminate illegally obtained data, or to comply with the re-
cently enacted right to be forgotten (European Union 2016).

Whereas forgetting in the context of classical logic is
essentially a solved problem (Bledsoe and Hines 1980;
Weber 1986; Middeldorp, Okui, and Ida 1996; Lang, Liber-
atore, and Marquis 2003; Moinard 2007; Gabbay, Schmidt,
and Szalas 2008), new challenging issues arise when it is
considered in the context of a non-monotonic logic based
language such as ASP (Zhang and Foo 2006; Eiter and
Wang 2008; Wong 2009; Wang, Wang, and Zhang 2013;
Knorr and Alferes 2014; Wang et al. 2014; Delgrande and
Wang 2015; Gonçalves, Knorr, and Leite 2016b). According
to (Goncalves, Knorr, and Leite 2016a), forgetting in ASP
is best captured by strong persistence (Knorr and Alferes
2014), a property inspired by strong equivalence, which re-
quires that there be a correspondence between the answer
sets of a program before and after forgetting a set of atoms,
and that such correspondence be preserved in the presence
of additional rules not containing the atoms to be forgotten.
However, it has also been shown that, in ASP, it is not always
possible to forget and satisfy strong persistence (Gonçalves,
Knorr, and Leite 2016b).

What about forgetting in Modular ASP? Do the same neg-
ative results hold, and sometimes it is simply impossible to
forget while satisfying strong persistence? Is strong persis-
tence an adequate requirement in the case of Modular ASP?
Can forgetting be reconciled with the module theorem?

Investigating forgetting in the context of Modular ASP is
the central topic of this paper. Our main contributions are:

• We argue that, given that the input of a module is just a set
of facts, strong persistence is too strong when forgetting
in Modular ASP, and that it is more suitable to rely on
uniform equivalence (Sagiv 1988; Eiter and Fink 2003)
for a weaker form of persistence, say uniform persistence,
which has not been considered before.

• We thoroughly investigate forgetting in ASP under uni-
form equivalence, including formalizing uniform persis-
tence and showing that, unlike with strong persistence, it
is always possible to forget under this new property.

• We show that no previously known class of forgetting op-
erators satisfies uniform persistence, which leads us to in-
troduce a new class of forgetting operators that satisfies

2843

uniform persistence, and investigate its other properties.

• We employ the newly introduced class of operators to
forget in a prominent approach of modular ASP, DLP-
functions (Janhunen et al. 2009), and show how it can ad-
equately be used to forget input, output, and hidden atoms
from a module, while obeying uniform persistence.

• We also show that, not unexpectedly, the module theorem
no longer holds in general after forgetting.

• To overcome the latter problem, we investigate ways to
modify modules so that the module theorem can be pre-
served while forgetting under uniform persistence i.e.,
ways to reconfigure ASP modules by merging and split-
ting modules, so that we can properly forget while pre-
serving the compositionality of stable models of modules.

2 Preliminaries
We start by recalling some notions about logic programs.

An (extended) rule r is an expression of the form

a1 ∨ . . . ∨ an ← b1, ..., bm, not c1, ..., not ck,

not not d1, ..., not not dl , (1)

where a1, . . . , an, b1, . . . , bm, c1, . . . , ck, and d1, . . . , dl are
atoms of a given propositional alphabet A. Note that dou-
ble negation is standard in the context of forgetting in ASP.
We also write such rules as A← B,notC, not notD where
A = {a1, . . . , an}, B = {b1, . . . , bm}, C = {c1, . . . , ck},
and D = {d1, . . . , dl}. An (extended) logic program is a
finite set of rules. By A(P) we denote the set of atoms ap-
pearing in P and by Ce the class of extended programs. We
call r disjunctive if D = ∅; normal if, additionally, A has at
most one element; Horn if on top of that C = ∅; and fact
if also B = ∅. The classes of disjunctive, normal and Horn
programs, Cd, Cn, and CH , are then defined as usual.

Given a program P and an interpretation I , i.e., a set
I ⊆ A, the reduct P I is defined as P I = {A ← B | A ←
B,notC, not notD ∈ P,C ∩ I = ∅,D ⊆ I}. An interpre-
tation I is a model of a rule A← B if A ∩ I 6= ∅ whenever
B ⊆ I; I is a model of a reduct R if it satisfies every rule of
R; I is a minimal model of the reduct R if I is a model of R
and there is no model I ′ of R s.t. I ′ ⊂ I; and I is an answer
set of an extended program P if it is a minimal model of the
reduct P I . The set of all answer sets of a program P is de-
noted by AS(P). Given a set of atoms V , the V -exclusion
of a set of setsM, denotedM‖V , is {X\V | X ∈M}.

Two programs P1 and P2 are said to be equivalent if
AS(P1) = AS(P2), strongly equivalent, denoted by P1 ≡
P2, ifAS(P1 ∪R) = AS(P2 ∪R) for any R ∈ Ce, and uni-
formly equivalent, denoted by P1 ≡u P2, if AS(P1 ∪R) =
AS(P2 ∪R), for any set of facts R.

An HT -interpretation is a pair 〈X,Y 〉 s.t. X ⊆ Y ⊆ A.
Given a program P , an HT -interpretation 〈X,Y 〉 is an HT -
model of P if Y |= P and X |= PY , where |= stands for
the classical satisfaction relation for rules. The set of all HT-
models of P is denoted by HT (P). Also, Y ∈ AS(P) iff
〈Y, Y 〉 ∈ HT (P) and there is no X ⊂ Y s.t. 〈X,Y 〉 ∈
HT (P). Also, HT (P1) = HT (P2) precisely when P1 ≡
P2 (Lifschitz, Pearce, and Valverde 2001). Given a set of

atoms V , the V -exclusion of a set of HT-interpretationsM,
M‖V , is {〈X\V, Y \V 〉 | 〈X,Y 〉 ∈ M}.

A forgetting operator over a class C of programs overA is
a partial function f : C × 2A → C s.t. the result of forgetting
about V from P , f(P, V), is a program over A(P)\V , for
each P ∈ C and V ⊆ A. We denote the domain of f by C(f)
and usually we focus on C = Ce, and leave C implicit. The
operator f is called closed for C′ ⊆ C(f) if f(P, V) ∈ C′, for
every P ∈ C′ and V ⊆ A. A class F of forgetting operators
(over C) is a set of forgetting operators f s.t. C(f) ⊆ C.

