
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

On Limited Conjunctions and Partial
Features in Parameter-Tractable Feature Logics

Stephanie McIntyre,1 Alexander Borgida,2 David Toman,1 Grant Weddell1
1Cheriton School of Computer Science, University of Waterloo, Canada

2Department of Computer Science, Rutgers University, NJ, U.S.A.
{srmcinty,david,gweddell}@uwaterloo.ca, borgida@cs.rutgers.edu

Abstract

Standard reasoning problems are complete for EXPTIME in
common feature-based description logics—ones in which all
roles are restricted to being functions. We show how to con-
trol conjunctions on left-hand-sides of subsumptions and use
this restriction to develop a parameter-tractable algorithm for
reasoning about knowledge base consistency. We then show
how the resulting logic can simulate partial features, and
present algorithms for efficient query answering in that set-
ting.

1 Introduction
Ontology-based data access (OBDA) emphasizes the use of
ontologies, usually expressed in a description logic (DL),
as a preferred front end for interacting with (multiple)
databases, containing facts about a domain (Calvanese et
al. 2007; Kontchakov et al. 2010; Lutz et al. 2013). A de-
sirable DL for OBDA supports (i) more expressive con-
ceptual modelling of the domain, (ii) capturing domain se-
mantics embedded in relational schema, and (iii) effective
query answering. The CFD family of feature-based DLs
has been designed primarily to support PTIME reasoning in
accessing relational data sources. A distinguishing property
of this family is support for expressing complex functional
dependencies, which are the most widely used way to cap-
ture domain semantics in relational databases, in addition
to foreign keys. One dialect, called CFDI∀−nc (St. Jacques,
Toman, and Weddell 2016), supported OBDA to relational
databases, and was able to do so without “loading” the rela-
tional database into an ABox. In addition, it was capable of
emulating DL-LiteFcore.

Our main contribution is a new parameterized member
of this family called CFDI∀−kc , which adds the ability to
use conjunctions on the left-hand side of subsumptions in
a CFDI∀−nc TBox, where the parameter k is a positive in-
teger that constitutes a limit on the number of conjunctions
that need to be considered in reasoning services. (Indeed,
any CFDI∀−nc TBox can be easily mapped to a CFDI∀−2c
TBox.) This enhances the modelling capacity of CFDI∀−kc :
in a university context, we can now not only specify that a
StudentWorker is both a Student and an Employee,

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

but actually define StudentWorker as anyone who is
both, by adding the axiom

(Student u Employee) v StudentWorker.

This distinction between “primitive concepts” (“phones,
which happen to all be black”) and “defined concepts”
(“black phones”) was one of the key insights that drove
Brachman (Brachman 1977) to the development of KL-
ONE, the progenitor of DLs, and was an important missing
ingredient in semantic data models (Hull and King 1987),
such as Taxis (Mylopoulos, Bernstein, and Wong 1980) and
GEM (Zaniolo 1983), as well as UML.

A frequently remarked limitation of the CFD family, in-
cluding CFDI∀−nc , is that features connecting objects are
total functions. An interesting and important benefit of al-
lowing limited conjunctions on the left-hand side of sub-
sumption will be the ability to encode and support reasoning
with features that are instead partial functions. This means
that we can now explicitly require that a Building never
has a salary. In relational database terms, this means that
CFDI∀−kc can indirectly represent “null inapplicable”, in ad-
dition to the usual “null unknown”, which comes from the
open world assumption of DLs. In particular, we also in-
troduce partial-CFDI∀−kc variants of CFDI∀−kc DLs, which
add an ability to capture partial features, and show how any
partial-CFDI∀−kc terminology can always be mapped to a
CFDI∀−(k+1)c terminology. The remaining technical contri-
butions of this paper are to show that each of the following
problems are parameter-tractable in k:

1. (parameter diagnosis) given an arbitrary CFDI∀ TBox
T and integer k, determining if T is a CFDI∀−kc TBox;

2. (concept satisfiability) given a CFDI∀−kc TBox and con-
cept C, determining if C is satisfiable;

3. (knowledge base consistency) determining if a given
CFDI∀−kc knowledge base is consistent; and

4. (query answering in OBDA) computing the certain an-
swers for conjunctive queries over a given CFDI∀−kc
knowledge base.

