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Abstract
Many modern machine learning approaches require vast
amounts of training data to learn new concepts; conversely,
human learning often requires few examples—sometimes
only one—from which the learner can abstract structural con-
cepts. We present a novel approach to introducing new spa-
tial structures to an AI agent, combining deep learning over
qualitative spatial relations with various heuristic search al-
gorithms. The agent extracts spatial relations from a sparse
set of noisy examples of block-based structures, and trains
convolutional and sequential models of those relation sets.
To create novel examples of similar structures, the agent be-
gins placing blocks on a virtual table, uses a CNN to pre-
dict the most similar complete example structure after each
placement, an LSTM to predict the most likely set of remain-
ing moves needed to complete it, and recommends one using
heuristic search. We verify that the agent learned the concept
by observing its virtual block-building activities, wherein it
ranks each potential subsequent action toward building its
learned concept. We empirically assess this approach with
human participants’ ratings of the block structures. Initial re-
sults and qualitative evaluations of structures generated by the
trained agent show where it has generalized concepts from the
training data, which heuristics perform best within the search
space, and how we might improve learning and execution.

Introduction
A distinguishing factor of general human intelligence is the
capacity to learn new concepts from abstractions and few
examples, either by composing a new concept from prim-
itives, or relating it to an existing concept, its constituent
primitives, and the constraints involved (Gergely, Bekker-
ing, and Király 2002). Recent research in artificial intelli-
gence has pursued “one-shot learning,” but the prevailing
machine learning paradigm is to train a model over a num-
ber of samples and allow the AI to infer generalizations and
solutions from the model. This approach is often very suc-
cessful, but often requires large amounts of data and fails to
transfer task knowledge between concepts or domains.

For a computational learner, a complex building action
might be composed of moving objects into a specific con-
figuration. The class move is taken as primitive, being a su-
perclass of translate and rotate, the two types of motions
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that any rigid body can undertake in 3D space. Thus, move,
translate, and rotate can be composed into more complex
actions, which define a compostional higher-level concept,
such as building a structure, which can then be labeled (Lan-
gley and Choi 2006; Laird 2012; Ménager 2016).

However, multiple paths to the desired goal often exist.
Structural components may be interchangeable and the order
in which relations between component parts can be instanti-
ated is often non-deterministic, especially in the early steps,
simply due to there being many ways of solving a given
problem, and many ways to generalize from an example.
Computational approaches may handle this class of problem
either heuristically (cf. classic A* pathfinding (Hart, Nils-
son, and Raphael 1968)) or through reinforcement learn-
ing (Asada, Uchibe, and Hosoda 1999; Smart and Kael-
bling 2002; Williams 1992) and policy gradients to shrink
the search space (Gullapalli 1990; Peters and Schaal 2008).

Here, we define a means to use deep learning in a larger
learning and inference framework over few samples, in a
search space where every combination of configurations
may be intractable. Three-dimensional environments pro-
vide a setting to examine these questions in real time, as they
can easily supply both information about relations between
objects and naturalistic simulated data. Fine-grained 3D co-
ordinates can be translated into qualitative relations that al-
low inference over smaller datasets than those required by
continuous value sets. The aforementioned motion primi-
tives can be composed with sets of spatial relations between
object pairs, and machine learning can attempt to abstract
the set of primitives that hold over most observed examples.

Related Work
Learning definitions of primitives has long been an area
of study in machine learning (Quinlan 1990). Confronting
a new class of problem by drawing on similar examples
renders the task decidable, as does the ability to break
down a complex task into simpler ones (Veeraraghavan,
Papanikolopoulos, and Schrater 2007; Dubba et al. 2015;
Wu et al. 2015; Alayrac et al. 2016; Fernando, Shirazi, and
Gould 2017). Recommendation systems at large propose fu-
ture choices based on previous ones, which can be consid-
ered special cases of “moves” from one situation to another
(Smyth 2007). Often an example must be adapted to a new
situation of identifiable but low similarity, and this knowl-
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edge adaptation has also made use of recent advances in ma-
chine learning (Craw, Wiratunga, and Rowe 2006).

