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Abstract

In this paper, we present a novel data structure for compact
representation and effective manipulations of Boolean func-
tions, called Bi-Kronecker Functional Decision Diagrams
(BKFDDs). BKFDDs integrate the classical expansions (the
Shannon and Davio expansions) and their bi-versions. Thus,
BKFDDs are the generalizations of existing decision dia-
grams: BDDs, FDDs, KFDDs and BBDDs. Interestingly, un-
der certain conditions, it is sufficient to consider the above ex-
pansions (the classical expansions and their bi-versions). By
imposing reduction and ordering rules, BKFDDs are compact
and canonical forms of Boolean functions. The experimental
results demonstrate that BKFDDs outperform other existing
decision diagrams in terms of sizes.

Introduction
A representation of Boolean functions, which has a com-
pact size and supports effective manipulations, plays a dom-
inant role in the area of artificial intelligence, e.g., planning
(Palacios et al. 2005; Huang 2006), diagnosis (Huang and
Darwiche 2005; Siddiqi and Huang 2007), and probabilis-
tic inference (Chavira and Darwiche 2008; Fierens et al.
2015). The most notable representation is Binary Decision
Diagrams (BDDs) (Bryant 1986) that are based on the Shan-
non expansion (Boole 1854; Shannon 1938). The Shannon
expansion splits a function into two cofactors w.r.t. the vari-
able x and its complement x̄. Moreover, the (positive and
negative) Davio expansions1 are more suitable to serve as
the basis of decomposing XOR-intensive functions than the
Shannon one (Kebschull, Schubert, and Rosenstiel 1992).
Based on the Davio expansion, Functional Decision Dia-
grams (FDDs) are proposed in (Kebschull, Schubert, and
Rosenstiel 1992; 1993; Drechsler, Theobald, and Becker
1996). However, it is shown that either of BDDs or FDDs
alone is inefficient for representing some classes of Boolean
functions (Becker and Drechsler 1995b). To address this
deficit, Drechsler and Becker (1998) proposed Kronecker
Functional Decision Diagrams (KFDDs) that integrate the

*Corresponding author
Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1The Davio expansion is also called the Reed-Muller expansion
(Reed 1954; Muller 1954).

aforementioned three expansions. In both theory and prac-
tices, KFDDs turns out to be more compact than BDDs and
FDDs.

The notion of expansions is the theoretical foundation of
decision diagrams. A generalization to the Shannon expan-
sion (Kerntopf 2001) has been proposed for a long time.
This generalization decomposes a function into two cofac-
tors w.r.t. an auxiliary function g and its negation ḡ. How-
ever, identifying a suitable auxiliary function for the gener-
alized Shannon expansion is hard, which hinders it serving
as the core theory of decision diagrams that enjoys effec-
tive operations. Recently, a simple fragment, called the bi-
Shannon expansion, restricting the auxiliary function to be
a single variable, has been proposed in (Amarú, Gaillardon,
and Micheli 2014). Based on the above expansion, Bicon-
ditional Binary Decision Diagrams (BBDDs) are developed
accordingly. Thanks to the simplicity of the bi-Shannon ex-
pansion, Boolean manipulations on BBDDs are efficient.

It can be observed that (1) the more expansions the deci-
sion diagram is empowered by, the more compact it is, and
(2) the simpler expansions the decision diagram uses, the
more effective it is. In this paper, we thus aim to design a
decision diagram that fuses as many expansions as possible
under the principle of adopting simple ones.

The main contributions of this paper are as follows:

1. Inspired by the idea of the bi-Shannon expansion, we
propose two invariants of Davio expansion, called the
bi-positive and bi-negative Davio expansions.

2. By combining the above two expansions together with
the existing ones (Shannon, bi-Shannon, and positive
and negative Davio), we develop a novel representa-
tion of Boolean functions, called bi-Kronecker Func-
tional Decision Diagrams (BKFDDs). Due to the diver-
sity of the expansions, BKFDDs are generalizations of
the existing decision diagrams: BDDs, FDDs, KFDDs
and BBDDs. Interestingly, we show that, under certain
conditions, only some essential expansions are neces-
sary, i.e., the other ones can indeed be reduced to one of
them.

3. We prove that BKFDDs are the canonical form of
Boolean functions via enforcing the ordering and re-
duction rules. In order to further reduce the size of
BKFDDs, we provide an additional reduction rule that

2867



compresses chain structures in decision diagrams into
single nodes.

4. We also introduce the algorithms for Boolean manipula-
tions on BKFDDs, and analyze their complexities.

5. Experiments are carried out to compare BDDs, KFDDs,
BBDDs and BKFDDs on the MCNC benchmarks2. The
empirical results show that BKFDDs outperform other
decision diagrams in terms of sizes.

Preliminaries
In this section, we briefly review some background knowl-
edge on decision diagrams.

Throughout this paper, we fix a set X with n variables
x1, · · · , xn. We say a Boolean function f : Bn → B is
simple, if it is a Boolean constant 0 or 1, a variable xi or
its negation x̄i. It is well-known that any Boolean function
f : Bn → B can be represented by BDDs (Bryant 1986).
A BDD is a rooted directed acyclic graph with two types
of nodes: internal and terminal nodes. Each terminal node
denotes a constant 1 or 0. Each internal node, labeled with a
variable xi, represents a function according to the Shannon
expansion:

f = x̄i · fxi=0 + xi · fxi=1 (S)

where fxi=0 (resp. fxi=1) is the function obtained from f
by replacing xi with 0 (resp. 1).