Note that, similarly to other approaches to defining (para-
meter-)tractable fragments of first-order logic, e.g., (Siman-
cik, Motik, and Horrocks 2014; Bienvenu et al. 2017;

2995

SYNTAX SEMANTICS: “(·)I”
C ::=A AI ⊆ 4
| ∀Pf .C {x | PfI(x) ∈ CI}
| C1 u C2 CI1 ∩ CI2

D ::=C CI ⊆ 4
| ⊥ ∅
| ∃f−1 {x | ∃y ∈ 4 : fI(y) = x}
| ∀Pf .D {x | PfI(x) ∈ DI}
| C : Pf1, . . . ,Pfk → Pf {x | ∀y ∈ CI :

(
∧k

i=1 Pf
I
i (x) = PfIi (y))⇒ PfI(x) = PfI(y)}

Figure 1: CFDI∀ Concepts.

Calı̀, Gottlob, and Pieris 2012), CFDI∀ TBoxes need to
be globally analyzed to determine whether they satisfy the
CFDI∀−kc restrictions (see Theorem 6 in Section 3).

2 Background and Definitions
All members of the CFD family are fragments of FOL with
underlying signatures based on disjoint sets of unary pred-
icate symbols PC, called primitive concepts, constant sym-
bols IN, called individuals, and unary function symbols F,
called features. A path function Pf is a word in F∗, with the
empty word denoted by id , and concatenation by “.”. Con-
cept descriptions of two kinds, C and D, are defined by the
grammar rules on the left-hand-side of Fig. 1. An instance of
the final production is called a path functional dependency
(PFD). (Note that PFD-like constructs have also been con-
sidered in versions of DL-Lite (Calvanese et al. 2008).)

Semantics is defined in the standard way with respect to
an interpretation I = (4, (·)I) that fixes the meaning of
symbols in PC, IN,F. Here, features are interpreted as total
functions. The interpretation function I is extended to path
expressions by interpreting id as the identity function λx.x,
concatenation as function composition, and to complex con-
cept descriptions C or D as per Fig. 1. An interpretation
I satisfies a subsumption C v D if CI ⊆ DI , a concept
assertion A(a) if aI ∈ AI , and a path function assertion
Pf1(a) = Pf2(b) if PfI1 (aI) = PfI2 (bI). A knowledge base
(KB) K = (T ,A) consists of a TBox T of subsumptions,
and an ABoxA of assertions. I satisfiesK if it satisfies each
subsumption and assertion in K.

Example 1 Consider the relational schema for a univer-
sity database in Fig. 2 where key attributes are underlined
for brevity, and SQL keywords are in boldface. In con-
structing a CFDI∀ conceptual model for this, we start
with primitive concepts for each table (e.g., Building,
Room, Employee, Student, and StudentWorker).
So called “concrete” features are used to record columns
of tables (e.g., bname, roomNr, inBldg, and salary).
Functional relationships between instances of concepts
are captured using “abstract” features, whose identifiers
come from the name of the foreign key constraints (e.g.,
caretakerRef, office, hasMgrRef). Domain con-
straints on table columns are captured by value restrictions

Building(bname, campus);

Room(roomNr, inBldg, caretaker,
constraint caretakerRef foreign key

(caretaker) references Employee,
constraint inBldgRef foreign key

(inBldg) references Building);

Employee(name, salary, roomNr, inBldg,
constraint office foreign key

(roomNr, inBldg) references Room)

Prof(name, level,
constraint nameRef foreign key

(name) references Employee);

Student(snum, name, hasMgr, gpa,
constraint hasMgrRef foreign key

(hasMgr) references Employee);

materialized view StudentWorker as
select * from Student natural join Employee

Figure 2: A University Database Schema.

on concrete features, as in Room v ∀roomNr.Integer.
Ordinary key constraints are captured by PFDs, as in the
following one for buildings: Building v Building :
bname→ id .