There has also been much work in extracting primitives
and spatial relations from language (e.g., Kordjamshidi et
al. 2011) and images (e.g., Muggleton 2017; Binong and
Hazarika 2018; Liang et al. 2018) and in performing in-
ference from this extracted information (e.g., Barbu et al.
2012; Das et al. 2017). An agent must be able to unify var-
ious ways of describing or depicting things, and then as-
sign a label to those novel definitions (Hermann et al. 2017;
Narayan-Chen et al. 2017; Alomari et al. 2017b). Given a
label and known examples, an open question in cognitive
systems research concerns the ability of an agent to gener-
ate through analogy novel examples of the objects or actions
falling under said label, within variation allowed by an open
world (Friedman et al. 2017a; Alomari et al. 2017a).

Data Gathering
To examine this, we used data from a study where users col-
laborated with a virtual avatar to build 3-step, 6-block stair-
cases out of uniquely-colored virtual blocks on a table in a
virtual world (Krishnaswamy and Pustejovsky 2018).1

Users interacted with an avatar implemented in the
VoxSim experimental environment (Krishnaswamy and
Pustejovsky 2016a; 2016b) and VoxML platform (Puste-
jovsky and Krishnaswamy 2016). Using natural language
and gestures recognized from depth data by deep convolu-
tional neural networks (DCNNs) in real time, users directed
the avatar until they reached a structure that satisfied their
definition of a 3-step staircase. Placing even a simple blocks
world scenario in a 3D environment opens the search space
to the all the complex variation in the environment, meaning
that an enormous number of sets of relative offsets and rota-
tions may define structures of the same label. Hence building
fairly simple structures can have exponential search space.

The data consists of log files recording each session
of user-avatar interaction which, when rerun through the
VoxSim system, recreates the structure built by that user
in that session. We recreated 17 individual staircases which
range from highly canonical to highly variant in terms of
spaces between blocks or rotated blocks (Fig. 1). In all struc-
tures, the particular placement of individual blocks varied,
as a block of any color could be placed anywhere in the
staircase. We then extracted the qualitative relations that ex-
isted between all blocks on the table as defined in a sub-
set of the Region Connection Calculus (RCC8) (Randell et
al. 1992) and Ternary Point Configuration Calculus (TPCC)
(Moratz, Nebel, and Freksa 2002) included in QSRLib (Gat-
soulis et al. 2016). Where QSRLib calculi only cover 2D re-
lations, VoxSim uses extensions such as RCC-3D (Albath
et al. 2010) or computes axial overlap with the Separating
Hyperplane Theorem (Schneider 2014). The set of relations
defining each structure is stored as an entry in a database (ex-
ample shown in Table 1). Over the dataset, structures were
defined by approximately 20 block-block relations.

1https://github.com/VoxML/public-
data/tree/master/AvatarInteraction/PilotStudy-2018Feb

Figure 1: Example user-constructed staircases

right block7 block1 right,touching block6 block7
touching block3 block1 right block5 block1
left block1 block5 under,touching,support block7 block5
left block1 block7 under,touching,support block1 block3
under,touching,support block3 block4 touching block5 block7
touching block6 block5 right block5 block3
under block1 block4 block7 <359.883; 1.222356; 359.0561>
touching block4 block3 block1 <0; 0; 0>
left block3 block5 block6 <0.1283798; 359.5548; 0.9346825>
left block1 block6 block3 <0; 0; 0>
left,touching block7 block6 block5 <0; 0; -2.970282E-08>
right block6 block1 block4 <0; 0; 0>

Table 1: Example relation set. Blocks are labeled by
VoxSim-internal names. As blocks may have been turned
during construction, we also stored rotations.

The relation vocabulary extracted from the exam-
ples was left, right, touching, under, and
support.2 These combine under certain conditions, such
as left,touching or under,touching,support.
support encodes only direct support, such that if block
x supports block y and block y supports block z, block x
would not support block z (x would be under z, but not
touching—thus under,touching,support is con-
sidered the inverse of on). left and right are paired such
that left(x, y) ↔ right(y, x), and touching is neces-
sarily a reflexive relation. QSR representations in VoxML
rely on composition and closure to infer new spatial proposi-
tional content, either for planning or querying about actions;
thus if left(block1, block7) exists, right(block7, block1)
must be created axiomatically, and if a move then creates
right(block6, block7), right(block6, block1) must also be
created by transitive closure, as must left(block1, block6).