A Boolean function has many different BDD representa-
tions. To ensure the canonicity of BDDs, i.e., every function
has a unique BDD, two constraints are imposed on BDDs
(Bryant 1986). Given a variable order π, a BDD is ordered,
if each variable appears at most once on each path from the
root to a terminal node, and the variables appear following
the order π on all such paths. A BDD is reduced, if it con-
tains neither isomorphic subgraphs nor nodes with isomor-
phic children. Ordered and reduced BDDs are canonical rep-
resentations for Boolean functions.

The Davio expansion defined below (Kebschull, Schu-
bert, and Rosenstiel 1992) is more suitable for XOR-
intensive Boolean functions than the Shannon one.

f = fxi=0 ⊕ xi · (fxi=0 ⊕ fxi=1) (pD)

f = fxi=1 ⊕ x̄i · (fxi=0 ⊕ fxi=1) (nD)
Based on the positive Davio expansion, a variant of BDDs,
called FDDs, is proposed in (Kebschull, Schubert, and
Rosenstiel 1992; 1993). As before, by imposing reduction
and ordering rules, FDDs are canonical.

For certain classes of Boolean functions, their BDD rep-
resentations are exponentially larger than their FDD ones,
and vice versa (Becker and Drechsler 1995b). Drechsler and
Becker (1998) proposed KFDDs that combines the above
three expansions. With both characteristics of BDDs and
FDDs, KFDDs are more compact and general representa-
tions for Boolean functions.

Later on, it was shown that the Shannon and Davio expan-
sions can be generalized as follows (Kerntopf 2001):

f = (x̄i ⊕ g) · fxi=g + (xi ⊕ g) · fxi=ḡ (gS)

2https://ddd.fit.cvut.cz/prj/Benchmarks/

f = fxi=g ⊕ (xi ⊕ g) · (fxi=g ⊕ fxi=ḡ) (gpD)

f = fxi=ḡ ⊕ (x̄i ⊕ g) · (fxi=g ⊕ fxi=ḡ) (gnD)

It is obvious that the generalized Shannon expansion degen-
erates into the classical one if g is substituted by 0. Nev-
ertheless, finding a proper auxiliary Boolean function g is
a hard problem. Recently, Amarú, Gaillardon, and Micheli
(2014) considered the simple case where the auxiliary func-
tion is a single variable xj , and proposed the bi-Shannon
expansion:

f = (x̄i ⊕ xj) · fxi=xj
+ (xi ⊕ xj) · fxi=x̄j

(bS)

Based on this expansion, Amarú, Gaillardon, and Micheli
(2014) developed BBDDs, and showed that BBDDs are
more compact than BDDs for two famous Boolean func-
tions: Majority and Adder.

Bi-Kronecker Functional Decision Diagrams
In this section, we introduce a novel decision diagram, called
Bi-Kronecker Functional Decision Diagram (BKFDD). We
first extend both positive and negative Davio expansions to
their bi-variants, namely bi-positive Davio (bpD) and bi-
negative Davio (bnD). By integrating the six expansions:
S, pD, nD, bS, bpD and bnD, we obtain the BKFDDs that
are the generalizations of the existing decision diagrams:
BDDs, FDDs, KFDDs, and BBDDs. Then, we show that
BKFDDs are canonical under the ordering and reduction
rules. Interestingly, with the help of complemented edges,
it is found that the above six expansions are different only
when the auxiliary function is simple. Finally, the algorithms
for Boolean operations on BKFDDs are given.

The structure
Inspired by the bi-Shannon expansion, we naturally provide
the bi-version of Davio expansions as follows:

f = fxi=xj
⊕ (xi ⊕ xj) · (fxi=xj

⊕ fxi=x̄j
) (bpD)

f = fxi=x̄j
⊕ (x̄i ⊕ xj) · (fxi=xj

⊕ fxi=x̄j
) (bnD)

For better illustration, we classify the six expansions (S,
pD, nD, bS, bpD and bnD) into two groups. The first three
expansions are called classical expansions while the latter
three ones are called bi-expansions.

We hereafter introduce BKFDD that integrates the above
six expansions. The formal definition of decision diagrams,
which serves as the basis of BKFDD, is given as follows.

Definition 1. A decision diagram (DD) is a rooted directed
acyclic graph consisting of two types of nodes: internal and
terminal nodes. Each internal node v is labeled with a pair
(xi, g) where xi ∈ X and g is a Boolean function, and has
two successors: low(v) and high(v). Each terminal node v is
labeled with a constant 1 or 0 and has no successor.

For an internal node v labeled with a pair (xi, g), we call
xi the decision variable of v, and g the auxiliary function of
v. We use |D| for the size of a decision diagram D, i.e., the
number of nodes inD. The definition of DDs in this paper is
slightly different from Definition 1 in (Drechsler and Becker
1998), since each internal node in our definition contains not
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only the decision variable but also the auxiliary function. As
mentioned before, it is difficult to identify a suitable auxil-
iary function for internal nodes. In this paper, the choice of
auxiliary functions is relatively easy since we only consider
the classical expansions and bi-expansions. Hence, the aux-
iliary function g is either a Boolean constant 0 or a distinct
variable xj (i.e., i 6= j). We remark that it is not necessary to
consider the cases where g is 1 or x̄j as they are redundant
which will be explained later.

Just as BDDs and FDDs are characterized by a variable
order, BKFDDs are characterized by a variable order aug-
mented with expansion types (OET).

Definition 2. A variable order with expansion types (OET)
π is a sequence of n pairs (x, e) where x ∈ X and e ∈
{S, pD, nD, bS, bpD, bnD} such that the variables of any
two distinct pairs are different.