We recall notions of modules using ELP-functions, a gen-
eralization of DLP-functions (Janhunen et al. 2009).1 An
ELP-function, Π, is a quadruple 〈P, I,O,H〉, where I , O,
and H are pairwise distinct sets of input atoms, output
atoms, and hidden atoms, respectively, and P is a logic pro-
gram s.t. for each rule A← B,notC, not notD of P ,

1. A ∪B ∪ C ∪D ⊆ I ∪O ∪H , and

2. if A 6= ∅, then A ∩ (O ∪H) 6= ∅.
Input atoms and output atoms are also called visible atoms.

An interpretation for an ELP-function Π = 〈P, I,O,H〉
is an arbitrary set M ⊆ A(Π), where A(Π) = I ∪ O ∪H .
We denote by Ai(Π), Ao(Π), Ah(Π), and by Mi, Mo, Mh

the subsets of A(Π) and M restricted to elements in I , O,
and H , respectively. Given ELP-function Π = 〈P, I,O,H〉
and interpretation M , the reduct of Π w.r.t. M is the ELP-
function ΠM = 〈PM , I, O,H〉, where PM is the reduct of
P w.r.t. M . An interpretation N is a model of ΠM iff N is
a model of PM . A model N of ΠM is I-minimal iff there
is no model N ′ of ΠM such that N ′i = Ni and N ′ ⊂ N .
An interpretation M is a stable model2 of Π iff M is an I-
minimal model of ΠM . The set of all stable models of Π
is denoted by SM(Π). We have M ∈ SM(Π) iff M ∈
AS(P ∪Mi) (Lierler and Truszczynski 2011).

Given a program P and a set of atoms S, the set of defin-
ing rules for S is DefP (S) = {A← B,notC, not notD ∈
P | A∩S 6= ∅}. Two ELP-functions Π1 = 〈P1, I1, O1, H1〉
and Π2 = 〈P2, I2, O2, H2〉 respect the input/output inter-
faces of each other iff (1) (I1 ∪ O1 ∪ H1) ∩ H2 = ∅; (2)
(I2∪O2∪H2)∩H1 = ∅; (3) O1∩O2 = ∅; (4) DefP1

(O1) =
DefP1∪P2(O1), and (5) DefP2(O2) = DefP1∪P2(O2).

Let Π1 = 〈P1, I1, O1, H1〉 and Π2 = 〈P2, I2, O2, H2〉
be ELP-functions that respect the input/output interfaces of
each other. The composition Π1 ⊕Π2 is defined as

〈P1 ∪ P2, (I1 \O2) ∪ (I2 \O1), O1 ∪O2, H1 ∪H2〉.

The join t of modules builds on this composition impos-
ing further restrictions. The positive dependency graph of
an ELP-function Π = 〈P, I,O,H〉 is the pair DG+(Π) =
〈O ∪ H,≤1〉, where b ≤1 a holds for a, b ∈ (O ∪ H) iff
there is a rule A← B,notC, not notD ∈ P s.t. a ∈ A and
b ∈ B. The reflexive and transitive closure of ≤1 provides
the dependency relation ≤ over output and hidden atoms.

1While we limit our generalization to extended logic programs
to the necessary notions for individual modules, we do not foresee
major difficulties for other aspects left out of scope of this paper.

2We reserve the term “answer set” for programs and the term
“stable model” for ELP-functions to ease the reading.

2844

A strongly connected component (SCC) S of DG+(Π) is
a maximal set S ⊆ Ao(Π) ∪ Ah(Π) s.t. b ≤ a for all
pairs a, b ∈ S. If Π1 ⊕ Π2 is defined, then Π1 and Π2 are
mutually dependent iff DG+(Π1 ⊕ Π2) has an SCC S s.t.
S ∩ Ao(Π1) 6= ∅ and S ∩ Ao(Π2) 6= ∅, and mutually inde-
pendent otherwise. Thus, given ELP-functions Π1 and Π2, if
the composition Π1 ⊕Π2 is defined and Π1 and Π2 are mu-
tually independent, then the join Π1 t Π2 of Π1 and Π2 is
defined and coincides with Π1 ⊕Π2 (Janhunen et al. 2009).

3 Forgetting under Uniform Persistence
Arguably, among the many properties for forgetting in ASP,
strong persistence is the one that should intuitively hold,
since it imposes the preservation of all original direct and in-
direct dependencies between atoms not to be forgotten. Here
and in the sequel, F is a class of forgetting operators.

(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈
C(f) and V ⊆ A, we have AS(f(P, V) ∪ R) = AS(P ∪
R)‖V , for all programs R ∈ C(f) with A(R) ⊆ A\V .

Essentially, (SP) requires that the answer sets of f(P, V)
correspond to those of P , no matter what programs R over
A\V we add to both, which is closely related to the con-
cept of strong equivalence. However, this property is rather
demanding, witnessed by the fact that it cannot always be
satisfied (Gonçalves, Knorr, and Leite 2016b). On the other
hand, in the case of a module, i.e., an ELP-function, its pro-
gram P is fixed, and we only vary the input, which is closely
related to considering a fixed ASP program, encoding the
declarative specification of a problem, and only varying the
instances corresponding to the specific problem to be solved.
This is captured by the notion of uniform equivalence, which
weakens strong equivalence by considering that only facts
can be added. To investigate forgetting in such cases, we in-
troduce Uniform Persistence, (UP), obtained from (SP) by
restricting the varying programs R to sets of facts.

(UP) F satisfies Uniform Persistence if, for each f ∈ F, P ∈
C(f) and V ⊆ A, we have AS(f(P, V) ∪ R) = AS(P ∪
R)‖V , for all sets of facts R with A(R) ⊆ A\V .

Having introduced (UP) as the desired property for for-
getting in ELP-functions, we now turn our attention to which
forgetting operator to use. Unfortunately, none of the exist-
ing classes mentioned in the literature3 satisfy (UP).4

Theorem 1 None of the classes F of forgetting operators
studied in (Goncalves, Knorr, and Leite 2016a; Gonçalves
et al. 2017) satisfy (UP).