In all 17 cases, at least one human judged the resulting
structure to be an acceptable staircase. However, the con-
figuration and relative placement of the blocks at large vary
across the dataset and the individual structures themselves
are not all isomorphic to each other, making this both sparse
and noisy data to train on. Can an algorithm, then, infer the
commonalities across this relatively small number of struc-
tures, and reliably reproduce them?

Learning Framework
We adopt deep learning methods to effectively parse the
complexity of a continuous quantitative search space for
goal selection, and the compactness of qualitative spatial
representation to assess potential moves using heuristics.

Using the Keras framework (Chollet 2015) with the Ten-
sorFlow backend (Abadi et al. 2016), we trained models
on the relations extracted from the examples to generate

2These are convenience labels for relations or combinations of
relations denoted otherwise in QSRLib. For example touching is
equivalent to externally connected (EC) in RCC or RCC-3D.
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moves that would create a structure intended to approximate
the training data. Inferences we hoped the learning method
would be able to make include: 1) Individual blocks are in-
terchangeable in the overall structure; 2) Overall orientation
of the structure is arbitrary; 3) Progressively higher stacks of
blocks in one direction are required.

We enforced constraints that each block may only be
moved once and once a block is placed in a relation, that
relation may not be broken.

First move selection. The first move made in the course
of building such a structure may effectively be random, as
blocks are intended to be interchangeable and a variety of
relations might be created between them to form part of the
goal structure. However, in order to sample from the actual
training data (and to avoid artificially introducing inference
number 1 above to the final model), we trained a multi-layer
perceptron (MLP) with 4 hidden dense layers of 64 nodes
and ReLU activation, RMSProp optimization and sigmoid
activation on the output layer that, given a random choice of
two distinct blocks, returns the most likely relation between
them. Input is a pair of indices ranging from 0-5 denoting
the blocks. Output is the index of the relation to be created
between them, out of all relations observed in the training
data (12 total from this dataset). This forms the first move:
a string of the form put(blockX, rel(blockY )) added to the
list of moves to be executed when the algorithm is complete.

Reference example selection. With each successive
move, the system updates the relations in force between all
placed blocks, and must predict an example of a completed
structure it believes the generated moves are approaching.

Since the relations are stored as an unordered list and may
be recreated in effectively any order during the new structure
generation phase, we predict the reference example at each
step using a convolutional neural network (CNN) with 4 1D
convolution layers (64 nodes and ReLU activation on layers
1 and 2, 128 nodes and ReLU activation on layers 3 and 4,
and RMSProp optimization), 1D max pooling after the 2nd
and 4th layers, and a 50% dropout layer before the output
(softmax) layer. CNNs have demonstrated utility in a variety
of image recognition and natural language processing tasks
(cf. Xu et al. 2014; Hu et al. 2014), and as this step of the
learning algorithm is intended to predict a spatial configura-
tion from a sequential representation, a CNN is an apt choice
for this task. Input is a sequence of triples (x,y,r) where x
and y are indices of blocks and r is the index of the relation
between them (e.g., for two adjacent blocks, the input might
look like [(0, 1, 2), (1, 0, 5)] where 2 and 5 are the indices
for left and right, respectively). Output is the index of the
predicted example in the database, which is then retrieved
as a set of similarly formatted block-block-relation triples.
The CNN is unlikely to be a very accurate predictor of final
configuration after the first move(s) but as the search space
shrinks from subsequent moves, it should become more so.

This predicted example serves as the goal state for
the heuristic step. It may change after each move as the
currently-generated configuration more closely resembles

different examples from those chosen previously. At each
step, the example’s relation set is stored to compare to the
next move prediction.

Next move prediction. Having chosen a reference exam-
ple at the current step, we must then predict what next moves
can be made that would bring us closer to that example. For
this step, we use a 3-layer long short-term memory (LSTM)
network with 32 nodes in each layer and RMSProp opti-
mization, with softmax activation over n timesteps, where
n is the longest number of relations stored for any single
example (over this data, n=20). LSTMs have demonstrated
utility in natural language processing and event recognition
tasks due to their ability to capture long distance dependen-
cies in sequences (Hochreiter and Schmidhuber 1997).