The identification of Rooms presents a more interesting
case, since they are so-called “weak entities” in the Entity
Relationship model: they require a local part for the key
(roomNr), and the key of some other entity, Building
in this case. This is captured by the more complex PFD
Room v Room : roomNr,inBldgRef.bname → id .
Single-attribute foreign keys are captured by value restric-
tions on abstract features naming the foreign key constraint,
as in Room v ∀caretakerRef.Employee.1 The com-
plex foreign key office for Employee requires the value
restriction Employee v ∀office.Room and an addi-
tional more complex PFD:
Employee v Employee : roomNr,inBldg→ office.

Note that binary relationships that are not functional in ei-
ther direction (called “N-M relationships” in database cir-
cles), as well as n-ary relationships, can be represented using
reification: if employees could have multiple offices, and,
conversely, an office could house multiple people, then this
would be modelled as the concept Occupancy, with fea-
tures of and by, restrictions Occupancy v ∀of.Room
and Occupancy v ∀by.Employee, and a crucial PFD

Occupancy v Occupancy : of, by→ id ,

ensuring that every (room,employee)-pair is represented by
at most one instance of Occupancy.

1Explicit naming of foreign key constraints, e.g., “constraint
office . . . ”, is part of the SQL standard (International Organiza-
tion for Standardization 2016).

2996

The situation where the primary key of a table is also a
foreign key is the usual representation of subclass hierar-
chies, so we add the axiom Prof v Employee.

The following are examples of domain semantics not cap-
tured by traditional conceptual models, such as UML, but
attainable using PFDs:
• (StudentWorkers managed by the same person

must work in the same office) StudentWorker v
StudentWorker : hasMgr→ office

• (where professors are another subclass of Employee,
Profs must have their own individual offices) Prof v
Employee : office→ id

• (all rooms in a building must have the same caretaker)
Room v Room : inBldg→ caretaker

Once we add to the language conjunctions on the left-
hand side of subsumptions, we will also be able to define
StudentWorker, as discussed in the Introduction, cap-
turing the view definition. Note that since the view is ma-
terialized, it should be modelled, since accessing it is faster
than performing the join that defines it.

Since features are total functions, at this point each
Building has a salary, etc., which is an unpleasant as-
pect. Once we introduce partial features and limited con-
junctions on the lhs, we will be able to restrict the do-
main of features in the ontology, by stating, for example,
(Building u ∃salary) v ⊥.

It is easy to see that for every CFDI∀ KB (T ,A), there is
a simplified normal form: a conservative extension (T ′,A′)
in which subsumptions in T ′ adhere to the form C v D
where the structure of concepts C and D are now given by
the following:
C ::= A | ∀f.A | A1 uA2

D ::= A | ⊥ | ∀f.A | ∃f−1 | A : Pf1, . . . ,Pfk → Pf

Hereon, we also assume w.l.o.g. that at least one of the con-
cept descriptions C and D is a primitive concept, and that
the ABox A′ contains only assertions of the form “A(a)”,
“a.f = b”, and “a = b”. Note that such a normalization of
ABoxes leads to the introduction of additional constant sym-
bols that, from the point of query answering, should behave
the same way anonymous objects do (and thus be excluded
from query answers by appeal to straightforward housekeep-
ing checks).

Unfortunately, unrestricted use of the concept construc-
tors in Fig. 1 leads to intractability of checking KB consis-
tency and logical implication (Toman and Weddell 2005). As
usual, to ensure PTIME complexity, one looks for additional
restrictions on concept constructors. One restriction, which
has been investigated (e.g., (Khizder, Toman, and Weddell
2000)), is to limit the PFD constructor to one of the follow-
ing two forms:

1. C : Pf1, . . . ,Pf .Pfi, . . . ,Pfk → Pf or
2. C : Pf1, . . . ,Pf .f, . . . ,Pfk → Pf .g

Note that this form continues to allow all the examples of
PFD concepts introduced above, including keys and ordi-
nary functional dependencies. The second restriction, intro-
duced in this paper, limits the use of conjunction u with a
parameter k as follows:

Definition 2 (Restricted Conjunction) Let k > 0 be a
constant. We say that TBox T is a CFDI∀−kc TBox if, when-
ever T |= (A1 u · · · u An) v B for some set of prim-
itive concepts {A1, . . . , An} ∪ {B}, with n > k, then
T |= (Ai1 u · · · u Aik) v B for some k-sized subset
{Ai1 , . . . , Aik} of the primitive concepts {A1, . . . , An}. 2

Note that this condition is not syntactic, and we will return
to the issue of checking it later, showing that this can be
done in time exponential in k, but linear in |T |. Adding these
restrictions leads to the logic CFDI∀−kc .