Due to this negative result and the fact that it is not al-
ways possible to forget while satisfying (SP), the question
that arises is whether this is actually different for (UP), given
that it is less demanding in its requirements.

3Cf. the survey on forgetting in ASP (Goncalves, Knorr, and
Leite 2016a), (Gonçalves et al. 2017), and references therein.

4Note that the result in (Goncalves, Knorr, and Leite 2016a)
(Fig. 1) indicating that class FSas satisfies (SP), the generalization
of (UP), is in fact not entirely accurate, since the only known op-
erator in FSas is not defined for a class of programs, but rather for
instances of forgetting.

Example 1 Consider program P used in the impossibility
result for (SP) (Gonçalves, Knorr, and Leite 2016b):

a← p b← q p← not q q ← not p

Adding program R = {a ←; b ←}, it is shown there that
any result of forgetting {p, q} from P , f(P, {p, q}), that sat-
isfies (SP) is required to have an HT-model 〈ab, ab〉5. At the
same time, since {a, b} (modulo {p, q}) is not an answer set
of P , we must have 〈X, ab〉 ∈ HT (f(P, {p, q})) for at least
one X ⊂ {a, b}, to prevent {a, b} from being an answer
set of f(P, {p, q}). It is then shown that due to different pro-
grams R, 〈X, ab〉 6∈ HT (f(P, {p, q})) for any such X , thus
causing a contradiction. However, in the case of X = ∅,
R = {a ← b; b ← a} is used, which is not a set of facts
and thus not relevant w.r.t. (UP). In fact, given the only pos-
sible four sets of facts over {a, b} to be considered for R, we
can verify that P ′ = {a ← not b; a ← not not a, b; b ←
not a; b← not not b, a} is a result of forgetting {p, q} from
P for which the condition of (UP) is satisfied.

A naive approach to define a class of forgetting opera-
tors that satisfies (UP) would be to use relativized uniform
equivalence (Eiter, Fink, and Woltran 2007), which is close
in spirit to (UP). However, this would not work, for the same
reasons that a similar approach based on relativized strong
equivalence fails to capture (SP) (Gonçalves et al. 2017).

Instead, we define a class of forgetting operators that sat-
isfies (UP), dubbed FUP, whose more involved definition –
that we will gently introduce in an incremental way – builds
on the manipulation of HT-models given an input program
P and a set of atoms V ⊆ A(P) to forget. To this end, we
aim at devising a mapping from HT (P) to the set of HT-
models of the result of forgetting, f(P, V), for any operator
f ∈ FUP. This mapping can be illustrated as follows.
Example 2 The program P from Ex. 1 has 15 HT-models:

〈bq, bq〉 〈bq, abq〉 〈b, abpq〉 〈abp, abpq〉
〈ap, ap〉 〈abq, abq〉 〈bq, abpq〉 〈abq, abpq〉
〈ap, abp〉 〈∅, abpq〉 〈ap, abpq〉 〈abpq, abpq〉
〈abp, abp〉 〈a, abpq〉 〈ab, abpq〉

The HT-models for the proposed result P ′ of forgetting are
〈a, a〉, 〈b, b〉, 〈∅, ab〉 and 〈ab, ab〉.

But how could we determine the latter set of HT-models
for any P and V ? Given the HT-models listed above, the set
HT (P)‖V contains extra tuples such as 〈a, ab〉 and 〈b, ab〉.
Thus, a more involved analysis of HT-models is in order.

By the definition of (UP), an answer set Y of f(P, V)∪R
corresponds to an answer set Y ∪A of P ∪R, for some A ⊆
V . We will therefore collect all HT-models 〈X,Y ∪ A〉 in
HT (P) with the same Y and join them in blocks separated
by the varying A. To this end, we first characterize all the
different total HT-models of P , namely, for each Y ⊆ A\V :

SelY〈P,V 〉 = {A ⊆ V | 〈Y ∪A, Y ∪A〉 ∈ HT (P)}.
Example 3 Given the HT-models (Ex. 2) for P of Ex. 1 and
V = {p, q}, we obtain Sel∅〈P,V 〉 = ∅, Sel{a}〈P,V 〉 = {{p}},
Sel
{b}
〈P,V 〉 = {{q}}, and Sel

{a,b}
〈P,V 〉 = {{p}, {q}, {p, q}}.

5We follow a common convention and abbreviate sets in HT-
interpretations such as {a, b} with the sequence of its elements, ab.

2845

Clearly, the total models to be considered in the result
of forgetting should be restricted to those Y s.t. SelY〈P,V 〉
is non-empty. But not all these sets should be considered.

Example 4 Let P be a program overA = {a, b, p, q} s.t. its
HT-models of the form 〈X, {a, b}∪A〉 with A ⊆ V = {p, q}
are 〈ab, abp〉, 〈abp, abp〉, 〈abp, abpq〉, and 〈abpq, abpq〉. We
have that Sel{a,b}〈P,V 〉 = {{p}, {p, q}}. Nevertheless, the non-
total models 〈ab, abp〉 and 〈abp, abpq〉 do not allow {a, b, p}
and {a, b, p, q} to be answer sets of P ∪ R, for any R over
A\V = {a, b}. So, although Sel

{a,b}
〈P,V 〉 6= ∅, the set {a, b}

should not be a possible answer set of the forgetting result.6

Taking this observation into account, we define the set of
total models for the result of forgetting V from P :

T〈P,V 〉 = {Y ⊆ A\V | there exists A ∈ SelY〈P,V 〉 s.t.

〈Y ∪A′, Y ∪A〉 /∈ HT (P) for every A′ ⊂ A}.

Example 5 Based on the HT-models of P listed in Ex. 2, the
sets SelY〈P,V 〉 identified in Ex. 3, and V = {p, q}, we observe
that T〈P,V 〉 = {{a}, {b}, {a, b}}. In each of the three cases,
the condition in the definition of T〈P,V 〉 is satisfied by some
element of SelY〈P,V 〉. For Y = {a, b} in particular, the set
A can be either {p} or {q}, but not {p, q}. Given T〈P,V 〉,
we expect three total HT-models for the result of forgetting
{p, q} from P , i.e., the ones indicated in Ex. 2 for P ′.