For a pair (x, e), x is called the variable of the pair,
and e is called the expansion type. For an OET π, we
use πx for the variable order following π, πi for the i-
th element of π, πxi for the variable of πi, and πei for
the expansion type of πi. For example, suppose that π
is an OET [(x2, pD), (x3, bS), (x1, bnD), (x4, bS)]. Fol-
lowing the OET π, we get that πx is a variable order
[x2, x3, x1, x4], π3 = (x1, bnD), πx3 = x1, and πe3 = bnD.

To determine the Boolean function to which a DD corre-
sponds, it is necessary to identify the auxiliary function and
expansion type of each internal node. To achieve this, we
present the respecting relation between DDs and OETs.

Definition 3. We say a DD G respects an OET π, if the
following conditions hold for each internal node v labeled
with (πxi , g),

1. g = 0 when πei ∈ {S, pD, nD} or i = n;
2. g = πxi+1 when πei ∈ {bS, bpD, bnD} and i 6= n.

For an arbitrary internal node v whose decision variable
is πxi , if v is associated with one of the classical expansions,
then its auxiliary function is 0. If the expansion type of v
is a bi-expansion, and i < n, then its auxiliary function is
πxi+1. We note that if the decision variable of v is the last
element of πx, then the node associated with a bi-expansion
degenerates into a node associated with the corresponding
classical expansion, and thus its auxiliary function becomes
0.

Example 1. An OET π : [(x1, bS), (x2, bS),(x3, pD), (x4,
S)] is given in Figure 1. Thus, πx = [x1, x2, x3, x4] and
π1 = (x1, bS). In Figure 1(a), the decision variable of node
1 is x1. It follows that the auxiliary function of node 1 is the
variable x2. Similarly, the auxiliary function of node 4 is 0.

We say a DD G respecting an OET π is a BKFDD Gπ .
Then we are ready to give the correspondence between
BKFDDs and Boolean functions.

Definition 4. LetG be a BKFDD respecting an OET π. The
Boolean function fG : Bn → B represented byG is defined
as follows.

1. If G consists of only one terminal node labeled with 1
(resp. 0), then fG = 1 (resp. 0).

Figure 1: Graphical depiction of the weak ROBKFDD (a)
and strong ROBKFDD (b) for the function f = x̄1 · x3 +
(x̄1⊕x3) · x̄4. The dashed line denotes the low-edge and the
solid line denotes the high-edge. The dotted line denotes the
complemented edge.

2. If G is associated with the root node v labeled with
(x, g), then

fG =


(x̄⊕ g)flow(v) + (x⊕ g)fhigh(v) if e ∈ {S, bS}
flow(v) ⊕ (x⊕ g)fhigh(v) if e ∈ {pD, bpD}
flow(v) ⊕ (x̄⊕ g)fhigh(v) if e ∈ {nD, bnD}

where (x, e) ∈ π, flow(v) and fhigh(v) are the Boolean
functions represented by the BKFDD rooted by low(v)
and high(v), respectively.

We hereafter introduce the ordering rule for BKFDDs.

Definition 5. Given an OET π, we say a BKFDD is an or-
dered BKFDD (OBKFDD), if for each path from the root to
a terminal node, we have

1. For any two distinct internal nodes on the path, their de-
cision variables are different.

2. The decision variables of internal nodes on such path
appear following πx.

3. For any internal node v on the path, if its auxiliary
function is a variable πxi and its successors are internal
nodes, then the decision variables of successors of v is
πxj where j ≥ i.

We remark that the constant 0 is considered as a variable
that is the last one following any OET, since auxiliary func-
tions of some nodes of bi-expansion types are 0.

For example, in Figure 1(a), three internal nodes labeled
with 1, 2 and 5 are in a path from the root node to the ter-
minal node 0. The decision variables of them are x1, x2

and x4 respectively. It is easy to observe that their deci-
sion variables are different, and appear following the order
πx : [x1, x2, x3, x4]. In addition, the auxiliary functions of
node 1 is x2, and node 2 is a successor of node 1. Thus, the
decision variable of node 2 is x2.

A node labeled with (πxi , g) in a BKFDD Gπ is called
a πei -node. For example, a node in a BKFDD is called an
S-node, if it is interpreted by the Shannon expansion, e.g.,
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Figure 2: The rule RC where a node labeled with “*S” is an S- or bS-node, a node labeled with “bD” is a bpD- or bnD-node, a
node labeled with “*pD” is a pD- or bpD-node, and a node labeled with “*nD” means this node is a nD- or bnD-node.

node 5 in Figure 1(a) is an S-node. Furthermore, it is easily
verified that BKFDDs are generalizations of the four DDs:
BDDs, FDDs, KFDDs, and BBDDs. For example, BKFDDs
degenerates into KFDDs by only considering classical ex-
pansions.

Reduction rules and canonicity
In order to compactly represent Boolean functions,
BKFDDs should be compressed to another one denoting the
same function according to a set of reduction rules. In the
following, we propose reduction rules for BKFDDs that are
inherited from KFDDs (Drechsler and Becker 1998), and
obtain the canonicity theorem for OBKFDDs.
RI Eliminate a node v isomorphic to a distinct node v′, and

redirect all incoming edges of v to v′.
RS Eliminate a node v whose two successors are v′, and

redirect all incoming edges of v to v′.
RD Eliminate a node v such that the successor high(v)

points to the terminal node 0, and redirect all incom-
ing edges of v to low(v).