Relation to CFDI∀−nc . It is relatively easy to see that
CFDI∀−nc (Toman and Weddell 2014), a logic that disal-
lows conjunctions on the left-hand sides of subsumptions
altogether but allows for primitive negation on the right-
hand sides can be embedded into CFDI∀−2c by mapping
A v ¬B to A u B v ⊥ and keeping the remainder of a
CFDI∀−nc TBox unchanged. It is then easy to verify that the
above transformation always yields a CFDI∀−2c TBox since
the only subsumptions with a conjunction on their left-hand
sides are of the form A u B v ⊥. This embedding also
shows that the expressive power of CFDI∀−nc falls strictly
between CFDI∀−1c (which is unable to capture disjointness)
and CFDI∀−2c (which can in addition define certain binary
intersections of concepts).

3 Reasoning in CFDI∀−kc
We now present our main result: showing that the complex-
ity of reasoning in CFDI∀−kc is in PTIME for a fixed k. The
presentation proceeds in two steps. The first shows how con-
cept consistency w.r.t. a CFDI∀−kc TBox can be decided, and
the second extends this to full KB consistency.

3.1 TBox and Concept Satisfiability
It is easy to see that every CFDI∀−kc TBox T is consis-
tent (by setting all primitive concepts to be interpreted as
the empty set). To test for primitive concept satisfiability we
use the following construction for the closure of relevant in-
ferred subsumptions:

Definition 3 (TBox Closure) Let Ê, F̂ , Ĝ and Ĥ be sets of
primitive concepts (including ⊥) of size at most k, or sets of
value restrictions involving a common feature f over such a
set of concepts (written as ∀f.Ê, etc.; all the sets represent-
ing conjunctions of their elements); and T a CFDI∀−kc TBox
in normal form. Then define Clos(T) to be a set of “small”
subsumptions entailed by T . In particular, let it be the least
set such that

1. Ê v Ê and ⊥ v Ê are in Clos(T) for every set Ê;

2. If Ê v F̂ and F̂ v Ĝ are in Clos(T) then so is Ê v Ĝ;

3. If Ê v F̂ and Ê v Ĝ are in Clos(T) then so is Ê v Ĥ

for all Ĥ ⊆ F̂ ∪ Ĝ of size between 1 and k;

4. If C v D ∈ T , for D not of the form ∃f−1, and C ⊆ Ê,
then Ê v D ∈ Clos(T);

5. ∀f.⊥ v ⊥ and ⊥ v ∀f.⊥ are in Clos(T);

2997

6. If Ê v F̂ is in Clos(T) then so is ∀f.Ê v ∀f.F̂ ;

7. If A v ∃f−1 ∈ T and Ê v A,∀f.Ê v ∀f.F̂ ∈ Clos(T)

then Ê v F̂ ∈ Clos(T).
Note that Clos(T) is polynomial in |T | and exponential in
k. And clearly each subsumption added to Clos(T) by rules
(1-7) in Definition 3 is logically implied by T . We also note
that while the above construction will be sufficient to pro-
vide the desired complexity bounds, the resulting Clos(T) is
by no means the smallest such set. For example, one could
complicate the rules in order to make all right-hand sides
singletons, or by not explicitly representing all weakenings.

Theorem 4 (Primitive Concept Satisfiability) Let T be a
CFDI∀−kc TBox in normal form and A a primitive concept.
Then A is satisfiable with respect to T if and only if A v
⊥ 6∈ Clos(T).