The crucial question now is how to extract the non-total
HT-models for the result of forgetting in general. For this
purpose, for each A ∈ SelY〈P,V 〉, we first consider the non-
total HT-models of P of the form 〈X,Y ∪A〉:

NY,A
〈P,V 〉 = {X\V | 〈X,Y ∪A〉 ∈ HT (P) and X 6= Y ∪A}.

Example 6 Continuing Ex. 5, these non-total models, in
particular those relevant for the desired result 〈∅, ab〉, are:

N
{a,b},{p}
〈P,V 〉 = {{a}}, N{a,b},{q}〈P,V 〉 = {{b}}, and

N
{a,b},{p,q}
〈P,V 〉 = {∅, {a}, {b}, {a, b}}.

Now, since HT-models of facts never include 〈∅, Y 〉 for
any Y , we know that any HT-model 〈∅, Y 〉 of P will not
occur in HT (P ∪ R) for any (non-empty) set of facts R.
Hence, either one of the NY,A

〈P,V 〉 is empty, in which case P

itself has an answer set Y modulo V and the result of for-
getting should have an answer set Y , or ∅ ∈ NY,A

〈P,V 〉 for any
A results in an HT-model 〈∅, Y 〉 for the result of forgetting,
which is why 〈∅, ab〉 ∈ HT (P ′) in Ex. 2 holds. General-
izing this observation, whenever there is a set X s.t. each
NY,A
〈P,V 〉 contains an element X ′ with X ⊆ X ′, then adding

X as facts to P cannot result in an answer set of P , and thus,
〈X,Y 〉 should be part of the forgetting result. In Ex. 6, the
only such set X is indeed X = ∅.

6Similar considerations have been used in the context of rela-
tivized equivalence (Eiter, Fink, and Woltran 2007) and in forget-
ting (Gonçalves, Knorr, and Leite 2016b).

We thus collect all sets NY,A
〈P,V 〉 for each Y , define tuples

over this set of sets, and intersections over these tuples. The
latter correspond to the maximal subsets X , which suffices
for uniform equivalence (Eiter, Fink, and Woltran 2007).
Definition 1 Let P be a program, V ⊆ A, and Y ⊆ A\V .
Consider the indexed family of sets SY〈P,V 〉 = {NY,i

〈P,V 〉}i∈I
where I = SelY〈P,V 〉. For each tuple (Xi)i∈I such that Xi ∈
NY,i
〈P,V 〉, we define the intersection of its sets as

⋂
i∈I Xi. We

denote by SIntY〈P,V 〉 the set of all such intersections.

The resulting intersections indeed correspond to sets X
pointed out in the preceding discussion. Therefore, we ob-
tain the definition of FUP by combining the total models
based on T〈P,V 〉 and the non-total ones based on SIntY〈P,V 〉,
but naturally restricted to those cases where the correspond-
ing total model exists.
Definition 2 (UP-Forgetting) Let FUP be the class of for-
getting operators defined as:

{f |HT (f(P, V))=({〈Y, Y 〉 | Y ∈ T〈P,V 〉} ∪
{〈X,Y 〉 | Y ∈ T〈P,V 〉 and X∈ SIntY〈P,V 〉})
for all P ∈ C(f) and V ⊆ A}.

Example 7 Recall P from Ex. 1. Following the discussion
after Ex. 6, we can verify that the result of forgetting about
V = {p, q} from P according to FUP has the expected HT-
models (cf. Ex. 2): 〈a, a〉, 〈b, b〉, 〈∅, ab〉, and 〈ab, ab〉.

The definition of FUP characterizes the HT-models of a
result of forgetting for any f ∈ FUP, but not an actual pro-
gram. This may raise the question whether there actually is
such an operator, and we can answer this question positively.
Theorem 2 There exists f such that f ∈ FUP.
The construction underlying the result relies on the no-
tion of counter-models in HT (Cabalar and Ferraris 2007),
which has been used for defining forgetting operators before
(Wang, Wang, and Zhang 2013; Wang et al. 2014).

While the definition of UP-Forgetting itself is certainly
non-trivial, it turns out that for the case of Horn programs, a
considerably simpler definition can be used.
Proposition 1 Let f be in FUP. Then, for every V ⊆ A:

HT (f(P, V)) = HT (P)‖V for each P ∈ CH .

This result serves as further indication that UP-Forgetting is
well-defined, given that essentially all classes of forgetting
operators coincide with this definition for the class of Horn
programs (Goncalves, Knorr, and Leite 2016a).

We are able to show that FUP indeed satisfies (UP) which
guarantees that, unlike for the property (SP), it is always
possible to forget satisfying (UP).
Theorem 3 FUP satisfies (UP).

Despite (SP) being the property that best captures the
essence of forgetting in ASP in general, of which (UP) is
the weaker version that is sufficient when dealing with mod-
ules, other properties have been investigated in the literature
(cf. (Goncalves, Knorr, and Leite 2016a)). We obtain that
FUP satisfies the following properties.

2846

Proposition 2 FUP satisfies (sC), (wE), (SE), (CP), (wC),
(ECe), (ECH), but not (W), (PP), (SI), (SP), (ECd), (ECn).

Given the close connection between the class FUP and uni-
form equivalence (cf. Thm. 3), it is not surprising that some
properties of forgetting that are closely connected to strong
equivalence are not satisfied by FUP, notably (PP) and (SI),
which are satisfied by the class of forgetting operators de-
fined for forgetting w.r.t. (SP) when forgetting is possible
(Gonçalves, Knorr, and Leite 2016b).

Finally, we obtain that deciding whether a program is the
result of forgetting for f ∈ FUP is in ΠP

3 .

Theorem 4 Given programs P , Q, and V ⊆ A, deciding
whether P ≡ f(Q,V) for f ∈ FUP is in ΠP

3 .

Note that the same problem for the classes of forgetting
operators that approximate forgetting under (SP) is ΠP

3 -
complete (Gonçalves et al. 2017). Also, by (Wang et al.
2014) and Prop. 1, if Q is Horn, then this problem is in ΠP

1 .

4 Forgetting in Modules
We now turn our attention to the use of FUP to forget in
modules i.e., ELP-functions. Towards characterizing results
of forgetting in modules, the notion of equivalence between
ELP-functions – modular equivalence (Janhunen et al. 2009)
– needs to first be adapted, since it is too strong as it requires
the existence of a bijection between stable models of dif-
ferent ELP-functions, which is not possible in general when
reducing the language, as illustrated by the next example.

