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Abstract

Embedding based models for knowledge base completion
have demonstrated great successes and attracted significant
research interest. In this work, we observe that existing em-
bedding models all have their loss functions decomposed into
atomic loss functions, each on a triple or an postulated edge
in the knowledge graph. Such an approach essentially implies
that conditioned on the embeddings of the triple, whether the
triple is factual is independent of the structure of the knowl-
edge graph. Although arguably the embeddings of the entities
and relation in the triple contain certain structural information
of the knowledge base, we believe that the global information
contained in the embeddings of the triple can be insufficient
and such an assumption is overly optimistic in heterogeneous
knowledge bases. Motivated by this understanding, in this
work we propose a new embedding model in which we dis-
card the assumption that the embeddings of the entities and
relation in a triple is a sufficient statistic for the triple’s factual
existence. More specifically, the proposed model assumes that
whether a triple is factual depends not only on the embedding
of the triple but also on the embeddings of the entities and rela-
tions in a larger graph neighbourhood. In this model, attention
mechanisms are constructed to select the relevant information
in the graph neighbourhood so that irrelevant signals in the
neighbourhood are suppressed. Termed locality-expanded neu-
ral embedding with attention (LENA), this model is tested
on four standard datasets and compared with several state-
of-the-art models for knowledge base completion. Extensive
experiments suggest that LENA outperforms the existing mod-
els in virtually every metric.

Introduction
Knowledge bases, such as YAGO, DBpedia and Freebase,
have seen explosive growth in many application domains. As
most of knowledge bases are extracted from human-edited
knowledge sources, the data integrity therein is hardly guar-
anteed and the information contained in the knowledge bases
is expected to be far from complete. This makes knowledge
base completion a particularly important task.

The data in a knowledge base is usually represented as
a set of triples, each in the form of (h, r, t), where h and
t are entities and r indicates a relation. The triple (h, r, t)
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in a knowledge base is meant to indicate the fact that h
and t participates in the relation r. For example, the triple
(Paris, isCapitalOf, France) indicates the fact that Paris is
the capital of France. The cross linkage of the factual triples
in a knowledge base allows it to be interpreted as a graph
where vertices represent entities, edges represent triples, and
edge labels represent relations. Since many factual triples are
expected missing from a knowledge bases, the objective of
knowledge base completion is to discover the missing triples,
or edges.

Among the diverse studies in knowledge base com-
pletion, knowledge base embedding (Bordes et al. 2013;
Wang et al. 2014; Lin et al. 2015; Lin, Liu, and Sun 2015;
Dettmers et al. 2018) has demonstrated great successes and
is receiving increasing attention at present. Overall this em-
bedding methodology falls in the connectionist paradigm of
artificial intelligence, in which knowledge base completion
is formulated as learning a distributed representation (Hinton,
McClelland, and Rumelhart 1986) for entities and relations.
With this methodology, the entities and relations in the knowl-
edge base are represented as quantities (such as vectors or
matrices) in a low-dimensional vector space, and these quanti-
ties are learned by minimizing certain loss functions carefully
designed to hopefully capture the structure of the knowledge
base.

Despite the successes of the embedding models for knowl-
edge base completion, this work is motivated by the following
observation. In all existing embedding models, the global loss
functions decomposes into “atomic” losses, each on a triple
(h, r, t). Although the parameters of the model, or the em-
beddings, are linked via the connectivity of the knowledge
base, a fundamental assumption in such an approach is that
the embeddings for entities, say for h and t, and for relation,
say for r, are sufficient to aggregate all structural information
contained in the knowledge base for predicting whether the
triple (h, r, t) is factual.

In this work, we hypothesize that such an assumption may
not hold sufficiently well. In particular, it is well known that
knowledge bases are usually heterogeneous in the sense that
entities have varying local or global connectivity statistics
(e.g., degree, clustering coefficient, closeness centrality, etc)
and that relations involve varying number of factual triples.
As such, the embeddings of different entities and of different
relations may capture varying degrees of global information.
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Figure 1: A subgraph of Rebecca.

For example, the embeddings of the “less connected” or “in-
frequent” entities and relations may not aggregate sufficient
information from learning. Then the assumption that the em-
beddings of a triple form a sufficient statistics for predicting
its factual existence is expected to fail.