Proof (sketch): One direction is immediate: wereA v ⊥ in
Clos(T) it would be logically implied by T and hence there
couldn’t be a model of T in which A is nonempty. For the
other direction, given Clos(T), an object o, and a primitive
concept A, define the following family of subsets of PC in-
dexed by paths of features and their inverses, starting from
o, in the following recursive manner:

1. So = {B | A v B ∈ Clos(T)};
2. Sf(x) = {B | Ê v ∀f.B ∈ Clos(T) and Ê ⊆ Sx}, when
f ∈ F and x not of the form “f−(y)”; and

3. Sf−(x) = {B | ∀f.Ê v B ∈ Clos(T) and Ê ⊆ Sx},
when A′ v ∃f−1 ∈ T , A′ ∈ Sx, and x not of the form
“f(y)”.

We say that Sx is defined if it conforms to one of the three
cases above, and that it is consistent if ⊥ 6∈ Sx. Observe
that all defined sets Sx are consistent. Otherwise, A must
be inconsistent, implying in turn that A v ⊥ ∈ Clos(T),
a contradiction. Hence the defined sets Sx induce a (tree)
model of T , in which o ∈ AI . 2

Note that the above model witnessing the satisfiability of A
does not contain any identical path agreements, and hence
vacuously satisfies all PFDs in T .

Observation 5 Let T be a CFDI∀−kc TBox in normal form
and A1, . . . , An primitive concepts. Then A1 u . . . u An is
satisfiable with respect to T if and only if A is satisfiable
with respect to T ∪ {A v A1, . . . , A v An}, for a fresh
primitive concept A, since T ∪ {A v A1, . . . , A v An} is
a CFDI∀−kc TBox whenever T is a CFDI∀−kc TBox. 2

This observation allows consistency checks for arbitrary
conjunctions, including cases that may not appear in
CFDI∀−kc TBoxes (for a particular fixed k).

On determining k: a pay as you go approach. The above
development assumes a fixed k known in advance. However,
the TBox closure procedure also allows for testing whether
a given value of k is sufficient for a CFDI∀ TBox T :

Theorem 6 (Testing for k) Let T be a CFDI∀ TBox. Then
T is not a CFDI∀−kc TBox if and only if there are Ê, F̂ , Ĝ,D

such that (1) Ê v F̂ ∈ Clos(T), (2) Ĝ v D ∈ Clos(T), (3)
F̂ ⊆ Ĝ, (4) |Ê ∪ (Ĝ − F̂)| > k, and (5) for all Ĥ v D ∈
Clos(T) we have Ĥ 6⊂ Ê ∪ (Ĝ− F̂).

Proof (sketch): We have remarked already that all sub-
sumptions in Clos(T) are entailed by T . Hence Ê ∪ (Ĝ −
F̂) v D is also logically implied by T . Since there is no
Ĥ 6⊂ Ê ∪ (Ĝ − F̂) such that Ĥ v D ∈ Clos(T) ei-
ther Ê ∪ (Ĝ − F̂) v D violates the conditions in Defini-
tion 2, or we failed to derive one of the Ĥ v D logically
implied by T . However, were T a CFDI∀−kc TBox such that
Ĥ v D 6∈ Clos(T), one could then construct a model, sim-
ilar to the construction in the proof of Theorem 4, in which
Ĥ v D doesn’t hold, a contradiction with the assumption
that T a CFDI∀−kc TBox. 2

Note that this Theorem leads to an algorithm based on it-
eratively increasing k and testing whether T is a CFDI∀−kc
TBox using the above Theorem. The algorithm terminates
when T is a CFDI∀−kc TBox.2 Note also that successive it-
erations easily reuse subsumptions from the previous level,
and in this way can avoid unnecessary recomputation of all
such subsumptions.

3.2 Knowledge Base Consistency
Inverse features affect how PFDs interact with an ABox. In
particular, PFDs in which all path functions have a common
prefix, i.e., of the form

A v B : f.Pf1, . . . , f.Pfk → f.Pf

may apply to (pairs of) anonymous individuals mandated by
the existence of inverse features (f in this case). In general,
to enforce PFDs with respect to an ABox while avoiding any
need to explicitly create anonymous predecessor objects, we
add additional logically implied PFDs to a given TBox as
follows:

Definition 7 (PFD Enrichment for Inverses) Let T be a
CFDI∀−kc TBox in normal form,

A v B : f.Pf1, . . . , f.Pfk → f.Pf ∈ T

(A v B : f.Pf1, . . . , f.Pfk → id ∈ T) with Pfi 6= id
for 1 ≤ i ≤ k. Then we require that A v ∀f.A′, B v
∀f.B′, and A′ v B′ : Pf1, . . . ,Pfk → Pf (A′ v B′ :
Pf1, . . . ,Pfk → id), where A′ and B′ are fresh primitive
concepts, also be in T . 2

For further details on this, see (St. Jacques, Toman, and
Weddell 2016). The first step of deciding KB consistency,
ABox completion, is defined by the rules in Fig. 3. In partic-
ular, the rules extend a given ABox with all implied concept
memberships and feature agreements.