Example 8 Take Π = 〈{a ←; b ← not not b}, ∅, {a}, {b}〉
with SM(Π) = {{a}, {a, b}}. Forgetting b should yield,
e.g., Π′ = 〈{a ←}, ∅, {a}, ∅〉 with SM(Π′) = {{a}}, but
then no bijection between SM(Π) and SM(Π′) is possible.

Therefore, we introduce a novel notion of equivalence for
program modules according to which two modules are V -
equivalent if they coincide on I and O ignoring V , and if
their stable models coincide ignoring V .

Definition 3 (V-Equivalence) Let Π1 and Π2 be ELP-
functions, and V a set of atoms. Then, Π1 and Π2 are V -
equivalent, denoted by Π1 ≡V Π2, iff

1. Ai(Π1)\V = Ai(Π2)\V and Ao(Π1)\V = Ao(Π2)\V ;
2. SM(Π1)‖V = SM(Π2)‖V .

Forgetting from each of the pairwise disjoint sets of atoms
considered in a module – input, output and hidden – needs
to be characterised in turn. Additionally, in the case of in-
put and output atoms, we also consider hiding them – use-
ful when atoms are not declaratively meaningful outside the
module, or should not be shown – and discuss its difference
with respect to forgetting them.

We start by showing that the hidden atoms of an ELP-
function can be forgotten without affecting its behavior per-
ceived in terms of visible atoms, ensuring that we can deal
with cases when we are not allowed to express a certain
piece of information in terms of our hidden atoms, or do
not want to show it to someone who wants to visualize the
program of a module.

Theorem 5 (Forgetting hidden atoms) Given a set V ⊆
H of hidden atoms to forget, an ELP-function Π =
〈P, I,O,H〉 is V -equivalent to any ELP-function Π′ =
〈f(P, V), I, O,H\V 〉 based on a uniformly persistent for-
getting operator f ∈ FUP.

But forgetting is also applicable to the visible elements
of a module. For instance, whenever output atoms are no
longer used by other modules, they can effectively be re-
moved without affecting the behavior of the module.

Theorem 6 (Forgetting output atoms) Given a set V ⊆
O of output atoms to forget, an ELP-function Π =
〈P, I,O,H〉 is V -equivalent to any ELP-function Π′ =
〈f(P, V), I, O\V,H〉 based on a uniformly persistent for-
getting operator f ∈ FUP.

An alternative to forgetting output atoms is hiding them.
Given an ELP-function Π = 〈P, I,O,H〉 and a set
V ⊆ O of output atoms, we could create an ELP-function
〈P, I,O\V,H∪V 〉where the atoms of V are simply hidden.
This would be computationally cheap since P would not
change, but could be regarded insufficient under the strict
interpretation of forgetting V , i.e., the elements of V should
not appear in the result at all. Nevertheless, we derive the
following counterpart to Thm. 6.

Theorem 7 (Hiding output atoms) Given a set V ⊆ O of
output atoms to hide, an ELP-function Π = 〈P, I,O,H〉 is
V -equivalent to the ELP-function Π′ = 〈P, I,O\V,H∪V 〉.

Thus, both hiding and forgetting output atoms yields V -
equivalent ELP-functions.

Turning to forgetting (or hiding) of input atoms, no anal-
ogous result exists without making changes to the program.

Example 9 Take Π = 〈{a ← b}, {b}, {a}, ∅〉. Then,
SM(Π) = {∅, {a, b}}, but moving b from I to H yields
Π′ with SM(Π′) = {{}}, which is not {b}-equivalent.

Nevertheless, if we allow programs to change, such V -
equivalent ELP-functions can be constructed using the idea
of an input generator (cf. (Oikarinen and Janhunen 2006,
Thm. 4)), easily encodable with extended rules, and we can
forget about input atoms from ELP-functions as follows.

Theorem 8 (Forgetting input atoms) Given a set V ⊆ I
of input atoms to forget, an ELP-function Π = 〈P, I,O,H〉
is V -equivalent to any

Π′ = 〈f(P ∪ {a← not not a | a ∈ V }, V), I\V,O,H〉
based on a uniformly persistent forgetting operator f ∈ FUP.

This construction of Π′ can also be used to hide input atoms.

Theorem 9 (Hiding input atoms) Given a set V ⊆ I of
input atoms to hide, an ELP-function Π = 〈P, I,O,H〉
is V -equivalent to Π′ = 〈P ∪ {a ← not not a | a ∈
V }, I\V,O,H ∪ V 〉.

Combining these results, we can now define a general no-
tion of a module resulting from forgetting elements of single
parts of a module’s interface. From now on, we assume that
some forgetting operator f ∈ FUP has been fixed.

2847

Definition 4 Given an ELP-function Π = 〈P, I,O,H〉 and
a set V of atoms to forget, we denote by Π\V the result-
ing ELP-function 〈f(P ∪ {a← not not a | a ∈ I ∩ V }, V),
I\V,O\V,H\V 〉.

We can show that this notion indeed fits the expectations.

Corollary 1 For an ELP-function Π and a set of atoms V ⊆
A(Π), we have SM(Π\V) = SM(Π)‖V .

And it follows that we can forget sets of atoms iteratively.

Proposition 3 Let Π be an ELP-function and V ⊆ A(Π).
Then, if V1 ∪ V2 = V and V1 ∩ V2 = ∅, we have

SM(Π\V) = SM((Π\V1)\V2) = SM((Π\V2)\V1).

In (Janhunen et al. 2009), it is shown, through the module
theorem, that the stable model semantics of modules is fully
compositional, which should be preserved under forgetting.

In the case of two modules Π1 = 〈P1, I1, O1, H1〉 and
Π2 = 〈P2, I2, O2, H2〉 that do not mention each other’s hid-
den atoms and their join Π1 tΠ2 is defined (coincides with
the composition Π1 ⊕ Π2), the module theorem states that
SM(Π) = SM(Π1) ./ SM(Π2) where the join of sets of
stable models captured by the operator ./ contains M1∪M2

whenever M1 ∈ SM(Π1), M2 ∈ SM(Π2), and M1 and
M2 are compatible, i.e., M1 ∩ (I2 ∪O2) = M2 ∩ (I1 ∪O1)
so that M1 and M2 coincide on visible atoms.