We train the LSTM on “windows” of block-block-relation
sets taken from the training data, formatted the same as the
CNN inputs, which range in length from 1 tomax−1 where
max is the length of the relation set for a given example.
Window length increases with the timestep. These relation
sets are indexed and trained relative to the “holdout,” or
complementary relation set, also of length in the range 1
to max − 1 (decreasing as the timestep increases). Since
the relations are stored in an unordered manner, we need to
capture all combinations in a given example, which makes
the LSTM the most time-intensive portion of the model
training, although given the small size of the data (∼2000
configuration-holdout pairs) this is not unreasonable.3

Since not all combinations of blocks and relations occur
in the training data, the input to the LSTM in the predic-
tion step is a heuristically-determined “closest match” to the
configuration resulting from the previous moves. This is the
first of two uses of heuristics to prune the search space. The
LSTM predicts a “holdout” or remaining set of block-block
relations to create to approach the CNN-selected example,
given the current configuration. Heuristics are assessed for
which selects the best moves toward the CNN-chosen goal
state from these presented move options.

Heuristic Estimation and Pruning
With the selection of an example and a predicted set of next
moves, we can focus only on the relations that we wish to
create in the next step, independent of the blocks involved.
First we take the intersection of the relations that occur in
the example and the holdout set (allowing for repetitions,
such that if a relation occurs twice in both the example and
the holdout set, it occurs twice in the intersection). Then, for
each relation in this intersection set that can still be created
in the current configuration (i.e., a block can only have an-
other block placed on it if its top surface is not covered),
we try adding it to the current set of relations and calculat-
ing the heuristic distance between that combination of rela-
tions (with closure) and the relations in the example case. We
examined 5 different heuristics: random chance, two stan-
dard distance metrics, a custom graph-matching algorithm

3Training was conducted without GPUs, and the decrease in
categorical cross-entropy loss appears to taper off after 20 epochs,
or about a minute of training on the hardware used.
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detailed subsequently, and a combined method. All except
random chance use the output of the learning pipeline to de-
fine the search space topology.
1. Chance. As a baseline, we disregarded the neural net-

works’ output and chose the next move at each step
by random chance. A block to place was selected ran-
domly, and then a relation to create was also selected
randomly out of the set of available placements on the
current structure. This allowed us to assess the odds of
the agent approaching a staircase structure by random
guessing.

2. Jaccard distance (JD). Jaccard index (J) (Jaccard 1912)
is a well-known metric to compare sets of tokens. Since
we are interested in the lowest heuristic distance be-
tween two sets, we use the Jaccard distance or 1− J .

3. Levenshtein distance (LD). Since Jaccard distance only
accounts for the presence or absence of a token, and we
want to preserve the full set of relations (i.e., the same
block may have two blocks under it, or to the left of
it), we use the Levenshtein distance (LD) (Levenshtein
1966). Since Levenshtein distance leaves the arbitrary
order of the tokens intact, we sort the list alphabetically
first to fix the same relative order in all cases.

4. Graph matching. Simpler heuristics run a high risk of
choosing an inappropriate relation outright due to low
distance with a final result even though creating some
substructure that uses a different additional relation may
be the best move on the way to the final structure. Graph
matching alleviates this by taking into account common
subgraphs. The graph matching algorithm we use is dis-
cussed in more detail below.

5. LD-pruned graph matching. In principle, since graph
matching allows for a choice out of all possible moves
generated by the LSTM, it may occasionally risk choos-
ing an inappropriate move since the relations may be
drawn from a larger set (i.e., the actual best move cre-
ates an on relation, but the options given may also con-
tain a number of left and right relations, one of which
may be chosen by graph matching alone), we also tried
pruning the set of move options presented to the graph
matcher to ones containing the “best” destination block
for each relation option and then choosing the move
with graph matching.

Using the steps outlined above, moves are generated until
all blocks have been placed, resulting in a sequence like the
following:
put(block6, left(block4)); put(block5, rightdc(block4));
put(block7, on(block4)); put(block1, on(block6));
put(block3, on(block1))

Here, left and right are operationalized as “left and
touching” and “right and touching,” respectively, while
leftdc and rightdc are interpreted as left and right and DC
(“disconnected” in the Region Connection Calculus).

