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Abstract

We present a SAT-based framework for LTLf (Linear Tem-
poral Logic on Finite Traces) satisfiability checking. We use
propositional SAT-solving techniques to construct a transition
system for the input LTLf formula; satisfiability checking is
then reduced to a path-search problem over this transition
system. Furthermore, we introduce CDLSC (Conflict-Driven
LTLf Satisfiability Checking), a novel algorithm that lever-
ages information produced by propositional SAT solvers from
both satisfiability and unsatisfiability results. Experimental
evaluations show that CDLSC outperforms all other exist-
ing approaches for LTLf satisfiability checking, by demon-
strating an approximate four-fold speed-up compared to the
second-best solver.

Introduction
Linear Temporal Logic over Finite Traces, or LTLf , is a for-
mal language gaining popularity in the AI community for
formalizing and validating system behaviors. While stan-
dard Linear Temporal Logic (LTL) is interpreted on infi-
nite traces (Pnueli 1977), LTLf is interpreted over finite
traces (De Giacomo and Vardi 2013). While LTL is typi-
cally used in formal-verification settings, where we are in-
terested in nonterminating computations, cf. (Vardi 2007),
LTLf is more attractive in AI scenarios focusing on finite
behaviors, such as planning (Bacchus and Kabanza 1998;
De Giacomo and Vardi 1999; Calvanese, De Giacomo, and
Vardi 2002; Patrizi et al. 2011; Camacho et al. 2017), plan
constraints (Bacchus and Kabanza 2000; Gabaldon 2004),
and user preferences (Bienvenu, Fritz, and McIlraith 2006;
2011; Sohrabi, Baier, and McIlraith 2011). Due to the wide
spectrum of applications of LTLf in the AI community (De
Giacomo, Masellis, and Montali 2014), it is worthwhile
to study and develop an efficient framework for solving
LTLf -reasoning problems. Just as propositional satisfiabil-
ity checking is one of the most fundamental propositional
reasoning tasks, LTLf satisfiability checking is a fundamen-
tal task for LTLf reasoning.

Given an LTLf formula, the satisfiability problem asks
whether there is a finite trace that satisfies the formula. A
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“classical” solution to this problem is to reduce it to the
LTL satisfiability problem (De Giacomo and Vardi 2013).
The advantage of this approach is that the LTL satisfia-
bility problem has been studied for at least a decade, and
many mature tools are available, cf. (Rozier and Vardi 2007;
2010). Thus, LTLf satisfiability checking can benefit from
progress in LTL satisfiability checking. There is, however,
an inherent drawback that an extra cost has to be paid when
checking LTL formulas, as the tool searches for a “lasso” (a
lasso consists of a finite path plus a cycle, representing an in-
finite trace), whereas models of LTLf formulas are just finite
traces. Based on this motivation, (Li et al. 2014) presented
a tableau-style algorithm for LTLf satisfiability checking.
They showed that the dedicated tool, Aalta-finite, which con-
ducts an explicit-state search for a satisfying trace, outper-
forms extant tools for LTLf satisfiability checking.

The conclusion of a dedicated solver being superior to
LTLf satisfiability checking from (Li et al. 2014), seems
to be out of date by now because of the recent dramatic
improvement in propositional SAT solving, cf. (Malik and
Zhang 2009). On one hand, SAT-based techniques have led
to a significant improvement on LTL satisfiability check-
ing, outperforming the tableau-based techniques of Aalta-
finite (Li et al. 2014). (Also, the SAT-based tool ltl2sat for
LTLf satisfiability checking outperforms Aalta-finite on par-
ticular benchmarks (Fionda and Greco 2016).) On the other
hand, SAT-based techniques are now dominant in symbolic
model checking (Cavada et al. 2014; Vizel, Weissenbacher,
and Malik 2015). Our preliminary evaluation indicates that
LTLf satisfiability checking via SAT-based model check-
ing (Bradley 2011; Een, Mishchenko, and Brayton 2011) or
via SAT-based LTL satisfiability checking (Li et al. 2015)
both outperform the tableau-based tool Aalta-finite. Thus,
the question raised initially in (Rozier and Vardi 2007) needs
to be re-opened with respect to LTLf satisfiability checking:
is it best to reduce to SAT-based model checking or develop
a dedicated SAT-based tool?

Inspired by (Li et al. 2015), we present an explicit-state
SAT-based framework for LTLf satisfiability. We construct
the LTLf transition system by utilizing SAT solvers to com-
pute the states explicitly. Furthermore, by making use of
both satisfiability and unsatisfiability information from SAT
solvers, we propose a conflict-driven algorithm, CDLSC,
for efficient LTLf satisfiability checking. We show that by
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specializing the transition-system approach of (Li et al.
2015) to LTLf and its finite-trace semantics, we get a frame-
work that is significantly simpler and yields a much more
efficient algorithm CDLSC than the one in (Li et al. 2015).

We conduct a comprehensive comparison among dif-
ferent approaches. Our experimental results show that
the performance of CDLSC dominates all other exist-
ing LTLf -satisfiability-checking algorithms. On average,
CDLSC achieves an approximate four-fold speed-up, com-
pared to the second-best solution (IC3 (Bradley 2011)+K-
LIVE (Claessen and Sörensson 2012)) tested in our experi-
ments. Our results re-affirm the conclusion of (Li et al. 2014)
that the best approach to LTLf satisfiability solving is via a
dedicated tool, based on explicit-state techniques.