Motivated by this understanding, we relax this assump-
tion and take an alternative route from the conventional ap-
proaches. More specifically, we propose a model in which
the factual existence of a triple not only depends on the em-
beddings of the triple but also depends on the embeddings of
a larger graph neighbourhood. That is, we expand the “mod-
elling locality” from edges to larger graph neighbourhoods.
To see that graph neighbourhood information can indeed be
helpful, consider the toy example in Figure 1. In the figure,
the fact “Rebecca is the wife of Jerry” will be relevant for
predicting “Rebecca’s gender is female”, and the fact “Re-
becca was born in Berkeley” can be useful for predicting “the
nationality of Rebecca is U.S.”. In this example, it is also re-
markable that not all information in a given neighbourhood of
a triple is relevant to the existence of the triple. To account for
such a phenomenon, an attention mechanism is built in our
model to (soft-)select the relevant information in a designated
graph neighbourhood and suppress the irrelevant noise.

Our proposed model, termed Locality-Expanded Neural
Embedding With Attention, or LENA, is tested on four stan-
dard datasets and compared against various state-of-the-art
models. Experimental results confirm its effectiveness.

Problem Statement and Prior Art
We consider a knowledge Base (KB) as an edge-labelled
directed graph, where vertices represent entities, edge labels
represent relations, and each directed edge represents a triple
(h, r, t) in the KB. The edge (h, r, t) is labelled by r and has
direction pointing from the head entity h to the tail entity t.

Denote the KB of interest by G. That is, G is set of the
all factual triples collected in the KB. Each triple in G is
also referred to as a positive example. In practice, G does not
include all factual triples, and the objective of KB completion
is to fill G with the missing triples. Equivalently, the problem
can be formulated as determining whether an arbitrary triple
(h, r, t) /∈ G can be factual. Such a triple will be called a
candidate triple for the ease of reference.

A dominant approach to KB completion is by KB embed-
ding. In KB embedding, the entities and relations are mapped
to distributed representations (i.e., “embeddings”) in some
Euclidean spaces and the structure of the KB is modelled
in a loss function relating theses embeddings. Usually the
loss function decomposes into the sum of some “atomic” loss
function, each involving a positive example, or, if available, a

negative example. The learning of the embeddings is then car-
ried out by minimizing the loss function over the embeddings,
usually via stochastic gradient descent (SGD). After the em-
beddings are obtained, whether a candidate triple is factual
can be determined by evaluating the atomic loss function
applied to the embeddings of the triple.

Existing Embedding Models
An influential work in KB embedding, TransE (Bordes et
al. 2013) uses an atomic loss function that penalizes the
dissatisfaction of equaion h + r = t, where h, r and t are
the embedding vectors for the head, relation, and tail in a
factual triple (h, r, t). The model is later extended to other
models, such as TransH(Wang et al. 2014) and TransR(Lin
et al. 2015), to better handle one-to-many and many-to-many
relations.

The current state-of-the-art embedding models include, to
the best of our knowledge, ProjE (Shi and Weninger 2017),
DistMult (Yang et al. 2014), Ensemble DistMult (Kadlec, Ba-
jgar, and Kleindienst 2017), ComplEx (Trouillon et al. 2016),
Analogy (Liu, Wu, and Yang 2017) and ConvE (Dettmers et
al. 2018). These models also define their atomic loss func-
tions at the triple level. Recently another state-of-the-art em-
bedding model R-GCN(Schlichtkrull et al. 2017) has also
been presented. Unlike most other models, the successive
application of graph convolution(Kipf and Welling 2016) in
R-GCN allows the model to pool information beyond the
triple level. There are a variety of other embedding mod-
els, including, e.g., RESCAL (Nickel, Tresp, and Kriegel
2011), LFM (Jenatton et al. 2012), SME (Bordes et al. 2014),
PTransE (Lin, Liu, and Sun 2015), CVSM (Neelakantan,
Roth, and McCallum 2015), and a series of models based
on graph embedding(Cai, Zheng, and Chang 2017). Also re-
lated to this work are some (non-embedding) models for KB
completion that exploit graph neighbourhood information.
They include, e.g., (Feng et al. ) and (Nguyen et al. 2016)
and (Niepert 2016). Except for the Gaifman model (Niepert
2016), most of these models significantly underperform the
current art.

LENA
As noted in the previous section, in most KB embedding
models, particularly the current state of the art, the “atomic”
loss function is defined at the triple level. That is, the loss
of a triple (h, r, t), factual or not, depends only on (the em-
beddings of) the entities (h and r) and relation r involved
in the triple. In other words, these models assume that the
embeddings of h, r and t contain sufficient information as
to whether (h, r, t) is a factual triple. Translated to a proba-
bilistic language, such an assumption essentially asserts that
conditioned on the embeddings of (h, r, t) in the KB, whether
a triple (h, r, t) could be factual is independent of the KB
(graph) structure.