Action Selection with Heuristic Graph-Matching
After the learning pipeline has generated possible actions,
the graph matcher selects one as follows:

1. For each potential action, compute a distinct state graph
of qualitative spatial relations that would hold if the ac-
tion succeeded.

2. Compute the maximal common subgraph (MCS) of
each state graph against a qualitative spatial relation
graph of the agent’s goal (i.e., the structure it intends
to build).

3. Choose the action with the highest-scoring MCS with
the agent’s goal.

We use an implementation written on the SPIRE reasoning
system (Friedman et al. 2017a) to perform these operations.
SPIRE includes a relational knowledge base to store the con-
tents of the agent’s goals and potential actions, and it imple-
ments a structure-mapping algorithm (Forbus et al. 2017)
to compute MCSs over these relational graphs. Structure-
mapping has been used for agent action-selection (Friedman
et al. 2017b) as well as large-scale cognitive modeling (For-
bus et al. 2017) and learning spatial structures and anatom-
ical concepts via generalization and comparative analysis
(McLure, Friedman, and Forbus 2015).

Given two relational graphs—for instance, a possible ac-
tion result (Fig. 2) and the goal configuration (Fig. 3)—the
structure-mapping algorithm first scores local solutions by
the number of consistent relations supported by each node-
to-node (i.e., block-to-block) correspondence across graphs.
It then uses a greedy algorithm over these local solutions to
accrue a global subgraph isomorphism that approximates a
MCS over the two graphs.

kb::block1

kb::block6kb::right

kb::block4kb::right
kb::left

kb::left

kb::left

kb::right

Figure 2: Graph representation of possible action result

kb::block4

kb::block3

kb::left

kb::block1kb::on

kb::block7

kb::left

kb::block6

kb::touching

kb::right

kb::|right,touching|

kb::touching

kb::left
kb::left

kb::under

kb::right

kb::|left,touching|

kb::right

kb::block5kb::touching

kb::on

kb::on

Figure 3: Graph representation of goal configuration

Each SPIRE MCS includes a numerical similarity score
describing the size of the MCS, which we use to approx-
imate graph similarity. Importantly, structure-mapping is
not influenced by symbols or nodes themselves (e.g., block
IDs), so blocks are perfectly interchangeable in this graph-
matching phase. The vocabulary of the graph-matcher is not
specified a priori, so the relational vocabulary can be elabo-
rated with novel relations and the graph-matcher will match
new relations according to its structure-mapping algorithm.
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The graph matcher selects the action with the maximum-
scoring MCS against the goal, biasing it to select actions
that produce more shared qualitative spatial relations with
the goal state, all else being equal. The graph-matcher uses
no predefined operators, axioms, or plans in this action se-
lection phase.

Evaluation and Results
The generated move sequence can then be input into VoxSim
again to command the virtual agent to actually construct the
structure generated from the trained model.

Using the VoxSim system, we generated 50 structures us-
ing this structure learning and generation system—10 struc-
tures using each heuristic method, including random chance
as a baseline—and presented them to 8 annotators for eval-
uation. All annotators are adult English speakers with a col-
lege degree. They were given pictures of each structure and
asked to answer the question: “On a scale of 0-10 (10 being
best), how much does the structure shown resemble a stair-
case?” No extra information was given, specifically in the
hopes that the annotator would answer based on their partic-
ular notion of a canonical or prototypical staircase. The or-
der in which each evaluator viewed the images was random-
ized, in order to lessen the overall possible effect of evaluator
judgments on the early examples affecting their judgments
on the later ones. In Table 2, Chance refers to the baseline,
JD to the Jaccard distance heuristic, LD to the Levenshtein
distance heuristic, SPIRE to the graph matching system, and
Comb. to the combination of LD and SPIRE.