LTL over Finite Traces
Given a set P of atomic propositions, an LTLf formula φ
has the form:

φ ::= tt | p | ¬φ | φ ∧ φ | Xφ | φUφ;
where tt is true, ¬ is the negation operator, ∧ is the and
operator, X is the strong Next operator and U is the Until
operator. We also have the duals ff (false) for tt, ∨ for ∧, N
(weak Next) for X and R for U . A literal is an atom p ∈
P or its negation (¬p). Moreover, we use the notation Gφ
(Globally) andFφ (Eventually) to represent ffRφ and ttUφ.
Notably, X is the standard next operator, while N is weak
next; X requires the existence of a successor state, while
N does not. Thus Nφ is always true in the last state of a
finite trace, since no successor exists there. This distinction
is specific to LTLf .

LTLf formulas are interpreted over finite traces (De Gi-
acomo and Vardi 2013). Given an atom set P , we define
Σ = 2P be the family of sets of atoms. Let ξ ∈ Σ+ be a
finite nonempty trace, with ξ = σ0σ1 . . . σn. we use |ξ| =
n + 1 to denote the length of ξ. Moreover, for 0 ≤ i ≤ n,
we denote ξ[i] as the i-th position of ξ, and ξi to represent
σiσi+1 . . . σn, which is the suffix of ξ from position i. We
define the satisfaction relation ξ |= φ as follows:
• ξ |= tt; and ξ |= p, if p ∈ P and p ∈ ξ[0];
• ξ |= ¬φ, if ξ 6|= φ;
• ξ |= φ1 ∧ φ2, if ξ |= φ1 and ξ |= φ2;
• ξ |= Xφ if |ξ| > 1 and ξ1 |= ψ;
• ξ |= (φ1Uφ2), if there exists 0 ≤ i < |ξ| such that ξi |=
φ2 and for every 0 ≤ j < i it holds that ξj |= φ1;

Definition 1 (LTLf Satisfiability Problem). Given an LTLf
formula φ over the alphabet Σ, we say φ is satisfiable iff
there is a finite nonempty trace ξ ∈ Σ+ such that ξ |= φ.
Notations. We use cl(φ) to denote the set of subformulas
of φ. Let A be a set of LTLf formulas, we denote

∧
A to

be the formula
∧
ψ∈A ψ. The two LTLf formulas φ1, φ2

are semantically equivalent, denoted as φ1 ≡ φ2, iff for
every finite trace ξ, ξ |= φ1 iff ξ |= φ2. Obviously, we
have (φ1 ∨ φ2) ≡ ¬(¬φ1 ∧ ¬φ2), Nψ ≡ ¬X¬ψ and
(φ1Rφ2) ≡ ¬(¬φ1U¬φ2).

We say an LTLf formula φ is in Tail Normal Form (TNF)
if φ is in Negated Normal Form (NNF) andN -free. It is triv-
ial to know that every LTLf formula has an equivalent NNF.

Assume φ is in NNF, tnf(φ) is defined as t(φ) ∧ FTail,
where Tail is a new atom to identify the last state of satisfy-
ing traces (Motivated from (De Giacomo and Vardi 2013)),
and t(φ) is an LTLf formula defined recursively as fol-
lows: (1) t(φ) = φ if φ is tt,ff or a literal; (2) t(Xψ) =
¬Tail ∧ X (t(ψ)); (3) t(Nψ) = Tail ∨ X (t(ψ)); (4)
t(φ1 ∧φ2) = t(φ1)∧ t(φ2); (5) t(φ1 ∨φ2) = t(φ1)∨ t(φ2);
(6) t(φ1Uφ2) = (¬Tail ∧ t(φ1))Ut(φ2); (7) t(φ1Rφ2) =
(Tail ∨ t(φ1))Rt(φ2).

Theorem 1. φ is satisfiable iff tnf(φ) is satisfiable.

In the rest of the paper, unless clearly specified, the input
LTLf formula is in TNF.

Approach Overview
There is a Non-deterministic Finite Automaton (NFA) Aφ
that accepts exactly the same language as an LTLf formula
φ (De Giacomo and Vardi 2013). Instead of constructing the
NFA for φ, we generate the corresponding transition sys-
tem (Definition 5), by leveraging SAT solvers. The transi-
tion system represents an intermediate structure of the NFA,
in which every state consists of a set of subformulas of φ.

The classic approach to generate the NFA from an LTLf
formula, i.e., Tableau Construction (Gerth et al. 1995), cre-
ates the set of all one-transition next states of the current
state. Since the number of these states can be extremely
large, we leverage SAT solvers to compute the next states of
the current state iteratively. Although both approaches share
the same worst case (computing all states in the state space),
our new approach is better for on-the-fly checking, as it com-
putes new states only if the satisfiability of the formula can-
not be determined based on existing states.