We note that such an assumption only works well when the
learned embeddings for h, r and t capture sufficient global in-
formation contained in the KB that is relevant for predicting
whether the candidate triple (h, r, t) is factual. Although the
successes of the existing models seem to have suggested that
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a good amount of structural information has been extracted in
the embeddings, there is no convincing reason to believe that
the embeddings of some arbitrary h, r and t are indeed suffi-
cient statistics for the factual existence of the triple (h, r, t).
In particular, the heterogeneity of the KB usually would im-
ply that the information captured by the embedding of an
entity or relation can vary significantly across the KB.

This motivates us to develop an alternative modelling strat-
egy in which the “atomic” unit of modelling expands beyond
a single edge. More specifically, our fundamental hypothesis
is that whether some triple (h, r, t) is factual not only de-
pends on the embeddings of h, r and t, but also depends on
the embeddings of neighbouring edges (i.e., the adjacent en-
tities and relations) in the KB. The model we propose in this
paper is termed “locality-expanded neural embedding with
attention”, or LENA, since the “locality” of modelling is ex-
panded from the edge level to a larger graph neighbourhood
and an attention mechanism (Bahdanau, Cho, and Bengio
2015) is also used to (soft) select the relevant information
contained in the neighbourhood. We now present LENA.

Setup
We denote by R the set of all relations and by N the set
of all entities. For reasons that will be come clear later, for
each relation r ∈ R, we introduce its reciprocal relation
r−. More precisely, whenever there is a triple (h, r, t), the
triple can also be written as (t, r−, h). For example, (Paris,
isCapitalOf, France) can be written alternatively as (France,
hasCapitalCity, Paris); then isCapitalOf and hasCapitalCIty
are a pair of reciprocal relations.

We expand the set R of relations to the set R̃, which
includes the reciprocal relations. That is, R̃ := R ∪ {r− :
r ∈ R}. For each triple (h, r, t) in the KB, we also include its
reciprocal triple (t, r−, h) in G. Then when G is interpreted
as a edge-labelled directed graph, every triple (h, r, t) in the
KB is represented by two edges: one as an edge with label
r pointing from vertex h to vertex t, the other as an edge
with label r− pointing from t to h. Then the graph G contains
twice as many edges as the number of the triples in the KB.
For any given edge e ∈ G , we may use h(e) and t(e) to
denote its head and tail entities and use r(e) to denote its
relation.

Probabilistic Modelling
At the highest level, LENA adopts the probabilistic mod-
elling methodology. For any given entity h ∈ N and relation
r ∈ R̃, we aim to model the probability that an arbitrary
entity t forms a factual triple (h, r, t) with h and r. This prob-
ability, denoted by p(t|h, r), is naturally assumed to take the
common soft-max form:

p(t|h, r) =
exp(s(h, r, t))∑

t′∈N
exp(s(h, r, t′))

. (1)

In this model, s(·, ·, ·) is a scoring function on N × R̃ ×
N , which we will define momentarily. We note that in this
formulation, it may appear that we are only concerned with
the “tail-prediction” problem (h, r, ?). But noting we have

included reciprocal triples and reciprocal relations, any “head-
prediction” problem (?, r, t) can be converted to the tail-
prediction problem (t, r−, ?). Thus this formulation entails
no loss of generality.

Embedding Entities and Relations
We embed entities and relations both as vectors in Rk. More
specifically, we use a k × |N | matrix DE and a k × |R̃|
matrix DR to represent an entity and a relation respectively:
taking an entity x ∈ N as a one-hot vector in R|N | and a
relation r ∈ R̃ as a one-hot vector in R|R̃|, their respective
embedding vectors x and r can be expressed as

x := DEx (2)
r := DRr (3)

Note that we used bold font letters to denote the embedding
vector of the corresponding entity or relation, and in the rest
of the paper, we will continue with this notational convention.
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Figure 2: Example of neighbourhood graphs G(h, r, t) (the
subgraphs in the dashed boxes) of triple (h, r, t). Triples in
G are represented by a solid edge, and triples (e.g., candidate
triples) not in G are represented by a dashed edge.

Score Function
Let CE and CR be two k × k matrices and let bE and bR be
two vectors in Rk. For an arbitrary triple (h, r, t), the score
function s(h, r, t) is parametrized by (CE, CR, bE, bR) and
is defined by

s(h, r, t) := 〈vE(h, r, t) + r + bE, CEt〉
+ 〈vR(h, r, t) + h + bR, CRt〉,

(4)

where vE(h, r, t) and vR(h, r, t) are vectors in Rk and are to
be calculated from the neighbourhood of (h, r, t) in graph G.