Limited to forgetting atoms that are not shared by two
modules, if we consider two modules whose join is defined,
then the module theorem can be preserved while forgetting.

Theorem 10 If Π is an ELP-function obtained as a join of
two ELP-functions Π1 and Π2, and V ⊆ A(Π) is a set of
atoms to forget s.t. V ∩ (I1 ∪ O1) ∩ (I2 ∪ O2) = ∅, then
SM(Π\V) = SM(Π1\V) ./ SM(Π2\V).

We can generalize this result to deal with cases where
atoms to be forgotten appear in more than two modules.

Theorem 11 If Π is an ELP-function obtained as a join of n
ELP-functions Π1, . . . ,Πn, and V ⊆ A(Π) is a set of atoms
to forget s.t., for all i, j ∈ {1, . . . , n}, i 6= j, V ∩ (Ii∪Oi)∩
(Ij ∪Oj) = ∅, then SM(Π\V) = ./ni=1 SM(Πi\V).

Yet, if we lift the restrictions on where the atoms to forget
appear, we lose a full correspondent to the module theorem.

Theorem 12 If Π is an ELP-function obtained as a join of
two ELP-functions Π1 and Π2, and V ⊆ A(Π) is a set of
atoms to forget, then SM(Π\V) ⊆ ./ni=1 SM(Πi\V).

Only one of the two inclusions one would expect actually
holds, and this is not by chance. In general, it is possible that
modules Π1\V and Π2\V possess compatible stable models
M1 and M2 such that M = M1 ∪M2 ∈ SM(Π1\V) ./
SM(Π2\V) but M 6∈ SM(Π\V) as illustrated next.

Example 10 Let us consider ELP-functions Π1 = 〈{a ←
b}, {b}, {a}, ∅〉 and Π2 = 〈{b ← not c}, {c}, {b}, ∅〉 and
their join Π = 〈P, {c}, {a, b}, ∅〉 with P = P1 ∪ P2 for the
respective sets of rules P1 and P2 of Π1 and Π2.

As regards forgetting V = {b}, we have Π1\V =
〈{a ← not not a}, ∅, {a}, ∅〉, Π2\V = 〈∅, {c}, ∅, ∅〉, and
Π\V = 〈{a ← not c}, {c}, {a}, ∅〉. It remains to observe

that M1 = ∅ ∈ SM(Π1\V), M2 = ∅ ∈ SM(Π2\V), and
M1 ∪M2 6∈ SM(Π\V) = {{a}, {c}} although M1 and
M2 are (trivially) compatible.

The example suggests that it is not safe to use f ∈ FUP to
forget shared atoms that inherently change the I/O interface
between the modules. The same is also true for hiding.
Example 11 Consider again Ex. 10. We obtain the three
modules in each of which b has been hidden as follows:
Π′1 = 〈{a ← b; b ← not not b}, ∅, {a}, {b}〉, Π′2 = 〈{b ←
not c}, {c}, ∅, {b}〉 and (Π1 t Π2)′ = 〈{a ← b; b ←
not c}, {c}, {a}, {b}〉. But then Π′1 and Π′2 do not respect
the input/output interfaces of each other. We could circum-
vent this by renaming one of the occurrences of b, but we
would also lose the prior dependency of a on c.

5 Module Reconfiguration
Preserving the compositionality of stable models of mod-
ules while forgetting is desirable by the very idea of modular
ASP: we want users to define ASP modules that can be com-
posed into larger programs/modules. However, as we have
seen, the module theorem no longer works entirely when-
ever some atom to be forgotten is shared by two modules.

In such cases, one alternative is to somehow modify the
modules so that these atoms cease to occur in the visi-
ble components of different modules, i.e., reconfigure ASP
modules by merging and splitting modules, so that we can
forget while preserving the compositionality of stable mod-
els of modules. Of course, for this to be feasible, we must
have access to the modules in question (by communication,
or because we own the modules). This may require sharing
some information about some module, which may not al-
ways be desirable, but, arguably, whenever possible, this is
a reasonable trade-off for being able to forget atoms from
modules while preserving (UP) and the module theorem.

One way to address the problem, provided all involved
modules are mutually independent and their composition is
defined, is to join all the modules that contain such atoms.

Let Π be an ELP-function obtained as a join of n ELP-
functions Π1, . . . ,Πn, and V ⊆ A(Π) a set of atoms to for-
get. Consider the following relation on N = {1, . . . , n}:
i ∼V j iff V ∩ (Ii∪Oi)∩ (Ij ∪Oj) 6= ∅. This relation iden-
tifies those ELP-functions that share atoms to forget, i.e.,
that can cause problems with the module theorem. We de-
note by ∼∗V the reflexive and transitive closure of ∼V on N .
Since ∼V is clearly a symmetric relation, its reflexive and
transitive closure, ∼∗V , is an equivalence relation on N . We
can therefore consider the quotient set N\∼∗

V
, i.e., the set of

equivalence classes defined by ∼∗V on N . We then consider,
for each e ∈ N\∼∗

V
, the ELP-function Πe =

⊔
i∈e Πi, the

join of those ELP-functions corresponding to the considered
equivalence class. This allows us to prove a relaxed version
of the module theorem.
Theorem 13 Let Π be an ELP-function obtained as a join
of n ELP-functions Π1, . . . ,Πn, and V ⊆ A(Π) a set of
atoms to forget. Let N = {1, . . . , n}, and consider ∼∗V
the equivalence relation on N as defined previously, and
N\∼∗

V
= {e1, . . . , ek} the respective quotient set. Then,

SM(Π\V) = ./ki=1 SM(Πei\V).

2848

This shows that joining those modules that share atoms to be
forgotten allows for the preservation of the module theorem.