We show the SAT-based approach via an example. Con-
sider the formula φ = (¬Tail ∧ a)Ub. The initial state
s0 of the transition system is {φ}. To compute the next
states of s0, we translate φ to its equivalent neXt Normal
Form (XNF), e.g., xnf(φ) = (b ∨ ((¬Tail ∧ a) ∧ Xφ)),
see Definition 4. If we replace Xφ in xnf(φ) with a new
propositions p1, the new formula, denoted xnf(φ)p, is a
pure Boolean formula. As a result, a SAT solver can com-
pute an assignment for the formula xnf(φ)p. Assume the
assignment is {a,¬b,¬Tail, p1}, then we can induce that
(a∧¬b∧¬Tail∧Xφ)⇒ φ is true, which indicates {φ} = s0
is a one-transition next state of s0, i.e., s0 has a self-loop
with the label {a,¬b,¬Tail}. To compute another next state
of s0, we add the constraint ¬p1 to the input of the SAT
solver. Repeat the above process and we can construct all
states in the transition system.

Checking the satisfiability of φ is then reduced to finding a
final state (Definition 6) in the corresponding transition sys-
tem. Since φ is in TNF, a final state s meets the constraint
that Tail∧xnf(

∧
s)p (recall s is a set of subformulas of φ) is

satisfiable. For the above example, the initial state s0 is actu-
ally a final state, as Tail∧xnf(φ)p is satisfiable. Because all
states computed by the SAT solver in the transition system
are reachable from the initial state, we can prove that φ is
satisfiable iff there is a final state in the system (Theorem 4).

We present a conflict-driven algorithm, i.e., CDLSC, to
accelerate the satisfiability checking. CDLSC maintains a
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conflict sequence C, in which each element, denoted as C[i]
(0 ≤ i < |C|), is a set of states in the transition system that
cannot reach a final state in i steps. Starting from the initial
state, CDLSC iteratively checks whether a final state can
be reached, and makes use of the conflict sequence to ac-
celerate the search. Consider the formula φ = (¬Tail)Ua∧
(¬Tail)U(¬a)∧(¬Tail)Ub∧(¬Tail)U(¬b)∧(¬Tail)Uc.
In the first iteration, CDLSC checks whether the initial state
s0 = {φ} is a final state, i.e., whether Tail ∧ xnf(φ)p is
satisfiable. The answer is negative, so s0 cannot reach a fi-
nal state in 0 steps and can be added into C[0]. However,
we can do better by leveraging the Unsatisfiable Core (UC)
returned from the SAT solver. Assume that we get the UC
u1 = {(¬Tail)Ua, (¬Tail)U(¬a)}. That indicates every
state s containing u, i.e., s ⊇ u, is not a final state. As a
result, we can add u instead of s0 into C[0], making the al-
gorithm much more efficient.

Now in the second iteration, CDLSC first tries to com-
pute a one-transition next state of s0 that is not included in
C[0]. (Otherwise the new state cannot reach a final state in 0
step.) This can be encoded as a Boolean formula xnf(φ)p ∧
¬(p1 ∧ p2) where p1, p2 represent X ((¬Tail)Ua) and
X ((¬Tail)U(¬a)) respectively. Assume the new state s1 =
{(¬Tail)Ua, (¬Tail)Ub, (¬Tail)U(¬b), (¬Tail)Uc} is
generated from the assignment of the SAT solver. Then
CDLSC checks whether s1 can reach a final state in 0 step,
i.e., xnf(

∧
s1)p ∧ Tail is satisfiable. The answer is negative

and we can add the UC u2 = {(¬Tail)Ub, (¬Tail)U(¬b)}
to C[0] as well. Now to compute a next state of s0
that is not included in C[0], the encoded Boolean for-
mula becomes xnf(φ)p ∧ ¬(p1 ∧ p2) ∧ ¬(p3 ∧ p4)
where p3, p4 represent X ((¬Tail)Ub) and
X ((¬Tail)U(¬b)) respectively. Assume the new state
s2 = {(¬Tail)Ua, (¬Tail)Ub, (¬Tail)Uc} is gen-
erated from the assignment of the SAT solver. Since
xnf(

∧
s2)p ∧ Tail is satisfiable, s2 is a final state and we

conclude that the formula φ is satisfiable. In principle, there
are a total of 25 = 32 states in the transition system of φ,
but CDLSC succeeds to find the answer by computing only
3 of them (including the initial state).

CDLSC also leverages the conflict sequence to acceler-
ate checking unsatisfiable formulas. Like Bounded Model
Checking (BMC) (Biere et al. 1999), CDLSC searches the
model iteratively, but BMC invokes only one SAT call for
each iteration, while CDLSC invokes multiple SAT calls.
CDLSC is more like an IC3-style algorithm, but achieves
a much simpler implementation by using UC instead of the
Minimal Inductive Core (MIC) like IC3 (Bradley 2011).

SAT-based Explicit-State Checking
Given an LTLf formula φ, we construct the LTLf transi-
tion system (Li et al. 2014; 2015) leveraging SAT solvers
and then check the satisfiability of the formula over its cor-
responding transition system.

LTLf Transition System
First, we show how one can consider LTLf formulas as
propositional ones. This requires considering temporal sub-
formulas as propositional atoms.

Definition 2 (Propositional Atoms). For an LTLf formula
φ, we define the set of propositional atoms of φ, i.e., PA(φ),
as follows: (1) PA(φ) = {φ} if φ is an atom, Next, Until
or Release formula; (2) PA(φ) = PA(ψ) if φ = (¬ψ); (3)
PA(φ) = PA(φ1) ∪ PA(φ2) if φ = (φ1 ∧ φ2) or (φ1 ∨ φ2).