Heuristic Avg. Score (µ) Std. Dev. (σ)
Chance 2.0375 1.0122
JD 4.3375 2.0387
LD 3.7688 2.1028
SPIRE 5.8313 2.7173
Comb. 4.7188 2.4309

Table 2: Evaluator judgments of generated staircase quality
by heuristic algorithm

The average score (µ) is given for all evaluations over
all structures generated using a given heuristic and can be
used to assess the quality of structures generated using that
heuristic (or alternately, the probability of that heuristic gen-
erating quality 3-step staircases when given example struc-
tures and potential moves). The standard deviation (σ) is the
standard deviation of the average scores of each structure
generated using the given heuristic. This can be considered
an overall representation of how certain evaluators were of
the quality of structures generated using that heuristic (lower
σ corresponds to greater overall evaluator agreement).

Using SPIRE for heuristic graph matching generated the
most highly-rated structures on average, followed by the
combined method, Jaccard distance, and Levenshtein dis-
tance. All methods improved significantly on the baseline.

Pruning the presented move options by Levenshtein dis-
tance before applying graph matching performed better than
LD alone but did not approach the performance of graph

Chance:

JD:

LD:

SPIRE:

Comb.:

Figure 4: Median- (L) and highest-scored (R) structure gen-
erated using each heuristic (average evaluator score)

matching alone. This suggests that constraining the search
space too much sometimes unduly throws out the best move
options. Given that Levenshtein distance underperformed
Jaccard distance, more research is needed to see if combin-
ing Jaccard distance with graph matching could improve re-
sults further, or would simply outperform the JD heuristic
while still underperforming pure graph matching.

Figure 5: Average rating vs. rating standard deviation of
each generated structure

Fig. 5 plots σ against µ for each structure, with a cu-
bic best-fit line chosen by least-squares deviances (R2 =
0.7514), and we can see that evaluators tended to agree most
on very well-constructed staircases, and more on obvious
“non-staircases” than on the middle cases. For very low- or
very high-scored examples, σ is much lower—often near
zero—than for mid-scored examples, suggesting stronger
annotator agreement, even with only 8 judges, on “good”
staircases vs. middle cases that displayed some but not all
inferences desired in Learning Framework.
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Discussion
Previously we outlined some inferences we hoped the learn-
ing pipeline would be able to make from the sample data. It
appears in novel generated examples, that individual blocks
are interchangeable, as many examples (both correct and
incorrect) consisted of identical configurations constructed
of differently-colored blocks. The system appeared success-
ful in producing structures of arbitrary orientation, that is,
both left- and right-pointing staircases. left and right were
the only directional relations available in the training data.
Graph matching appeared to be most successful at pruning
the options down to moves that would result in progressively
higher stacks of blocks in a single direction. Sometimes the
system generated a “near-staircase” structure of columns in
a 1-3-2 configuration instead of the desired 1-2-3, and other
times built “staircases” of two levels (1 block high and 2
blocks high, or 2 blocks high and 4 blocks high).

Figure 6: Generated staircases displaying desired inferences

Improving the Model
Even with the highest-performing heuristic, the system
sometimes generates structures that are judged incorrect by
evaluators. Some of these are due to downstream errors from
the CNN’s predicted configuration which, when intersected
with the LSTM’s predicted holdout configuration, does not
produce any possible moves that approach a 3-step staircase,
but the algorithm is required to choose one anyway. Exam-
ples include putting a third block on the center (2-step) col-
umn, or creating a 4-block row on the bottom level where
there should be a maximum of 3 blocks.

Since we do not currently check for this condition, it is
possible that the learning agent is generating moves that it
views as optimal in the short term but prove counterproduc-
tive in the long term. Better long-term moves may reside in
the intersection of lower-ranked CNN and LSTM choices,
and we could improve this by looking in the n-best results
from the neural nets rather than just top-ranked results.

In addition, some of the constraints we impose on the
system are counterproductive in the long term but do not
allow for correction. For instance, once a block has been
placed, there is a hard-coded constraint prohibiting it from
being moved, meaning that any subsequent move must in-
volve placing a new block instead of moving a previously-
placed one to a better position, even when that would more
optimally complete the desired structure. Allowing for back-
tracking and re-planning would lessen these problems.

Future Work
The trained model can be stored in a database for subsequent
retrieval under a label of choice. When the agent is again
asked to “build a staircase,” it can retrieve the model from

the database and, along with graph matching, have a ready
blueprint to build an example of what it understands to be a
staircase based on the ones it has observed.