We note that the introduction of terms vE(h, r, t) and
vR(h, r, t) to the score function is a leap of modelling
methodology in this work. As we will give the construc-
tion of vE(h, r, t) and vR(h, r, t) momentarily, it is precisely
due to these terms that the locality is extended beyond the
edge level.

As it will become evident, including vE(h, r, t) and
vR(h, r, t) in the score function essentially discards the con-
ventional assumption that the factual existence of a triple
(h, r, t) depends only on the embeddings of h, r and t.
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Extracting Neighbourhood Information
We now proceed to define vE and vR above, which are de-
signed to transport information from a larger graph neigh-
bourhood.

Neighbourhood For any given triple (h, r, t), we define
G(h, r, t) as

G(h, r, t) := {e ∈ G : t(e) = h, e 6= (t, r−, h)}.

That is, G(h, r, t) is the subgraph of G containing precisely
all edges pointing to entity h except the reciprocal edge of
(h, r, t). We will refer to G(h, r, t) as the neighbourhood
graph of triple (h, r, t). Figure 2 shows two examples of
neighbourhood graphs. In the left figure of Figure 2, the
triple (h, r, t) is not originally in the KB. In this case, its re-
ciprocal triple (t, r−, h) is not created in G, so the neighbour-
hood graph of (h, r, t) contains the edges (a, r1, h), (b, r2, h),
(c, r3, h) and (d, r4, h). In the right figure of Figure 2, the
triple (h, r, t) is in the KB and its reciprocal triple (t, r−, h)
is also included in G. However edge (t, r−, h) is not consid-
ered in the neighbourhood graph of (h, r, t), since (t, r−, h)
is introduced artificially. As such, the neighbourhood graph
of (h, r, t) is the same as that in the left figure.

We proceed to explain how information can be extracted
from the neighbourhood G(h, r, t). Although it is possible to
extract information from a larger neighbourhood, for train-
ing complexity and model capacity considerations, further
expansion of locality, paying high price, is expected to result
in insignificant return or even overfitting.

To extract information from neighbourhood G(h, r, t),
our approach is, to a good extent, motivated by a recent
success in sequence modelling exploiting convolution and
attention(Kalchbrenner, Grefenstette, and Blunsom 2014;
Vaswani et al. 2017).

To that end, let L be a prescribed positve integer. For any
triple (h, r, t), let HL(h, r, t) denote the set of all subsets
of L edges in the neighbourhood graph G(h, r, t). Each of
such subset is referred to as a window of G(h, r, t), since it
resembles the notion of window in processing sequence data.
The value L is then referred to as the window size.

Using these terminologies, the extracted information can
be regarded as being generated in two-step: first, attention
mechanisms are used to soft-select the relevant information
within each window, and then a pooling operation is applied
across the information generated from a set of windows. We
now describe the detail of this process.

Windowed Attentions Let Γ ∈ HL(h, r, t) be an arbitrary
window of G(h, r, t) containing L edges. We will use h(l; Γ)
to denote the head entity of the l-th edge in Γ, and likewise
use r(l; Γ) to denote the relation label on the edge.

Let αE
Γ := [αE

Γ(0), αE
Γ(1), . . . , αE

Γ(L)]T be a vector in

RL+1 in which each element αE
Γ(l) ≥ 0 and

L∑
l=0

αE
Γ(l) = 1.

That is, αE
Γ is a probability vector. Similarly, let αR

Γ :=
[αR

Γ (0), αR
Γ (1), . . . , αR

Γ (L)]T be a probability vector in
RL+1. The vectors αE

Γ and αR
Γ are to serve as two sets of

attention weights, and their components are defined as fol-
low.

αE
Γ(l) :=

exp〈γE
r ,h(l; Γ)〉∑L

j=0 exp〈γE
r ,h(j; Γ)〉

αR
Γ (l) :=

exp〈γR
r , r(l; Γ)〉∑L

j=0 exp〈γR
r , r(j; Γ)〉

, (5)

where γE
r and γR

r are parameter vectors in Rk. We note that
both attention parameters γE

r and γR
r are made dependent

of the relation r in the triple (h, r, t) (rather than having
the attention parameter γE depending on h). This break of
symmetry is due to our belief that, it is the relation r rather
than entity h that governs the soft-selection of both entities
and relations in the neighbourhood G(h, r, t).