The rule RI can be applied in any node of OBKFDDs.
However, the rule RS is applied only in S- and bS-nodes
while the rule RD is applied only in pD-, nD-, bpD-
and bnD-nodes. We say an OBKFDD is a weak reduced
OBKFDD (weak ROBKFDD), if none of the rules RI, RS
and RD can be applied in it.

By repeated applications of the above three rules, we ob-
tain a canonical representation for Boolean functions.
Theorem 1. For any Boolean function f and OET π, there
is exactly one weak ROBKFDD such that it respects π and
represents f .

Thanks to the simplicity of auxiliary functions and bi-
expansions, BKFDDs can be further compressed by new re-
duction rules. Let us illustrate it in the following example.

Example 2. Let f = x̄1 · x3 + (x̄1 ⊕ x3) · x̄4. Figure 1(a)
depicts a weak ROBKFDD D representing the function f
with 6 nodes. Interestingly, the nodes on the second level
can be eliminated according to the following equation:

f=(x̄1 ⊕ x3) · x̄4 + (x1 ⊕ x3) · x3

=[(x̄1 ⊕ x2)⊕(x2 ⊕ x3)]·x̄4 + [(x1 ⊕ x2)⊕(x2 ⊕ x3)]·x3

=(x̄1 ⊕ x2)·(x̄2 ⊕ x3)·x̄4 + (x̄1 ⊕ x2)·(x2 ⊕ x3)·x3+

(x1 ⊕ x2)·(x̄2 ⊕ x3)·x3 + (x1 ⊕ x2)·(x2 ⊕ x3)·x̄4

The compression process is as follows:
1. Replace the auxiliary function of the root node with x3;
2. Eliminate nodes 2 and 3;
3. Redirect the low (resp. high) edge of the root node to

node 4 (resp. 5).
The new BKFDD D′, shown in Figure 1(b), contains only 4
nodes, and thus its size is less than |D|.

Motivated by Example 2, we propose a new reduction
rule, called chain reduction (RC). We present the chain re-
duction by six cases in Figure 2. Due to the space limit, we
only elaborate the detailed operations of the cases shown in
Figure 2(a) and 2(d). The operations for other cases can be
constructed according to other subfigures in Figure 2.

In Figure 2(a), the root node v is a bS-node labeled with
(xj , xk). Its successor low(v) and high(v) are S- or bS-
nodes whose decision variable is xk. The low successor of
low(v), representing the function h1, is identical to the high
successor of high(v); and the high successor of low(v), rep-
resenting the function h2, is the same as the low successor
of high(v). The node v denotes the function f as follows:

f=[(x̄j ⊕ xk)·(x̄k ⊕ g)]·h1 + [(x̄j ⊕ xk)·(xk ⊕ g)]·h2+

[(xj ⊕ xk)·(x̄k ⊕ g)]·h2 + [(xj ⊕ xk)·(xk ⊕ g)]·h1

=(x̄j ⊕ g)·h1 + (xj ⊕ g)·h2

So the the two nodes labeled with (xk, g) can be elimi-
nated. The compression process consists of replacing the
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auxiliary function of the node v with g, and redirecting the
low (resp. high) edge of v to the node low(low(v)) (resp.
high(low(v))).

In Figure 2(d), the root node v is a bpD- or bnD-node. Its
successor low(v) are S- or bS-nodes whose decision variable
is xk. The function denoted by high(v) is equal to the exclu-
sive disjunction of the two functions h1 and h2 represented
by low(low(v)) and high(low(v)) respectively. Suppose that
v is a bpD-node. The node v denotes the function f as fol-
lows:

f=[(x̄k ⊕ g) · h1 + (xk ⊕ g) · h2]⊕ (xj ⊕ xk) · (h1 ⊕ h2)

=[h1⊕(xk ⊕ g)·(h1 ⊕ h2)]⊕ (xj ⊕ xk)·(h1 ⊕ h2)

=h1⊕(xj ⊕ g)·(h1 ⊕ h2)

Similar to Figure 2(a), the node labeled with (xk, g) can be
removed. The compression process for this case is similar to
that in Figure 2(a) except we only redirect the low edge of v
to the node low(low(v)).

We note that the new DD does not respect the original
OET π after applying the rule RC. When the expansion type
of the node v is a bi-expansion, the auxiliary function is not
the variable next to its decision variable. For example, the
auxiliary function of node 1 in Figure 1(b) is x3 but not x2.
We therefore weaken the respecting relation between DDs
and OETs.
Definition 6. We say a DD G semi-respects an OET π, if
the following conditions hold for each internal node labeled
with (πxi , g),
1. g = 0 when πei ∈ {S, pD, nD};
2. g = πxj or g = 0 where i < j ≤ n when πei ∈
{bS, bpD, bnD}.

The difference between the semi-respecting relation and
the respecting relation is that the former permits the auxil-
iary function of v to be the variable that is after its decision
variable w.r.t. πx, if the internal node v is interpreted by a
bi-expansion.

We say an OBKFDD is a strong reduced OBKFDD
(strong ROBKFDD), if none of rules RI, RS, RD and RC
can be applied in it. By the four reduction rules, we obtain
another canonical representation for Boolean functions.
Theorem 2. For any Boolean function f and OET π, there
is exactly one strong ROBKFDD such that it semi-respects
π and represents f .