Given the interactive nature of the task used to gather the
example structures, we envision additions to the interaction
and learning framework that would allow turning a nega-
tive example into a corresponding positive example, which
increases the overall data size and introduces a minimal dis-
tinction between a good example and a bad one. The still-
small sample size facilitates online learning.

Given a generated structure as in the bottom left of Fig. 4,
where if the red block were moved on top of the yellow
block, the overall structure would better satisfy the con-
straints of a staircase, an example correction interaction
might proceed as follows, depending on what input modali-
ties the interaction system handles:

AVATAR: Is this a staircase?
HUMAN: No. [Current configuration stored as negative example.]

Pick up the red block. [HUMAN points at the red block.]
AVATAR: Okay. [AVATAR picks up the red block.]
HUMAN: Put it on the yellow block. [HUMAN points at the

yellow block.]
AVATAR: Okay. [AVATAR puts the red block on the yellow block]
HUMAN: This is a staircase. [New structure stored as positive

example contrasting to previous structure.]

Such a format would allow us to examine how small a
sample set this method requires. A model trained on one ex-
ample would likely replicate that same example. Generaliz-
ing over the desired inferences would require instruction in
the form of a dialogue. Models could be transferred to a new
label and then corrected/updated by instruction.

Our method depends on three components: a convolu-
tional neural net to predict an example target configuration
after each move, a long short-term memory network to pre-
dict the remaining moves needed to get there, and an appro-
priate heuristic function to choose the best moves out of the
options presented that can legally be made in the present
situation. It has the advantage of functioning on a small
sample size and so does not require much in training time
or resources, and appears to be fairly successful in gener-
ating structures that comport with a human’s notion of the
intended label, but also leaves some questions unanswered:

Can this method generalize to other shapes (e.g., a pyra-
mid), or more complex configurations, given the proper rela-
tional primitives? In the sample data, all the user-generated
examples consisted of staircases oriented along the left-right
(X) axis, even though the the concept of a staircase could
also be aligned along the back-to-front (Z) axis. How would
the addition of in front and behind to the vocabulary
expand the search space, and what other methods would be
needed to ensure quality?

Can we use this to generalize further over an introduced
concept, particularly in situations where the domain space
provides room for the search space to expand beyond that
given in the examples (Leake and Schack 2015)? Since, even
in many examples given low scores by the evaluators (e.g.,
Fig. 4, 3rd row left), the system appeared to generate some
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sort of stepped structure, perhaps this concept can success-
fully be generalized, and so if ten blocks were on the table
and the system told to proceed until all blocks were placed,
would it be able to create a 4-step staircase out of ten blocks?

Conclusion
This paper discusses a procedure for observing sparse and
noisy examples of a structure previously unknown to an AI
agent, and using them to generate new examples of struc-
tures that share the same qualities. We leverage the strengths
of deep learning to select examples out of noisy data and use
heuristic functions to prune the resulting search space. Fus-
ing qualitative representations with deep learning requires
significantly less overhead in terms of data and training time
than many traditional machine learning approaches.

Deep learning, of course, is just one method of learning
constraints and there are others, such as inductive logic pro-
gramming, which could be equally effective at managing
the search space and are worth examination in conjunction
with qualitative representations. We have examined different
heuristics in the generation phase and discovered that graph
matching tends to yield the best results according to human
evaluators. That qualitative representation seems to be effec-
tive in this procedural problem-solving task supports other
evidence that qualitative spatial relations are also effective
in recognition or classification tasks, as indicated by Hawes
et al. (2012) and Kunze et al. (2014), among others, which
is critical to completely teaching a new structural concept to
an AI agent.

In human-computer interactions, novel concepts should
be able to be introduced in real time, and we believe the
structure learning method described here can be deployed
in a human-computer interaction to create new positive ex-
amples and correct negative ones, allowing for integration
of online and reinforcement learning. Since humans typi-
cally assess spatial relations qualitatively, not quantitatively
(Davis and Marcus 2016), any AI aspiring to human-like do-
mains should also perform well on qualitative data; this pa-
per provides further empirical evidence in favor of this.
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