Using these attention weights, the window Γ generates the
vectors vE(Γ) and vR(Γ) in Rk by

vE(Γ) := αE
Γ(0)h +

L∑
l=1

αE
Γ(l)h(l; Γ)

vR(Γ) := αR
Γ (0)r +

L∑
l=1

αR
Γ (l)r(l; Γ). (6)

That is, vE(Γ) is the soft-selected information from em-
beddings of h and the entities in Γ, and vR(Γ) is the soft-
selected information from embeddings of r and the relations
in Γ. We note that comparing with direct summation or non-
parametrized weight summation, such attentive combination
or soft-selection reduces the possibility of introducing ir-
relevant information, i.e., noise, for predicting the factual
existence of (h, r, t).

Cross-Window Pooling The empirical success of CNN
has suggested that weighted sum over a sliding window
combined with pooling over the windows is a powerful
means of extracting features. This motivates us to generate
vE(h, r, t) and vR(h, r, t) by pooling across the outputs from
the windows. Ideally we wish to apply a pooling operation
on vE(Γ)’s and vR(Γ)’s across all windows of G(h, r, t). But
this entails combinatorial complexity when entity h is con-
nected to a large number of other entities. Additionally such
a strategy will also result in the number of windows varying
significantly with the size of G(h, r, t), providing difficulty
in parallel training of mini-batches.

For this reason, we turn to a strategy which pools across
a fixed number of windows. Let H be a prescribed positive
integer. Let H̃L(h, r, t) be a random subset of HL(h, r, t)
containing precisely H windows. Then we define vE(h, r, t)
and vR(h, r, t) as

vE(h, r, t) :=max pooling
{
vE(Γ) : Γ ∈ H̃L(h, r, t)

}
;

vR(h, r, t) := max pooling
{
vR(Γ) : Γ ∈ H̃L(h, r, t)

}
. (7)

At this end, the LENA model, namely, the distribution
p(t|h, r), is completely defined via Equations (1)-(7).
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Loss Function and Training In the above defined LENA
model, the conditional distribution p(t|h, r) for an arbitrary
triple (h, r, t) is parametrized by DE, DR, CE, CR, bE, bR,
{γE
r : r ∈ R̃}, and {γR

r : r ∈ R̃}. We denote these parame-
ters collectively by Θ. The number H of windows sampled
in a neighbourhood graph and the window size L are hyper-
parameters of the model.

Given the model p(t|h, r), it is well-known that the learn-
ing of parameter Θ under the maximum-likelihood princi-
ple reduces to minimizing the cross entropy between the
observed empirical distribution and the model predictive dis-
tribution. More precisely, for any given pair (h, r) ∈ N × R̃,
let T (h, r) := {t ∈ N : (h, r, t) ∈ G}. That is, T (h, r) is
the set of all entities which have been observed as the tail
entity in a triple (h, r, t) in G. Let K := {(h, r) ∈ N × R̃ :
(h, r, t) ∈ G for some t ∈ N}.

Under the assumption that for every (h, r) ∈ K, the set
T (h, r) is obtained by i.i.d. sampling of the model distribu-
tion p(t|h, r). The maximum-likelihood estimate Θ∗ of the
LENA model reduce to the following cross-entropy mini-
mizer: Θ∗ := arg min

Θ

∑
(h,r)∈K

∑
t∈T (h,r)

(− log p(t|h, r)) .

This loss function is however expensive to optimize in
practice. This is due to the large number of entities that results
in high complexity in computing the soft-max function and
updating its related parameters. Motivated by the approach of
(Guillaumin et al. ) and (Shi and Weninger 2017), we restrict
the support of the distribution to a random subsetNδ(h, r) of
N , where δ is a prescribed number in (0, 1), which we refer
to as the “retention rate”.

The construction of Nδ(h, r) is as follows. Draw at uni-
formly random δ fraction of the entities in N , and denote
the set byAδ(h, r). LetNδ(h, r) := Aδ(h, r)∪T (h, r). We
then restrict the support of distribution p(·|h, r) to Nδ(h, r),
by modifying N in Equation (1) to Nδ(h, r).

Finally, following (Guillaumin et al. ) and (Shi and
Weninger 2017), we modify the optimization problem to:

Θ∗ :=arg min
Θ

∑
(h,r)∈K

∑
t∈T (h,r)

(
− 1

|T (h, r)|
log p(t|h, r)

)
.

(8)
In LENA, we optimize Equation (8) using mini-batched

SGD, where in each epoch, the setNδ(h, r) for each (h, r) is
drawn afresh so that the union of different draws of Nδ(h, r)
covers T (h, r).

Experiments
Datasets and Setups
FB15K, WN18, FB15K-237 and WN18-RR are the most
commonly used dataset for KB link prediction tasks. We
conduct empirical studies on these four datasets to evaluate
our model for link prediction.