Complemented edges
Complemented edge (Brace, Rudell, and Bryant 1990) is
an improvement of the implementation for DDs that can be
used for further reducing the size of DDs. A node can rep-
resent a function and its negation simultaneously via com-
plemented edges. Suppose that the node v denotes a func-
tion f . This node with a complemented edge denotes the
function f̄ . It can be proven that the ROBKFDD representa-
tion with complemented edges remains canonical if comple-
mented edges only appear at the high edge of each internal
node, and only one terminal node 0 is available.
Theorem 3. Weak and strong ROBKFDDs with comple-
mented edges are canonical.

Algorithm 1: f ⊕ h
Input : Two BKFDD nodes f and h
Output: The BKFDD node r for f ⊕ h

1 if f = 0 or h = 0 or f = h or f = h̄ then
2 return pre-defined result

3 else
4 i � the top level in the OET π for f and h
5 g � the auxiliary function of the i-level according to π
6 f ′ � the πe

i -node labeled with (πx
i , g) equivalent to f

7 h′ � the πe
i -node labeled with (πx

i , g) equivalent to h
8 The label of r � (πx

i , g)
9 low(r) � low(f ′)⊕ low(h′)

10 high(r) � high(f ′)⊕ high(h′)
11 if πe

i ∈ {S, bS} and low(r) = high(r) or
πe
i ∈ {pD, nD, bpD, bnD} and high(r) = 0 then

12 r � low(r)

13 if the rule RC can be applied on r then
14 Apply the rule RC on r

15 return r

In the following, we consider the question: how many
expansion types do we need when incorporating comple-
mented edges and requiring only simple auxiliary functions?
The answer is six, and the six expansion types are the Shan-
non and (positive and negative) Davio expansion as well as
their bi-versions as we show next.

The dependent set of a Boolean function f , written
dep(f), is the set of variables on which f depends (i.e.,
{x | fx=0 6= fx=1}). An expansion type can be considered
as a ternary Boolean operator.

Definition 7. An expansion type op ∈ B3 is a ternary
operator s.t. for all functions f, g, and all variables xi s.t.
xi /∈ dep(g), there are unique functions h1, h2 s.t. xi /∈
dep(h1) ∪ dep(h2) and f = op((xi ⊕ g), h1, h2).

By adjusting the proof in (Becker and Drechsler 1995a),
we show that for a fixed function g, it is enough to consider
three expansion types: gS, gpD, and gnD when incorporat-
ing complemented edges. The simple auxiliary function 1
and x̄j are superfluous. This is because the gS expansion
with the auxiliary function g is equivalent to that with ḡ, and
the gpD expansion with g is equivalent to the gnD expan-
sion with ḡ and vice versa. For example, according to the
equation (gS), if g = 1, then

f = (x̄i ⊕ 1) · fxi=1 + (xi ⊕ 1) · fxi=0

= (x̄i ⊕ 0) · fxi=0 + (xi ⊕ 0) · fxi=1

The auxiliary function of the latter equation is 0.
We therefore can draw a conclusion that it is sufficient to

only consider the six expansions (S, pD, nD, bS, bpD and
bnD) for simple auxiliary functions.

Theorem 4. Suppose that the auxiliary function is simple.
There are only six non-equivalent expansion types (S, pD,
nD, bS, bpD and bnD) for decision diagrams with comple-
mented edges.
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Boolean operations on BKFDDs
We now provide three Boolean operations: exclusive dis-
junction (XOR), conjunction (AND), and negation (NOT)
on BKFDDs that serve as the basis for other Boolean opera-
tions.

For the sake of simplicity, we do not differentiate Boolean
functions and nodes in BKFDDs. We assume that BKFDDs
are ordered and strong reduced. Suppose that two Boolean
functions f and h are labeled with (xi, g) and expanded by
the S- or bS-expansion. The exclusive disjunction of f and
h can be obtained by the following equation:

f⊕h = (x̄i⊕g)·(fxi=g⊕hxi=g)⊕(xi⊕g)·(fxi=ḡ⊕hxi=ḡ)
(1)

This equation is the key to implement a recursive algorithm
for the XOR operation. According to Equation 1, generating
a node representing f⊕h reduces to computing the exclusive
disjunction of fxi=g and hxi=g , and that of fxi=ḡ and hxi=ḡ .
The following equation is given for pD- or bpD-nodes.

f ⊕h = (fxi=g⊕hxi=g)⊕ (xi⊕ g) · (fxi⊕g⊕hxi⊕g) (2)

where fxi⊕g denotes the function fxi=g ⊕ fxi=ḡ .
The algorithm of the XOR-operation for nD- and bnD

nodes is performed similarly. Algorithm 1 provides a sketch
of the code for generating a BKFDD node representing
f ⊕ h. Lines 1 and 2 handle the base cases where (1) f or h
is the constant 0; (2) f is identical to h or its negation h̄. In
these cases, the resulting node r can be computed directly.
For example, if f = 0, then the result should be h. When it
is not the base cases, the algorithm will enter the inductive
cases (Lines 4 - 15). Firstly, the decision variables or aux-
iliary functions of f and h may be different, and Equations
1 and 2 do not work on this case. To address this deficit,
Lines 4 - 7 create two nodes f ′ and h′ with the same la-
bel denoting the Boolean function f and h respectively via
reversely applying reduction rules RS, RD and RC if nec-
essary. For example, suppose that π is an OET, and f and h
are two S-nodes labeled with (xi,0) and (xj ,0) where xi is
before xj according to the OET π. The top level for f and
h is i, and the auxiliary function g is 0. The node h′ will
be created where the label of h′ is (xi,0), and both its low
and high successors are h. The information of the resulting
node r (including the decision variable, auxiliary function,
and successors) are assigned in Lines 8 - 10. The resulting
node may violate the reduction rules RS, RD and RC. How-
ever, they will be enforced in Lines 11 - 14. Finally, the time
complexity of Algorithm 1 is O(|f | · |h|).