Joining entire modules is not ideal. However, it may hap-
pen that only part of a module is relevant to the shared
atom to be forgotten, in which case we can use the oper-
ation of decomposing (or splitting) modules to do a more
fine-grained recomposition of modules that still preserves
the module theorem. Towards this end, we adapt the neces-
sary notions to introduce module decomposition (Janhunen
et al. 2009). Given an ELP-function Π = 〈P, I,O,H〉, let
SCC+(Π) denote the set of strongly connected components
of DG+(Π). The dependency relation ≤ can be lifted to
SCC+(Π) by setting S1 ≤ S2 iff there are atoms a1 ∈ S1

and a2 ∈ S2 s.t. a1 ≤ a2. It is easy to check that ≤ is
well-defined over SCC+(Π), i.e., it does not depend on the
chosen a1 ∈ S1 and a2 ∈ S2, and that 〈SCC+(Π),≤〉 is a
partially ordered set, i.e., ≤ is reflexive, transitive, and anti-
symmetric. For each S ∈ SCC+(Π) we consider the ELP-
function ΠS = 〈DefP (S),A(DefP (S))\S, S ∩O,S ∩H〉.

Some of these modules ΠS , however, may share hidden
atoms, and therefore cannot be joined. To overcome this,
such components of SCC+(Π) need to be identified.

Definition 5 Given an ELP-function Π = 〈P, I,O,H〉,
components S1, S2 ∈ SCC+(Π) do not respect the hidden
atoms of each other, denoted by S1 !h S2, if and only if
S1 6= S2 and (at least) one of the following conditions holds:

1. there is h ∈ Ah(ΠS1) such that h ∈ Ai(ΠS2),
2. there is h ∈ Ah(ΠS2) such that h ∈ Ai(ΠS1),
3. there are h1 ∈ Ah(ΠS1) and h2 ∈ Ah(ΠS2) such that

both occur in some integrity constraint of Π.

It is clear that the relation !h is irreflexive and sym-
metric on SCC+(Π) for every ELP-function Π. If we con-
sider the reflexive and transitive closure of !h, denoted
by !∗

h, we obtain an equivalence relation. A repartition of
SCC+(Π) can then be obtained by considering the quotient
set SCC+(Π)\!∗

h, i.e., the set of equivalence classes of
!∗

h over SCC+(Π), which can be used to decompose Π.

Definition 6 Given an ELP-function Π = 〈P, I,O,H〉, the
decomposition induced by SCC+(Π) and !∗

h includes an
ELP-function Π0 = 〈IC0(P),A(IC0(P))∪(I \A(P)), ∅, ∅〉
where IC0(P) = {← B,notC, not notD ∈ P | (B ∪
C ∪ D) ∩ H = ∅} and, for each S ∈ SCC+(Π)\!∗

h,
an ELP-function ΠS = 〈DefP (S) ∪ ICS(P),A(DefP (S) ∪
ICS(P))\S, S ∩O,S ∩H〉, where S =

⋃
S and ICS(P) =

{← B,notC, not notD ∈ P | (B∪C∪D)∩(S∩H) 6= ∅}.
The module Π0 keeps track of integrity constraints as well
as input atoms that are not mentioned by the rules of P . We
can adapt straightforwardly (from (Janhunen et al. 2009))
that this decomposition of an ELP-function is valid.

Proposition 4 Given an ELP-function Π = 〈P, I,O,H〉,
then Π = Π0 t (

⊔
S∈SCC+(Π)\!∗

h
ΠS).

We now show that this decomposition can be used to allow
forgetting while still preserving the module theorem.

Let Π1 = 〈P1, I1, O1, H1〉 and Π2 = 〈P2, I2, O2, H2〉
be two ELP-functions such that their join is defined. Since

Prop. 3 shows that we can forget a set of atoms by forget-
ting iteratively every atom in the set, we focus on forgetting
a single atom p. Suppose that p is shared by the two mod-
ules, i.e., p ∈ (I1 ∪ O1) ∩ (I2 ∪ O2), and recall that we
cannot guarantee that forgetting p separately in Π1 and Π2

preserves the module theorem. We first consider the set of
components of the decomposition of Π1 that are relevant
for atom p, i.e., R(Π1, p) = {S ∈ SCC+(Π1)\!∗

h |
p ∈ Ao(ΠS) ∪ Ai(ΠS)}. We denote by Πp

1 the union of
the ELP-functions in R(Π1, p), i.e., Πp

1 =
⊔
R(Π1, p),

by R(Π1, p) the set of components of the decomposition
of Π1 that are not relevant for p, i.e., R(Π1, p) = {S ∈
SCC+(Π1)\!∗

h | S /∈ R(Π1, p)}, and by Πp
1 the union of

the ELP-functions inR(Π1, p), i.e., Πp
1 =

⊔
R(Π1, p).

The decomposition of Π1 can then be used to obtain a
restricted version of the module theorem.
Theorem 14 (Reconfiguration) Let Π be an ELP-function
obtained as a join of two ELP-functions Π1 and Π2, and let
p ∈ (Ai(Π1) ∪ Ao(Π1)) ∩ (Ai(Π2) ∪ Ao(Π2)). Then,

SM(Π\{p}) = SM(Πp
1\{p}) ./ SM((Π2 tΠp

1)\{p}).
Thus, to allow forgetting in modules and preserve the mod-
ule theorem, we can essentially decompose certain modules
and reconfigure them in such a way that all rules on the con-
sidered shared atom occur in a single module.

6 Conclusions
In this paper, we thoroughly investigated the operation of
forgetting in the context of modular ASP.

We began by observing that strong persistence (SP) – the
property usually taken to best characterize forgetting in ASP,
which cannot always be guaranteed – is too strong when we
consider modular ASP. Given the structure of modules in the
context of modular ASP, namely their restricted interface, a
weaker notion of persistence based on uniform equivalence
is sufficient to properly characterise forgetting in this case,
which led us to introduce uniform persistence (UP).

We showed that, unlike with (SP), it is always possible to
to forget under (UP). Perhaps surprisingly, we also showed
that, in general, none of the operators defined in the literature
satisfies this weaker form of persistence, which led us to in-
troduce the class of forgetting operators FUP that we proved
to obey (UP), as well as a set of other properties commonly
discussed in the literature.

We then turned our attention to the application of this
class of forgetting operators to forget input, output, and
hidden atoms from modules, and related it with the oper-
ation of hiding. Despite showing that we can always for-
get atoms from modules under uniform persistence, we also
showed that the important module theorem no longer holds
in general, with negative consequences in the composition-
ality of stable models. Subsequently, after pinpointing the
conditions under which the module theorem holds, we pro-
ceeded by investigating how the theorem could be “recov-
ered” through a reconfiguration of the modules obtained by
suitable decomposition and composition operations.