All four datasets represent multi-relational data as triples.
FB15K is a subset of FreeBase, a large-scale general-fact KB,
and WN18 is a subset of WordNet, in which entities repre-
sent word senses and relations describe lexical relationships
between two word senses. It has been noted (Dettmers et al.
2018; Kadlec, Bajgar, and Kleindienst 2017) that for FB15K

Table 1: The statistics of datasets used in this study.
Datasets entities relations triples(train/test/valid)
FB15K 14,951 1,345 483,142 / 59,071 / 50,000
WN18 40,943 18 141,442 / 5,000 / 5,000

FB15K-237 14,541 237 272,115 / 20,466 / 17,535
WN18-RR 40,943 11 86,835 / 3,134 / 3,034

Table 2: The hyper-parameters of LENA.
FB15K FB15K-237 WN18 WN18-RR

L 3 3 5 3
H 90 90 90 60

and WN18 dataset, many testing triples are reciprocal to
triples in the training set. So FB15K-237 and WN18-RR are
proposed by removing those reciprocal triples from FB15K
and WN18. The statistics of the datasets are listed as in Ta-
ble 1.

For each triple in the training set (resp. testing set), we
produce its reciprocal triple and add it to the training set (resp.
testing set). As such the link prediction task is formulated as,
for each triple (h, r, t) in the testing set, answer the question
(h, r, ?) after the model is trained.

For LENA, the values chosen for retention rate δ are
{0.1, 0.25, 0.5}. Optimizer Adam (Kingma and Ba 2014)
with initial learning rate 0.01 and mini-batch size 200 is run
for 30 epochs. Embedding dimension is chosen as 200. Other
hyper-parameter settings of LENA are listed in Table 2.

Evaluation Protocol For each model and for each testing
triple (h, r, t), we compute the loss of each triple (h, r, x)
under the model where x ranges over all entities in the KB;
we rank these losses from low to high, and obtain the rank for
x = t as the rank for testing case (h, r, t). For models other
than LENA, similar ranking is performed for head entity h.
For LENA, the loss function is taken as − log p(x|h, r). For
other models, their respective loss functions are used.

Evaluation Metrics We use the standard metrics Mean
rank (MR) (Bordes et al. 2013), top-10 hit (HIT@10, or sim-
ply HIT) (Bordes et al. 2013), reciprocal rank (MRR) (Yang
et al. 2014) and their corresponding filtered version metrics,
FMR, FHIT and FMRR, to evaluate the model performances.

Specifically, MR refers to the average rank of all testing
cases, HIT@10 is defined as the percentage of the testing
triples that have rank value no greater than 10 and this metric
is simply referred as HIT in this paper, and MRR is the
average of the multiplicative inverse of the rank value for all
testing triples.

The filtered version of three metrics is also considered.
In the filtered version, ranking for a testing triple (h, r, t)
is carried out by excluding all entities x that form a triple
(h, r, x) in the training set, validation set or testing set (except
x = t). The filtered MR, HIT@10 and MRR are referred to
as F-MR, or F-HIT and F-MR respectively.

Experimental Results and Discussion
Comparison across Models We compare LENA with a
variety of models as shown in Table 3. We reimplement
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Table 3: Link Prediction Performance. Superscripts point to the source of reported results.
Models FB15K-237 WN18-RR

MR FMR MRR FMRR HIT FHIT MR FMR MRR FMRR HIT FHIT
TransE 367 194 12.1 20.8 28.4 42.0 3542 3529 10.8 12.4 32.9 35.3
TransH 357 186 12.5 21.5 29.3 43.3 3894 3881 11.0 12.7 33.2 35.2

DistMult 453 255/254∗ 14.0 22.7/24.1∗ 27.6 40.7/41.9∗ 7753 7643/5110∗ 28.1 39.1/43.0∗ 40.4 41.9/49.0∗
ComplEx 456 245/339∗ 12.8 22.5/24.7∗ 26.4 41.2/42.8∗ 8303 8299/5261∗ 28.1 39.0/44.0∗ 40.1 41.3/51.0∗
Analogy 468 274 14.3 23.3 27.4 40.2 8221 8075 27.6 38.9 39.5 41.0

ProjE 360 193 16.0 29.8 29.3 47.7 3732 3718 27.8 38.2 46.9 50.0
ConvE 483 269/246∗ 15.3 31.1/31.6∗ 28.4 48.1/49.1∗ 4810 4795/5277∗ 31.1 42.5/46.0∗ 47.1 49.8/48.0∗