Consider φ = (a∧ ((¬Tail ∧ a)Ub)∧¬(¬Tail ∧X (a∨
b))). We have PA(φ) = {a, Tail, ((¬Tail ∧ a)Ub), (X (a ∨
b))}. Intuitively, the propositional atoms are obtained by
treating all temporal subformulas of φ as atomic proposi-
tions. Thus, an LTLf formula φ can be viewed as a proposi-
tional formula over PA(φ).
Definition 3. For an LTLf formula φ, let φp be φ consid-
ered as a propositional formula over PA(φ). A propositional
assignment A of φp, is in 2PA(φ) and satisfies A |= φp.

Consider the formula φ = (a ∨ (¬Tail ∧ a)Ub) ∧ (b ∨
(Tail ∨ c)Rd). From Definition 3, φp is (a∨ p1)∧ (b∨ p2)
where p1, p2 are two Boolean variables representing the
truth values of (¬Tail∧a)Ub and (Tail∨ c)Rd. Moreover,
the set {¬a, p1((¬Tail ∧ a)Ub),¬b, p2((Tail ∨ c)Rd)} is
a propositional assignment of φp. In the rest of the paper,
we do not introduce the intermediate variables and directly
say {¬a, (¬Tail ∧ a)Ub,¬b, (Tail ∨ c)Rd} is a proposi-
tional assignment of φp. The following theorem shows the
relationship between the propositional assignment of φp and
the satisfaction of φ.
Theorem 2. For an LTLf formula φ and a finite trace ξ,
ξ |= φ implies there exists a propositional assignment A of
φp such that ξ |=

∧
A; On the other hand, ξ |=

∧
A where

A is a propositional assignment of φp, also implies ξ |= φ.
We now introduce the neXt Normal Form (XNF) of LTLf

formulas, which is useful for the construction of the transi-
tion system.
Definition 4 (neXt Normal Form). An LTLf formula φ is in
neXt Normal Form (XNF) if there are no Until or Release
subformulas of φ in PA(φ).

For example, φ = ((¬Tail ∧ a)Ub) is not in XNF, while
(b∨(¬Tail∧a∧(X ((¬Tail∧a)Ub)))) is. Every LTLf for-
mula φ has a linear-time conversion to an equivalent formula
in XNF, which we denoted as xnf(φ).
Theorem 3. For an LTLf formula φ, there is a correspond-
ing LTLf formula xnf(φ) in XNF such that φ ≡ xnf(φ).
Furthermore, the cost of the conversion is linear.

Observe that when φ is in XNF, there can be only Next
(no Until or Release) temporal formulas in the propositional
assignment of φp. For φ = b ∨ (a ∧ ¬Tail ∧ X (aUb)), the
set A = {a,¬b,¬Tail,X (aUb)} is a propositional assign-
ment of φp. Based on LTLf semantics, we can induce from
A that if a finite trace ξ satisfying ξ[0] ⊇ {a,¬b,¬Tail}
and ξ1 |= aUb, ξ |= φ is true. This motivates us to construct
the transition system for φ, in which {aUb} is a next state of
{φ} and {a,¬b,¬Tail} is the transition label between these
two states.

Let φ be an LTLf formula and A be a propositional as-
signment of φp, we denote L(A) = {l|l ∈ A is a literal}
and X(A) = {θ|X θ ∈ A}. Now we define the transition
system for an LTLf formula.
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Definition 5. Given an LTLf formula φ and its literal set L,
let Σ = 2L. We define the transition system Tφ = (S, s0, T )

for φ, where S ⊆ 2cl(φ) is the set of states, s0 = {φ} ∈ S is
the initial state, and

• T : S × Σ → 2S is the transition relation, where
s2 ∈ T (s1, σ) (σ ∈ Σ) holds iff there is a propositional
assignment A of xnf(

∧
s1)p such that σ ⊇ L(A) and

s2 = X(A).

A run of Tφ on a finite trace ξ(|ξ| = n > 0) is a finite
sequence s0, s1, . . . , sn such that s0 is the initial state and
si+1 ∈ T (si, ξ[i]) holds for all 0 ≤ i < n.

We define the notation |r| for a run r, to represent the
length of r, i.e., number of states in r. We say state s2 is
reachable from state s1 in i(i ≥ 0) steps (resp. in up to i
steps), if there is a run r on some finite trace ξ leading from
s1 to s2 and |r| = i (resp. |r| ≤ i). In particular, we say s2 is
a one-transition next state of s1 if s2 is reachable from s1 in
1 steps. Since a state s is a subset of cl(φ), which essentially
is a formula with the form of

∧
ψ∈s ψ, we mix the usage of

the state and formula in the rest of the paper. That is, a state
can be a formula of

∧
ψ∈s ψ, and a formula φ can be a set of

states, i.e., s ∈ φ iff s⇒ φ.

Lemma 1. Let Tφ = (S, s0, T ) be the transition system of
φ. Every state s ∈ S is reachable from the initial state s0.

Definition 6 (Final State). Let s be a state of a transition
system Tφ. Then s is a final state of Tφ iff the Boolean for-
mula Tail ∧ (xnf(s))p is satisfiable.

By introducing the concept of final state, we are able to
check the satisfiability of the LTLf formula φ over Tφ.

Theorem 4. Let φ be an LTLf formula. Then φ is satisfiable
iff there is a final state in Tφ.