Possible avenues for future work include investigating
forgetting in other existing ways to view modular ASP, such

2849

as (Dao-Tran et al. 2009; Harrison and Lierler 2016), and the
precise relationship of (UP) and UP-Forgetting to the notion
of relativized uniform equivalence (Eiter, Fink, and Woltran
2007), and obtaining syntactic operators for UP-Forgetting.

Acknowledgments Authors R. Gonçalves, M. Knorr, and
J. Leite were partially supported by FCT project FOR-
GET (PTDC/CCI-INF/32219/2017) and by FCT project
NOVA LINCS (UID/CEC/04516/2013). T. Janhunen was
partially supported by the Academy of Finland project
251170. R. Gonçalves was partially supported by FCT grant
SFRH/BPD/100906/2014. S. Woltran was supported by the
Austrian Science Fund (FWF): Y698, P25521.

References
Baral, C.; Dzifcak, J.; and Takahashi, H. 2006. Macros,
macro calls and use of ensembles in modular answer set pro-
gramming. In Etalle, S., and Truszczynski, M., eds., Procs.
of ICLP, volume 4079 of LNCS, 376–390. Springer.
Bledsoe, W. W., and Hines, L. M. 1980. Variable elimination
and chaining in a resolution-based prover for inequalities.
In Bibel, W., and Kowalski, R. A., eds., Procs. of CADE,
volume 87 of LNCS, 70–87. Springer.
Cabalar, P., and Ferraris, P. 2007. Propositional theories are
strongly equivalent to logic programs. TPLP 7(6):745–759.
Dao-Tran, M.; Eiter, T.; Fink, M.; and Krennwallner, T.
2009. Modular nonmonotonic logic programming revisited.
In Hill, P. M., and Warren, D. S., eds., Procs. of ICLP, vol-
ume 5649 of LNCS, 145–159. Springer.
Delgrande, J. P., and Wang, K. 2015. A syntax-independent
approach to forgetting in disjunctive logic programs. In
Bonet, B., and Koenig, S., eds., Procs. of AAAI, 1482–1488.
AAAI Press.
Eiter, T., and Fink, M. 2003. Uniform equivalence of logic
programs under the stable model semantics. In Palamidessi,
C., ed., Procs. of ICLP, volume 2916 of LNCS, 224–238.
Springer.
Eiter, T., and Wang, K. 2008. Semantic forgetting in answer
set programming. Artif. Intell. 172(14):1644–1672.
Eiter, T.; Fink, M.; and Woltran, S. 2007. Semantical char-
acterizations and complexity of equivalences in answer set
programming. ACM Trans. Comput. Log. 8(3).
European Union. 2016. General Data Protection Regulation.
Official Journal of the European Union L119:1–88.
Gabbay, D. M.; Schmidt, R. A.; and Szalas, A. 2008. Second
Order Quantifier Elimination: Foundations, Computational
Aspects and Applications. College Publications.
Gonçalves, R.; Knorr, M.; Leite, J.; and Woltran, S. 2017.
When you must forget: Beyond strong persistence when for-
getting in answer set programming. TPLP 17(5-6):837–854.
Goncalves, R.; Knorr, M.; and Leite, J. 2016a. The ultimate
guide to forgetting in answer set programming. In Baral, C.;
Delgrande, J.; and Wolter, F., eds., Procs. of KR, 135–144.
AAAI Press.

Gonçalves, R.; Knorr, M.; and Leite, J. 2016b. You can’t al-
ways forget what you want: on the limits of forgetting in an-
swer set programming. In Fox, M. S., and Kaminka, G. A.,
eds., Procs. of ECAI, 957–965. IOS Press.
Harrison, A., and Lierler, Y. 2016. First-order modular logic
programs and their conservative extensions. TPLP 16(5-
6):755–770.
Janhunen, T.; Oikarinen, E.; Tompits, H.; and Woltran, S.
2009. Modularity aspects of disjunctive stable models. J.
Artif. Intell. Res. (JAIR) 35:813–857.
Knorr, M., and Alferes, J. J. 2014. Preserving strong equiv-
alence while forgetting. In Fermé, E., and Leite, J., eds.,
Procs. of JELIA, volume 8761 of LNCS, 412–425. Springer.
Lang, J.; Liberatore, P.; and Marquis, P. 2003. Propositional
independence: Formula-variable independence and forget-
ting. J. Artif. Intell. Res. (JAIR) 18:391–443.
Lierler, Y., and Truszczynski, M. 2011. Transition systems
for model generators - A unifying approach. TPLP 11(4-
5):629–646.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Trans. Comput. Log.
2(4):526–541.
Middeldorp, A.; Okui, S.; and Ida, T. 1996. Lazy narrowing:
Strong completeness and eager variable elimination. Theor.
Comput. Sci. 167(1&2):95–130.
Moinard, Y. 2007. Forgetting literals with varying proposi-
tional symbols. J. Log. Comput. 17(5):955–982.
Oikarinen, E., and Janhunen, T. 2006. Modular equivalence
for normal logic programs. In Brewka, G.; Coradeschi, S.;
Perini, A.; and Traverso, P., eds., Procs. of ECAI, 412–416.
Oikarinen, E., and Janhunen, T. 2008. Achieving compo-
sitionality of the stable model semantics for smodels pro-
grams. TPLP 8(5-6):717–761.
Sagiv, Y. 1988. Optimizing datalog programs. In Minker,
J., ed., Foundations of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann. 659–698.
Wang, Y.; Zhang, Y.; Zhou, Y.; and Zhang, M. 2014. Knowl-
edge forgetting in answer set programming. J. Artif. Intell.
Res. (JAIR) 50:31–70.
Wang, Y.; Wang, K.; and Zhang, M. 2013. Forgetting for
answer set programs revisited. In Rossi, F., ed., Procs. of
IJCAI, 1162–1168. IJCAI/AAAI.
Weber, A. 1986. Updating propositional formulas. In Expert
Database Conf., 487–500.
Wong, K.-S. 2009. Forgetting in Logic Programs. Ph.D.
Dissertation, The University of New South Wales.
Zhang, Y., and Foo, N. Y. 2006. Solving logic program
conflict through strong and weak forgettings. Artif. Intell.
170(8-9):739–778.

2850