For S- and bS-nodes, the AND-operation can be executed
as the XOR-operation does. The computation of the AND-
operation is a bit complicated for pD-, nD-, bpD- and bnD-
nodes. The following equation holds for pD- and bpD-nodes,
and the equation for nD- and bnD-nodes can be similarly
obtained.
f ·h = (fxi=g · hxi=g)⊕

(xi⊕g)·[(fxi⊕g ·hxi⊕g)⊕(fxi=g ·hxi⊕g)⊕(fxi⊕g ·hxi=g)]
(3)

A recursive algorithm for the AND-operation can be de-
veloped similar to Algorithm 1, with exponential running
time in the worst case. Fortunately, if the number of pD-,

nD-, bpD- and bnD-expansions of the OET is bounded, then
the runtime becomes polynomial.

Due to complemented edges, the negation of a function
can be computed via inverting the complemented edge on
the node denoting the function. It follows that the negation
operation can be executed in constant time.

Any Boolean operation can be realized via AND, XOR
and NOT operations. For example, the disjunction (OR) of f
and g can be achieved by first computing negations of f and
g, then conjoining them, and finally generating the negation
of the conjunction, i.e., f + g = (f̄ · ḡ).

Experimental Results
In this section, we compare four decision diagrams BDDs,
KFDDs, BBDDs, and BKFDDs on the MCNC benchmark
in terms of sizes and running time. We implement a package
that integrates BKFDDs as well as BDDs and KFDDs using
C programming language. In the implementation, we store
the decision variables, the auxiliary functions, the pointers
to both low and high, and the flag denoting whether the
edge points to high successors is complemented for each
node. The nodes with the same decision variable share the
same expansion type. Hence, we only store an OET as a
global variable, and it is sufficient to determine the expan-
sion type of each node via the OET. The package for BB-
DDs we use are originated from (Amarú, Gaillardon, and
Micheli 2014)3. We compile each test case of the bench-
mark into different decision diagrams. The compilation pro-
cess starts with the initial variable order declared in the file
of the test case, and all expansion types in the initial OET
are the classical Shannon expansion. The reordering algo-
rithm for all decision diagrams is based on the original sift-
ing algorithm (Rudell 1993). For KFDDs, we use the DTL-
sifting algorithm proposed in (Drechsler and Becker 1998)
which searches not only a better variable order but also a
better type for each level. The dynamic reordering used in
BKFDDs is a bit different from the DTL-sifting algorithm.
The former considers not only the classical Shannon and
Davio expansions but also the bi-versions of expansions.
Hence, six different expansions will be introduced during
the reordering algorithm. For most test cases, the compila-
tion process does not trigger the dynamic reordering algo-
rithm since the size of intermediate decision diagrams are
too small. Therefore, we invoke one additional call to the
dynamic reordering algorithm for the compiled decision di-
agrams after the compilation process. In addition, it is diffi-
cult to implement the variable swapping algorithm for the
strong reduced OBKFDDs, which is the basis of the dy-
namic reordering algorithm. Thus, intermediate BKFDDs,
generated during the compilation process, are all weak re-
duced, and finally we apply the chain reduction rule on the
compiled weak reduced BKFDDs. We also utilize the ABC
tools4, and CUDD5 to verify the correctness of the compiled
decision diagrams. The machine running the benchmark is

3https://lsi.epfl.ch/BBDD
4https://people.eecs.berkeley.edu/∼alanmi/abc/
5http://vlsi.colorado.edu/∼fabio/
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Table 1: Experimental results for BDDs, KFDDs, BBDDs and BKFDDs. BBDD failed to compile C2670 since it is out of the
memory (24GB).

Bench. BDD KFDD BBDD BKFDD Best
size time size time size time size time size time

C1355 29562 6.92 17897 487.48 299669 16606.56 13862 461.28 13862 6.92
C2670 6182 64.8 2373 126.75 - - 4810 31417.46 2373 64.8
C432 1252 0.24 1252 0.84 16517 17.37 1252 11.25 1252 0.24
C499 29562 7.73 17897 535.25 299669 16807.38 13862 460.93 13862 7.73

C1908 7560 1.58 5166 4.29 26085 24.21 4482 166.86 4482 1.58
C5315 2515 20.58 2113 82.66 30363 924.01 2115 12277.25 2113 20.58
C880 12178 5.14 9627 16.4 76946 7098.17 5731 674.58 5731 5.14

C3540 187494 81.68 62236 81.07 324549 10170.63 33398 3376.77 33398 81.07
misex3 604 0.09 632 0.37 739 1.58 632 1.26 604 0.09

too large 819 1.52 381 5.6 1235 26.63 542 135.04 381 1.52
amd 283 0.02 228 0.09 353 0.72 225 1.14 225 0.02

apex2 783 0.44 551 1.45 861 2.09 555 34 551 0.44
apex3 899 1.22 845 5.35 3704 8.26 858 170.42 845 1.22
apex6 657 1.83 632 8.75 10750 170.91 644 949.79 632 1.83

b2 594 0.1 560 0.28 841 2.37 546 5.75 546 0.1
bc0 536 0.1 441 0.64 1257 2.29 437 7.05 437 0.1

chkn 319 0.14 319 0.81 566 0.74 324 5.38 319 0.14
dalu 841 2.59 619 6.92 9553 169.58 509 290.25 509 2.59
des 3138 32.36 3033 128 95505 4477.4 2477 42904.04 2477 32.36
dist 121 0.03 121 0.15 182 0.64 119 0.31 119 0.03