An intuitive solution from Theorem 4 to check the satisfi-
ability of φ is to construct states of Tφ until (1) either a final
state is found by Definition 6, meaning φ is satisfiable; or (2)
all states in Tφ are generated but no final state can be found,
meaning φ is unsatisfiable. This approach is simple and easy
to implement, however, it does not perform well according
to our preliminary experiments.

Conflict-Driven LTLf Satisfiability Checking
In this section, we present a conflict-driven algorithm for
LTLf satisfiability checking. The new algorithm is inspired
by (Li et al. 2015), where information of both satisfiabil-
ity and unsatisfiability results of SAT solvers are used. The
motivation is as follows: In Definition 6, if the Boolean for-
mula Tail ∧ xnf(s)p is unsatisfiable, the SAT solver is able
to provide a UC (Unsatisfiable Core) c such that c ⊆ s and
Tail∧xnf(c)p is still unsatisfiable. It means that c represents
a set of states that are not final states. By adding a new con-
straint ¬(

∧
ψ∈c Xψ), the SAT solver can provide a model (if

exists) that avoids re-generation of those states in c, which
accelerates the search of final states. More generally, we de-
fine the conflict sequence, which is used to maintain all in-
formation of UCs acquired during the checking process.

Definition 7 (Conflict Sequence). Given an LTLf formula
φ, a conflict sequence C for the transition system Tφ is a
finite sequence of set of states such that:
1. The initial state s0 = {φ} is in C[i] for 0 ≤ i < |C|;
2. Every state in C[0] is not a final state;
3. For every state s ∈ C[i + 1] (0 ≤ i < |C| − 1), all the

one-transition next states of s are included in C[i].
We call each C[i] is a frame, and i is the frame level.

In the definition, |C| represents the length of C and C[i]
denotes the i-th element of C. Consider the transition sys-
tem shown in Figure 1, in which s0 is the initial state
and s4 is the final state. Based on Definition 7, the se-
quence C = {s0, s1, s2, s3}, {s0, s1}, {s0} is a conflict se-
quence. Notably, the conflict sequence for a transition sys-
tem may not be unique. For the above example, the se-
quence {s0, s1}, {s0} is also a conflict sequence for the sys-
tem. This suggests that the construction of a conflict se-
quence is algorithm-specific. Moreover, it is not hard to in-
duce that every non-empty prefix of a conflict sequence is
also a conflict sequence. For example, a prefix of C above,
i.e., {s0, s1, s2, s3}, {s0, s1}, is a conflict sequence. As a re-
sult, a conflict sequence can be constructed iteratively, i.e.,
the elements can be generated (and updated) in order. Our
new algorithm is motivated by these two observations.

s0start s1

s2

s3

s4

Figure 1: An example transition system for the conflict se-
quence.

An inherent property of conflict sequences is described in
the following lemma.
Lemma 2. Let φ be an LTLf formula with a conflict se-
quence C for the transition system Tφ, then

⋂
0≤j≤i C[j](0 ≤

i < |C|) represents a set of states that cannot reach a final
state in up to i steps.

Proof. We first prove C[i](i ≥ 0) is a set of states that cannot
reach a final state in i step. Basically from Definition 7, C[0]
is a set of states that are not final states. Inductively, assume
C[i](i ≥ 0) is a set of states that cannot reach a final state in
i steps. From Item 3 of Definition 7, every state s ∈ C[i +
1] satisfies all its one-transition next states are in C[i], thus
every state s ∈ C[i + 1] cannot reach a final state in i + 1
steps. Now since C[i](i ≥ 0) is a set of states that cannot
reach a final state in i steps,

⋂
0≤j≤i C[j] is a set of states

that cannot reach a final state in up to i steps.

We are able to utilize the conflict sequence to accelerate
the satisfiability checking of LTLf formulas, using the theo-
retical foundations provided by Theorem 5 and 6 below.
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Theorem 5. The LTLf formula φ is satisfiable iff there is a
run r = s0, s1, . . . , sn(n ≥ 0) of Tφ such that (1) sn is a
final state; and (2) si (0 ≤ i ≤ n) is not in C[n− i] for every
conflict sequence C of Tφ with |C| > n− i.

Proof. (⇐) Since sn is a final state, φ is satisfiable accord-
ing to Theorem 4. (⇒) Since φ is satisfiable, there is a fi-
nite trace ξ such that the corresponding run r of Tφ on ξ
ends with a final state (according to Theorem 4). Let r be
s0 −→ s1 −→ . . . sn where sn is the final state. It holds that
si (0 ≤ i ≤ n) is a state that can reach a final state in n − i
steps. Moreover for every C of Tφ with |C| > n− i, C[n− i]
(C[n− i] is meaningless when |C| ≤ n− i) represents a set
of states that cannot reach a final state in n − i steps (From
the proof of Lemma 2). As a result, it is true that si is not in
C[n− i] if |C| > n− i.

Theorem 5 suggests that to check whether a state s can
reach a final state in i steps (i ≥ 1), finding a one-transition
next state s′ of s that is not in C[i − 1] is necessary; as s′ ∈
C[i − 1] implies s′ cannot reach a final state in i − 1 steps
(From the proof of Lemma 2). If all one-transition next states
of s are in C[i− 1], s cannot reach a final state in i steps.

Theorem 6. The LTLf formula φ is unsatisfiable iff there is
a conflict sequence C and i ≥ 0 such that

⋂
0≤j≤i C[j] ⊆

C[i+ 1].