R-GCN+ - - 15.6? 24.9? - 41.7? - - - - - -
LENAδ=0.1 328 174 17.5 31.0 32.5 49.9 3028 3014 28.7 35.7 48.6 51.1
LENAδ=0.25 345 170 16.8 31.8 31.6 50.4 3276 3262 30.2 41.5 48.3 51.5
LENAδ=0.5 364 175 16.3 32.0 30.8 50.4 3300 3285 28.3 42.5 48.5 51.4

Models FB15K WN18
MR FMR MRR FMRR HIT FHIT MR FMR MRR FMRR HIT FHIT

TransE 194 54 16.6 31.6 48.4 73.9 320 307 28.7 39.3 77.5 92.3
TransH 193 54 16.7 31.9 48.5 74.0 327 314 29.0 39.4 77.8 92.6

DistMult 282 113/97∗ 24.7/24.2♦ 70.8/65.4∗ 48.9 83.0/82.4∗ 654 642/902∗ 52.7/53.2♦ 73.9/82.2∗ 77.6 93.6/93.6∗

ComplEx 278 119 25.4/24.2♦ 71.6/69.2∗ 49.9 83.5/84.0∗ 737 735 64.5/58.7♦ 94.2/94.1∗ 82.2 94.5/94.7∗
Analogy 273 114 25.5/25.3+ 72.3/72.5∗ 50.1 83.9/85.4∗ 725 717 65.6/65.7+ 94.2/94.2∗ 83.3 94.6/94.7∗

ProjE 164 53 29.0 62.0 53.8 80.0 281 266 58.1 82.6 81.5 95.2
ConvE 189 48/64∗ 27.3 69.0/74.5∗ 52.4 85.4/87.3∗ 434 417/504∗ 53.3 94.4/94.2∗ 79.6 95.5/95.5∗

Gaifman - 754 - - - 84.24 - 3524 - - - 93.94
R-GCN+ - - 26.2? 69.6? - 84.2? - - 56.1? 81.9? - 96.4?

LENAδ=0.1 153 50 30.7 59.5 55.9 79.6 254 242 66.4 89.8 84.2 95.6
LENAδ=0.25 154 42 29.7 63.7 54.7 81.9 276 261 65.1 92.7 82.4 95.6
LENAδ=0.5 161 39 28.6 65.8 53.4 83.1 312 296 62.2 93.8 81.4 95.5

TransE and TransH model and use the published code of
ProjE model in our experiments.1 For the other compared
models, as the performances are not reported on all datasets,
we used published code of these models in our experiments
in their original parameter settings. For Gaifman and RGCN,
we just directly include the reported performance from the
original paper.

In Table 3, the values with superscripts are taken from the
literature. Specifically, “∗”denotes (Dettmers et al. 2018),
“4” denotes (Niepert 2016), “?” denotes (Schlichtkrull et
al. 2017), “+” denotes (Liu, Wu, and Yang 2017), and “♦”
denotes (Trouillon et al. 2016).

In Table 3, the values without any notation is from our
reproduction, the values printed with a single underline are
the current “state of the art”. The values printed in bold font
are results of LENA outperforming this “state of the art”.
Among them, the top performances are printed in bold font
with a double underlines. From the table, it is clear that LENA
has the overall best performance. More specifically, on all
datasets, LENA (with δ = 0.1, 0.25) outperforms any single
model in most metrics. For example, on FB15K-237, LENA
(δ = 0.25) beats all compared models in all six metrics. On
WN18-RR, LENA (δ = 0.25) beats all compared models
in five out of six metrics. The only metric on which LENA
has not achieved the highest is FMRR. We note however that
ConvE has very imbalanced performance: under FMR and
FHIT, it underperforms LENA.

1An author of ProjE has noted the original source code acciden-
tally uses testing set in training. We fixed this in our experiments.
This leads to degraded performance of ProjE, compared with that
in the original paper. For the reimplemented TransE and TransH,
we achieve improved performance over the original reported results.
Our code is at https://github.com/fskong/LENA.

The performance advantage of LENA on FB15K and
WN18 is smaller than that on FB15K-237 and WN18-RR.
This is because the testing set of FB15K and WN18 contains
a large of fraction of reciprocal triples in the training set. This
fact, also noted in (Kadlec, Bajgar, and Kleindienst 2017),
offers optimistic artifacts for all models.

It is worth noting that the superior performance of LENA
does not come free of cost. Overall the training of LENA
takes longer time. For example, when training ProjE and
LENA on the same computer, we observe that it takes ProjE
641 seconds to run one epoch, whereas it takes LENA 1524
seconds. For the performance advantage of LENA, we con-
sider this additional complexity acceptable.