duke2 354 0.07 342 0.28 712 1.14 370 3.59 342 0.07
e64 728 0.61 728 2.81 208 1.71 728 64.98 208 0.61
ex5 242 0.05 235 0.13 374 0.9 235 0.5 235 0.05
frg2 1471 4.41 1294 20.04 13014 167.18 1307 1452.77 1294 4.41
gary 302 0.05 319 0.31 435 0.7 317 3.75 302 0.05
in0 302 0.05 319 0.31 435 0.85 317 3.68 302 0.05
in1 594 0.16 560 0.28 841 2.4 546 5.73 546 0.16
in2 299 0.08 205 0.43 488 0.79 197 4.78 197 0.08
in3 309 0.15 292 0.92 1205 2.19 290 17.16 290 0.15
in4 559 0.14 504 0.65 1185 1.95 539 10.7 504 0.14
intb 693 0.07 656 0.34 848 1.5 585 2.3 585 0.07
jbp 436 0.14 355 0.98 927 2 343 15.94 343 0.14
m3 130 0.03 130 0.15 186 0.43 130 0.27 130 0.03
m4 174 0.07 174 0.15 236 0.8 174 0.28 174 0.07

mainpla 2398 0.23 1890 0.83 3019 12.11 2022 16.73 1890 0.23
max1024 244 0.04 244 0.2 141 1.1 247 0.62 141 0.04
max512 145 0.04 145 0.18 166 0.68 145 0.36 145 0.04

mlp4 135 0.04 112 0.14 187 0.55 109 0.34 109 0.04
prom1 1782 0.09 1782 0.22 1840 9.76 1780 0.84 1780 0.09
prom2 834 0.07 834 0.19 958 4.24 833 0.54 833 0.07

seq 2118 0.53 1128 1.63 2837 9.48 983 64.32 983 0.53
soar 601 0.69 559 3.8 1553 4 553 166.67 553 0.69
t481 21 0.06 19 0.34 51 1.63 19 1.12 19 0.06

table3 769 0.07 748 0.32 892 2.49 766 1.91 748 0.07
table5 724 0.08 681 0.42 1080 2.31 668 3.53 668 0.08

vda 489 0.13 466 0.79 774 1.29 448 4.9 448 0.13
x3 657 1.83 632 8.71 10921 159.7 644 949.38 632 1.83
x4 577 0.97 495 4.73 3134 30.15 520 168.01 495 0.97

x6dn 243 0.2 239 1.18 857 1.47 239 15.23 239 0.2
x7dn 524 0.48 581 2.65 5330 24.7 456 68.27 456 0.48

Average 6095 4.8 2871.8 30.95 25595.5 1162.5 2077.8 1928 2006.2 4.8
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equipped with an Intel Core i7-8086K 4GHz CPU and 32GB
RAM.

Table 1 shows the experimental results for the four deci-
sion diagrams. The name of test cases are reported in the first
four columns. The columns “BDD”, “KFDD”, “BBDD” and
“BKFDD” denote the results of the corresponding decision
diagrams respectively. The columns “size” denote the num-
ber of nodes of DDs and “time” the total runtime (sec.). The
last column “best” is the best result among the four decision
diagrams. And the best results are shown as bolded text.

As we can see in Table 1, adding more expansion types
leads to a more compact decision diagrams. Since KFDDs
employ two more expansion types (positive and negative
Davio expansions) than BDDs, the average size of KFDDs
is about 47.18% of that of BDDs. Furthermore, thanks to the
integration of the classical expansions and their bi-versions,
BKFDDs have average 27.65%, 65.91% and 91.88% smaller
size than those of KFDDs, BDDs and BBDDs. We also ob-
serve that BKFDDs outperform the other three decision di-
agrams in 31 test cases (out of 50 test cases). In particu-
lar, for C3540, the size of BKFDD is 33398, which is much
less than those of BDD, KFDD and BBDD that are 187494,
62236 and 324549, respectively. On the other side, the re-
ordering algorithm we use finds the best OET for a given
test case of benchmarks such that the size of the BKFDD
is the smallest. This is because it is inherently a heuristic
approach. This explains that the sizes of the corresponding
BKFDDs are not the best in the rest 19 cases. However, there
are 15 cases where its sizes are close to the best results (the
difference is below 7%). Compared to the best results among
the four decision diagrams, the sizes of BKFDDs are a bit
larger by 3.4%. For some test cases, the sizes of BKFDDs
are close to the best result even if BKFDDs are not the best
one.

Currently, the compilation time of BKFDDs is 402, 62
and 1.6 times than that of BDDs, KFDDs and BBDDs on av-
erage. This is because that our implementation of BKFDDs
package is still not optimized, and that the reordering algo-
rithm is time consuming. In the future, we will improve our
package with some existing optimization techniques, and
develop more efficient reordering algorithms for BKFDDs.

Conclusions
We have proposed a new canonical representation BKFDDs
for Boolean functions. Thanks to the combination of the
Shannon, positive and negative Davio expansions as well as
their bi-versions, BKFDDs can embrace the advantages of
existing well-known Boolean representations: BDDs, FDDs,
KFDDs, and BBDDs, and thus are the generalizations of
them. By incorporating complemented edges and impos-
ing the simple auxiliary function conditions, we have also
proved that the above six expansions are sufficient enough.
Furthermore, we have provided the algorithms for Boolean
operations on BKFDDs. Moreover, we have presented the
new rule RC that can further reduce the size of BKFDDs.
Finally, the experimental results have justified that BKFDD
is a more compact representation of Boolean functions than
the existing DDs.
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Supplemental Proofs
Proof of Theorem 1

Proof. Without of generality, we assume that the variable or-
der is x1, · · · , xn. Let i be the least number s.t. xi ∈ dep(f).
We remark that dep(f) = ∅ if f is the constant function 0
or 1. In this case, we assume that i = n + 1. We prove by
induction on n+ 1− i.