Proof. (⇐)
⋂

0≤j≤i C[j] ⊆ C[i + 1] is true implies that⋂
0≤j≤i C[j] =

⋂
0≤j≤i+1 C[j] is true. Also from Lemma

2 we know
⋂

0≤j≤i C[j] is a set of states that cannot reach
a final state in up to i steps. Since φ ∈ C[i] is true for
each i ≥ 0, φ is in

⋂
0≤j≤i C[j]. Moreover,

⋂
0≤j≤i C[j] =⋂

0≤j≤i+1 C[j] is true implies all reachable states from φ

are included in
⋂

0≤j≤i C[j]. We have known all states in⋂
0≤j≤i C[j] are not final states, so φ is unsatisfiable.
(⇒) If φ is unsatisfiable, every state in Tφ is not a fi-

nal state. Let S be the set of states of Tφ. According to
Lemma 2,

⋂
0≤j≤i C[j](i ≥ 0) contains the set of states

that are not final in up to i steps. Now we let C satisfy
that

⋂
0≤j≤i C[j](i ≥ 0) contains all states that are not

final in up to i steps, so
⋂

0≤j≤i C[j] includes all reach-
able states from φ, as φ is unsatisfiable. However, because⋂

0≤j≤i C[j] ⊇
⋂

0≤j≤i+1 C[j] ⊇ S(i ≥ 0), there must be
an i ≥ 0 such that

⋂
0≤j≤i C[j] =

⋂
0≤j≤i+1 C[j], which

indicates that
⋂

0≤j≤i C[j] ⊆ C[i+ 1] is true.

Algorithm Design. The algorithm, named CDLSC
(Conflict-Driven LTLf Satisfiability Checking), constructs
the transition system on-the-fly. The initial state s0 is fixed
to be {φ} where φ is the input formula. From Definition
6, whether a state s is final is reducible to the satisfiability
checking of the Boolean formula Tail ∧ xnf(s)p. If s0 is a
final state, there is no need to maintain the conflict sequence
in CDLSC, and the algorithm can return SAT immediately;
Otherwise, the conflict sequence is maintained as follows.

• In CDLSC, every element of C is a set of set of subfor-
mulas of the input formula φ. Formally, each C[i] (i ≥ 0)

can be represented by the LTLf formula
∨
c∈C[i]

∧
ψ∈c ψ

where c is a set of subformulas of φ. We mix-use the no-
tation C[i] for the corresponding LTLf formula as well.
Every state s satisfying s⇒ C[i] is included in C[i].

• C is created iteratively. In each iteration i ≥ 0, C[i] is
initialized as the empty set.

• To compute elements in C[0], we consider an existing state
s (e.g., s0). If the Boolean formula Tail ∧ xnf(s)p is un-
satisfiable, s is not a final state and can be added into C[0]
from Item 2 of Definition 7. Moreover, CDLSC leverages
the Unsatisfiable Core (UC) technique from the SAT com-
munity to add a set of states, all of which are not final and
include s, to C[0]. This set of states, denoted as c, is also
represented by a set of LTLf formulas and satisfies c ⊆ s.

• To compute elements in C[i + 1] (i ≥ 0), we consider
the Boolean formula (xnf(s)∧¬X (C[i]))p, whereX (C[i])
represents the LTLf formula

∨
c∈C[i]

∧
ψ∈c X (ψ). The

above Boolean formula is used to check whether there is
a one-transition next state of s that is not in C[i]. If the
formula is unsatisfiable, all the one-transition next states
of s are in C[i], thus s can be added into C[i+1] according
to Item 3 of Definition 7. Similarly, we also utilize the UC
technique to obtain a subset c of s, such that c represents
a set of states that can be added into C[i+ 1].

As shown above, every Boolean formula sent to a SAT
solver has the form of (xnf(s) ∧ θ)p where s is a state and θ
is either Tail or ¬X (C[i]). Since every state s consists of a
set of LTLf formulas, the Boolean formula can be rewritten
as α1 = (

∧
ψ∈s xnf(ψ)∧θ)p. Moreover, we introduce a new

Boolean variable pψ for each ψ ∈ s, and re-encode the for-
mula to be α2 =

∧
ψ∈s pψ ∧ (

∧
ψ∈s(xnf(ψ) ∨ ¬pψ) ∧ θ)p.

α2 is satisfiable iff α1 is satisfiable, and A is an assignment
of α2 iff A\{pψ|ψ ∈ s} is an assignment of α1. Sending α2

instead of α1 to the SAT solver that supports assumptions
(e.g., Minisat (Eén and Sörensson 2003)) enables the SAT
solver to return the UC, which is a set of s, when α2 is un-
satisfiable. For example, assume s = {ψ1, ψ2, ψ3} and α2

is sent to the SAT solver with {pψi |i ∈ {1, 2, 3}} being the
assumptions. If the SAT solver returns unsatisfiable and the
UC {pψ1}, the set c = {ψ1}, which represents every state
including ψ1, is the one to be added into the corresponding
C[i]. We use the notation get uc() for the above procedure.