Behaviour of Attention We now examine the working of
the attention mechanism that we build in LENA. For this pur-
pose, we compare the prediction performance for each testing
triple between LENA and ProjE. The reason that ProjE is
chosen for comparison is that when the attention mechanism
is disabled, LENA reduces to ProjE2. Thus such a compar-
ison allows us to identify how the attention mechanism in
LENA functions. To that end, for each testing triple (h, r, t),
we define its “rank promotion by LENA” as

rp(h, r, t) := rankProjE(h, r, t)− rankLENA(h, r, t),

where rankProjE(h, r, t) and rankLENA(h, r, t) are the rank
values of (h, r, t) given by ProjE and LENA, respectively.

2In this experiment, instead of using the original ProjE, we in
fact use a version of LENA that reduces to ProjE. More precisely,
we fix αE(0) and αR(0) to 1, and all other αE(l)’s and αE(l)’s to
0. This comparison approach avoids the possible artifacts resulting
from the implementation difference between LENA and ProjE.
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Figure 3: αE and αR vs the degree of entities.

That is, rp(h, r, t) measures by how many positions LENA
ranks the testing triple (h, r, t) ahead of ProjE.

For each entity e, let rp(e) be the average of rp(e, r, t) over
all testing triples having e as the head entity. Also let αE(e)
and αR(e) be respectively the average of αE(0) and the aver-
age of αR(0) obtained in LENA over all testing triples having
e as the head entity. Note that a higher αE(e) value indicates
that on average predicting triples with head entity e uses less
entity information from the neighbourhood graph. Likewise,
the corresponding statement can be made for αR(e).

It is possible to obtain the values of rp(e), αE(e), and
αR(e) for each entity e that has appeared as the head entity
in a testing triple. We can sort these entities according to their
degrees in G and identify each entity e with its sorted order.
Plotting rp(e), αE(e), and αR(e) against the entity order
then allows us to study the behaviour of attention in relation
to the entity degrees. Figure 3 is the result of such a study
using the WN18RR dataset as an example. In the figure, we
have applied a running-window average on the curves with
window size 200 to smooth out noisy fluctuations.

On the line between the two plots in Figure 3, the location
marked with value d indicates the location of first window
containing an entity having degree d.

In the top figure in Figure 3, the average rank promotion
curve is mostly above zero, and often takes high values (a
few hundred to a thousand). This correlates well with the
overall superior performance of LENA with respect to ProjE.
The bottom figure in Figure 3 explains where such rank ad-
vantages come from.

For testing triples with low-degree head entities, namely
having degree less than 3, the rank promotion is primarily
due to the relations in the neighbourhood graph (noting that
the αR curve is lower). This can be explained by the fact that
for those head entities, there are few entities in the neighbour-

hood graph, therefore the probability that the neighbourhood
contains helpful entities is very low. However, the probability
that the neighbourhood graph contains useful relations can
be significantly higher, since WN18RR dataset contains over
40,000 entities but only 18 relations. This significantly higher
probability makes the relation information in the neighbour-
hood graph play a dominant role in rank promotion.

In the regime where the head entity in the testing triples
have degree between 3 and 5, the contribution of the entities
in the neighbourhood graph catches up with that of the rela-
tions and the αE curve starts to level and cross the αR curve.
This can be reasoned by the increased number of entities in
the neighbourhood graph and hence increased probability
that helpful entities reside therein.

As the degree of the head entities keeps increasing from 5,
we observe that the neighbouring entities play increasingly
stronger roles than the neighbouring relations, and the two
curves stay apart. In this regime we also observe that at high
degrees, around 7 and above, both curves ramp up, indicating
that the contributions from both neighbouring entities and
neighbouring relations decay. We speculate that this is due to
the following reason. When neighbourhood graph contains
more than 7 entities, the number of irrelevant entities and
relations it contains also increases and starts to interfere.
This challenges LENA’s attention mechanism in detecting
signal from noise. When this detection capability decays, the
attention mechanism will put more emphasis on the head
entity and the relation in the testing triple, relying less on
the neighbourhood graph. In degree range, one may also
observe that although attention plays weaker roles, the rank
promotion is in fact quite high. When carefully looking into
the experimental results, we observe that for the test triples
in this range, ProjE tends to give poorer rank values (data not
shown), and it appears that even weak assistance from the
neighbours drastically improves them.

Conclusion
This paper demonstrates that in KB embedding models, the
embeddings of a triple (h, r, t) may be insufficient for pre-
dicting its factual existence. Extracting and combining in-
formation from larger graph neighbourhoods can therefore
improve link-prediction performance. We show that atten-
tion mechanisms are an effective means of achieving such
information extraction and combining. Built on the attention
mechanisms, our new model, LENA, has broken a number
of performance records, over a range of datasets.
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