Base case (i = n+1): Suppose that f = 0. It can be seen
that, in weak ROBKFDD, only terminal node labeled with 0
denotes the function f . The case where f = 1 is similar.

Inductive case: Suppose that G1 and G2 are two weak
ROBKFDDs representing the function f . Let v1 and v2 be
the root nodes of G1 and G2 respectively. Assume that the
expansion types of v1 and v2 are the Shannon expansion.

We first verify that v1 and v2 are labeled with (xi, g). This
can be done by contradiction. If the node v1 is labeled with
(xj , g) where j < i or j > i. Suppose that j < i. The
low and high successors of v1 represent the function f , and
hence they are identical. This violates the rule RI. Suppose
that j > i. Then, there is no node in G1 s.t. its decision
variable is xi. This contradicts the fact that xi ∈ dep(f).

We now prove that G1 and G2 are identical. It is easy to
verify that fxi=0 and fxi=1 are unique. So the low succes-
sors of G1 and G2 represent the same function fxi=0. By
the induction hypothesis, the low successors of G1 and G2

are identical. Similarly, G1 and G2 share the same high suc-
cessors. Hence, G1 and G2 are identical.

The proofs of the other cases where the expansion type of
the root node is one of the pD-, nD-, bS-, bpD- and bnD-
expansion are similar.

Proof of Theorem 2

Proof. Without of generality, we assume that the variable or-
der is x1, · · · , xn. Let i be the least number s.t. xi ∈ dep(f).
We remark that dep(f) = ∅ if f is the constant function 0
or 1. In this case, we assume that i = n + 1. We prove by
induction on n+ 1− i.

The proof of the base case (i = n+ 1) is the same as that
of Theorem 1. We only prove the inductive case. Suppose
thatG1 andG2 are two strong ROBKFDDs representing the
function f . Let v1 and v2 be the root nodes of G1 and G2

respectively. Assume that the expansion types of v1 and v2

are the bi-Shannon expansion (the proofs of the other cases
where the expansion type of the root node is one of the pD-,
nD-, bS-, bpD- and bnD- expansion is similar).

We first verify that v1 and v2 share the same decision
variable xi and the same auxiliary function g. By the proof
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of Theorem 1, we get that the decision variables of v1

and v2 are xi. It remains to show that v1 and v2 share
the same auxiliary function g. Suppose that xj and xk
are auxiliary functions of v1 and v2, and j < k. With-
out of generality, we assume that πej = πek = bS (the
other cases where πej ∈ {S, pD, nD, bS, bpD, bnD} can be
shown in the same way). According to the bS-expansion,
f = (x̄i ⊕ xj) · fxi=xj + (xi ⊕ xj) · fxi=x̄j and f =
(x̄i ⊕ xk) · fxi=xk

+ (xi ⊕ xk) · fxi=x̄k
. It is easy to check

that fxi=xj = (x̄i ⊕ xk) · fxi=xj + (xi ⊕ xk) · fxi=x̄k
and

fxi=x̄j = (x̄i ⊕ xk) · fxi=x̄k
+ (xi ⊕ xk) · fxi=xj . This

violates the fact that G2 is a strong ROBKFDD.
Finally, in very much the same way, G1 and G2 being

identical can be justified as Theorem 1 illustrates.

Proof of Theorem 3

Proof. We only consider the weak ROBKFDD case and the
strong ROBKFDD case can be shown in the same way.

We now introduce complemented edges and require that
complemented edges only appear at the high edge of each
internal node, and only one terminal node 0 is available.

Without of generality, we assume that the variable order
is x1, · · · , xn. Let i be the least number s.t. xi ∈ dep(f).
We remark that dep(f) = ∅ if f is the constant function 0
or 1. In this case, we assume that i = n + 1. We prove by
induction on n+ 1− i.

Base case (i = n+ 1): If f is a constant function 0, then
the weak ROBKFDD G is a terminal node 0 without any
complemented edge. If f = 1, then G contains only one
terminal node 0 with complemented edges.

Inductive case: Now we construct the weak ROBKFDD
G s.t. it represents f and it may be with complemented
edges. Let v be the root node of G. Suppose that the ex-
pansion type of v is the Shannon expansion. According to
the proof of Theorem 1, the decision variable of v is xi, and
f = x̄i · fxi=0 + xi · fxi=1. By the induction hypothesis,
there are two unique weak ROBKFDDs G1 and G2 which
represent fxi=0 and fxi=1 respectively. If G1 is with com-
plemented edges, then we set the edge pointing to G1 to be
regular, and the edge pointing to G to be complemented.
In addition, we set the edge pointing to G2 to be regular
(resp. complemented), if the edge is initially complemented
(resp. regular). Finally, we let the low successor of G be G1

and the high successor of G be G2 (the construction of the
other the expansion types are similar). Since G1 and G2 are
unique and G satisfies the two requirements that comple-
mented edges only appear at the high edge of each internal
node, and that only one terminal node 0 is available. So G is
the unique weak ROBKFDD with the complemented edge
representing f .
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