The pseudo-code of CDLSC is shown in Algorithm 1.
Lines 1-2 consider the case when the input formula φ is a fi-
nal state itself. Otherwise, the first frame C[0] is initialized to
{φ} (Line 3), and the current frame level is set to 0 (Line 4).
After that, the loop body (Line 5-11) keeps updating the ele-
ments of C iteratively, until either the procedure try satisfy
returns true, which means it found a model of φ, or the pro-
cedure inv found returns true, which is the implementation
of Theorem 6. The loop continues to create a new frame in C
if neither of the procedures succeeds to return true. We call
each run of the while loop body in Algorithm 1 an iteration.

The procedure try satisfy updates C. Taking a formula
φ and the current frame level, frame level, try satisfy
returns true iff a model of φ can be found, with the length of
frame level+ 1. As shown in Algorithm 2, try satisfy is
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Algorithm 1 Implementation of CDLSC
Require: An LTLf formula φ.
Ensure: SAT or UNSAT.

1: if Tail ∧ xnf(φ)p is satisfiable then
2: return SAT;
3: Set C[0] := {φ};
4: Set frame level := 0;
5: while true do
6: if try satisfy(φ, frame level) returns true then
7: return SAT;
8: if inv found(frame level) returns true then
9: return UNSAT;

10: frame level := frame level + 1;
11: Set C[frame level] = ∅;

implemented recursively. Each time it checks whether a next
state of the input φ, which belongs to a lower level (than the
input frame level) frame can be found (Line 2). If such a
new state φ′ is constructed, try satisfy first checks whether
φ′ is a final state when frame level is 0 and returns true
if so. If φ′ is not a final state, a UC is extracted from the
SAT solver and added to C[0] (Line 5-11). If frame level
is not 0, try satisfy recursively checks whether a model of
φ′ can be found with the length of frame level (Line 12-
13). If the result is negative and such a state cannot be con-
structed, a UC is extracted from the SAT solver and added
into C[frame level + 1] (Line 14-15).

Algorithm 2 Implementation of try satisfy
Require: φ: The formula is working on;

frame level: The frame level is working on.
Ensure: true or false.

1: Let ψ = ¬X (C[frame level]);
2: while (ψ ∧ xnf(φ))p is satisfiable do
3: Let A be the model of (ψ ∧ xnf(φ))p;
4: Let φ′ = X(A), i.e., be the next state of φ extracted

from A;
5: if frame level == 0 then
6: if Tail ∧ xnf(φ′)p is satisfiable then
7: return true;
8: else
9: Let c = get uc();

10: Add c into C[frame level];
11: Continue;
12: if try satisfy(φ′, frame level − 1) is true then
13: return true;
14: Let c = get uc();
15: Add c into C[frame level + 1];
16: return false;

Notably, Item 1 of Definition 7, i.e., {φ} ∈ C[i], is guar-
anteed for each i ≥ 0, as the original input formula of
try satisfy is always φ (Line 6 in Algorithm 1) and there is
some c (Line 15 in Algorithm 2) including {φ} that is added
into C[i], if no model can be found in the current iteration.

The procedure inv found in Algorithm 1 implements
Theorem 6 in a straightforward way: it reduces checking
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Figure 2: Result for LTLf Satisfiability Checking on LTL-
as-LTLf Benchmarks. The X axis represents the number
of benchmarks, and the Y axis is the accumulated checking
time (s).

whether
⋂

0≤j≤i C[j] ⊆ C[i + 1] holds on some frame
level i, to satisfiability checking of the Boolean formula∧

1≤j≤i C[j] ⇒ C[i + 1]. Theorem 7 provides the theoret-
ical guarantee that CDLSC always terminates correctly.

Lemma 3. After each iteration of CDLSC with no model
found, the sequence C is a conflict sequence of Tφ for the
transition system Tφ.

Theorem 7. The CDLSC algorithm terminates with a cor-
rect result.

Summarily, CDLSC is a conflict-driven on-the-fly satis-
fiability checking algorithm, which successfully leads to ei-
ther an earlier finding of a satisfying model, or the faster
termination with the unsatisfiable result.

Experimental Evaluation
Benchmarks1 Our extensive experimental evaluation,
checking 9142 formulas, uses two classes of benchmarks:
7442 LTL-as-LTLf (since LTL formulas share the same
syntax as LTLf ) and 1700 LTLf -Specific benchmarks,
which are common LTLf patterns that are all satisfiable
by finite traces (but not necessarily by infinite traces). We
check both execution time and correctness; checking also
correctness, as in (Rozier and Vardi 2007), ensures we are
comparing performance of tools finding the same results.

LTL-as-LTLf benchmarks consist of the following.
Random Formulas generated as in (Rozier and Vardi
2011), vary the number of variables {1, 2, 3}, formula
length {5, . . . , 100}, and probability of choosing a tem-
poral operator {0.3, 0.5, 0.7, 0.95} from the operator set
{¬,∨,∧,X ,U ,R,G,F ,GF}. We generate all formulas
prior to testing for repeatability. Counter Formulas scale
four, temporally complex patterns that describe large state

1All artifacts for enabling reproducibility, including benchmark
formulas and their generators, are available from the paper website
at http://temporallogic.org/research/AAAI19.
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Type Number Result IC3+K-LIVE Aalta-finite Aalta-infinite ltl2sat CDLSC
Alternate Response 100 sat 134 1 48 123 3
Alternate Precedence 100 sat 154 3 70 380 4
Chain Precedence 100 sat 127 2 45 83 2
Chain Response 100 sat 79 1 41 49 2
Precedence 100 sat 132 2 14 124 1
Responded Existence 100 sat 130 1 14 327 1
Response 100 sat 155 1 41 53 2
Practical Conjunction 1000 varies 1669 19564 4443 20477 115

Table 1: Results for LTLf Satisfiability Checking on LTLf -specific Benchmarks.

spaces: n-bit binary counters for 1 ≤ n ≤ 20 (Rozier and
Vardi 2007). The four templates differ in variables and nest-
ing ofX ’s. Pattern Formulas encode eight scalable patterns
(from (Geldenhuys and Hansen 2006), and are generated by
code from (Rozier and Vardi 2007)) scaling to n = 100.
Other LTL formulas that were used as specifications in re-
alistic case studies: (Bloem et al. 2007; De Wulf et al. 2008;
Filiot, Jin, and Raskin 2009).
LTLf -Specific benchmarks consist of the following.

Conjunctive Formulas combine common LTLf formulas
from (De Giacomo, Masellis, and Montali 2014; Ciccio and
Mecella 2015; Prescher, Di Ciccio, and Mendling 2014) as
random conjunctions in the style of (Li et al. 2013) in two
sets of 500 formulas: (1) 20 variables, varying the number
of conjuncts in {10, 30, 50, 70, 100}; and (2) 50 conjuncts,
varying the number of variables in {10, 30, 50, 70, 100}.
Pattern Formulas scalable patterns inspired by (Di Ciccio,
Maggi, and Mendling 2016) up to length 100; see Table 1.
Experimental Setup We implement CDLSC in the tool
aaltaf 2 and use Minisat 2.2.0 (Eén and Sörensson 2003)
as the SAT engine. We compare it with two extant LTLf
satisfiability solvers: Aalta-finite (Li et al. 2014) and ltl2sat
(Fionda and Greco 2016). We also compared with the state-
of-art LTL solver Aalta-infinite (Li et al. 2015), using the
LTLf -to-LTL satisfiability-preserving reduction described
in (De Giacomo and Vardi 2013). As LTL satisfiability
checking is reducible to model checking, as described in
(Rozier and Vardi 2007), we also compared with this reduc-
tion, using nuXmv with the IC3+K-LIVE back-end (Cavada
et al. 2014), as an LTLf satisfiability checker.

We ran the experiments on a RedHat 6.0 cluster with 2304
processor cores in 192 nodes (12 processor cores per node),
running at 2.83 GHz with 48GB of RAM per node. Each
tool executed on a dedicated node with a timeout of 60 sec-
onds, measuring execution time with Unix time. Excluding
timeouts, all solvers found correct verdicts for all formulas.
All artifacts are available in the supplemental material.
Results Figure 2 shows the results for LTLf satisfiabil-
ity checking on LTL-as-LTLf benchmarks. CDLSC outper-
forms all other approaches. On average, CDLSC performs
about 4 times faster than the second-best approach IC3+K-
LIVE (1705 seconds vs. 6075 seconds). CDLSC checks the
LTLf formula directly, while IC3+K-LIVE must take the in-
put of the LTL formula translated from the LTLf formula.
As a result, IC3-KLIVE may take extra cost, e.g., finding a
satisfying lasso for the model, to the satisfiability checking.

2https://github.com/lijwen2748/aaltaf

Meanwhile, CDLSC can benefit from the heuristics dedi-
cated for LTLf that are proposed in (Li et al. 2014). Finally,
the performance of ltl2sat is highly tied to its performance
for unsatisfiability checking as most of the timeout cases for
ltl2sat are unsatisfiable. For Aalta-finite, its performance is
restricted by the heavy cost of the Tableau Construction.

Table 1 shows the results for LTLf -specific experiments.
Columns 1-3 show the types of LTLf formulas under test,
the number of test instances for each formula type, and
the results by formula type. Columns 4-8 show the check-
ing times by formula types in seconds. The dedicated LTLf
solvers perform extremely fast on the seven scalable pattern
formulas (Column 5 and 8), because their heuristics work
well on these patterns. For the difficult conjunctive bench-
marks, CDLSC still outperforms all other solvers.

Discussion and Concluding Remarks
There are two ways to apply Bounded Model Checking
(BMC) to LTLf satisfiability checking. The first one is to
check the satisfiability of the LTL formula from the input
LTLf formula. Since (Li et al. 2015) showed this approach
performs worse than IC3+K-LIVE, CDLSC outperforming
IC3+K-LIVE implies that CDLSC also outperforms BMC.
The second approach is to check the satisfiability of the
LTLf formula φ directly, by unrolling φ iteratively. In the
worst case, BMC can terminate (with UNSAT) once the it-
eration reaches the upper bound. This is exactly what is im-
plemented in ltl2sat (Fionda and Greco 2016).

Our experiments demonstrate that CDLSC outperforms
Aalta-infinite and IC3+K-LIVE, which are designed for LTL
satisfiability checking, showing the advantage of a dedicated
algorithm for LTLf . Notably, CDLSC maintains a conflict
sequence, which is similar to the state-of-art model check-
ing technique IC3 (Bradley 2011). CDLSC does not require
the conflict sequence to be monotone, and simply use the
UC from SAT solvers to update the sequence. Meanwhile,
IC3 requires the sequence to be strictly monotone, and has
to compute its dedicated MIC (Minimal Inductive Core) to
update the sequence. We conclude that CDLSC outperforms
other existing approaches for LTLf satisfiability checking.
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