Definition 8 Let (T ,A) be a CFDI∀−kc KB. We define an
ABox CompletionT (A) to be the least ABoxA′ closed under
the rules in Fig. 3 such that A ⊆ A′. 2

2Note that the algorithm terminates for an arbitrary T since ev-
ery TBox T is a CFDI∀−kc TBox for k = |T |.

2998

If a appears in A then add a = a to A
If a = b ∈ A then add b = a to A

If a = b, ϕ ∈ A then add ϕ[b/a] to A
If a.f = b, a.f = c ∈ A then add b = c to A

(a) ABox Equality Interactions

If A1(a), . . . , Ak(a) ∈ A and T |= A1 u . . . uAk v B then add B(a) to A
If {A(a), a.f = b} ⊆ A and T |= A v ∀f.B then add B(b) to A
If {A(a), b.f = a} ⊆ A and T |= ∀f.A v B then add B(b) to A

(b) ABox–TBox Interactions

If (i) A v B : Pf1, . . . ,Pfk → Pf ∈ T , (ii) A(a), B(b) ∈ A, and (iii) for 1 ≤ i ≤ k, there exists a prefix Pf ′i of Pfi s.t.
a.Pf ′i = ci, b.Pf

′
i = di, ci = di ∈ A then:

1. If a.Pf = c, b.Pf = d ∈ A and c = d 6∈ A then add c = d to A; or
2. If Pf is of the form Pf ′′.f and a.Pf ′′ = c, b.Pf ′′ = d ∈ A, and c = d 6∈ A then (i) if a.Pf = c′ ∈ A then add d.f = c′ to A,

else (ii) if b.Pf = d′ ∈ A then add c.f = d′ to A, otherwise (iii) add c.f = e, d.f = e to A, where e is a new individual.
(c) ABox–PFD Interactions

Figure 3: ABox Completion Rules for CompletionT (A)

Observe that individuals can only be declared to be mem-
bers of primitive concepts since A is in normal form. It is
also easy to see that completion terminates since it can add
at most |T ||A|2 new objects, one for every pair of existing
objects and a feature name.

What remains to verify is that for every ABox object a the
set of primitive concepts {A | A(a) ∈ CompletionT (A)} is
satisfiable with respect to T . We use Corollary 5 to test this
condition for each object a appearing in CompletionT (A).

Theorem 9 (CFDI∀−kc KB Consistency) Let K = (T ,A)

be a CFDI∀−kc KB. Then K is consistent if and only if {A |
A(a) ∈ CompletionT (A)} is satisfiable with respect to T
for every “a” appearing in CompletionT (A). 2

It is easy to see that the above construction can be imple-
mented to run in O(|T |k + |T ||A|2). Other reasoning prob-
lems for CFDI∀−kc , such as logical implication, T |= C v
D, are reduced to KB consistency in the standard way.

4 Partial Features
In this section we utilize our newfound ability to accommo-
date limited conjunctions on the left-hand sides of subsump-
tions to introduce partial features in CFDI∀−kc . We start with
modifying the syntax and semantics for this purpose.

Definition 10 (Partial Features)
1. Features f ∈ F are now interpreted as partial functions

on 4 (i.e., the result can be undefined for some elements
of4);

2. The semantics of path function Pf denotes a partial func-
tion resulting from the composition of partial functions.

3. The syntax of C in feature-based DLs is extended with an
additional concept constructor of the form “∃f”, called
an existential restriction that can then appear on both
sides of subsumptions.

4. The ∃f concept constructor is interpreted as {x | ∃y ∈
4.fI(x) = y}.

5. We adopt a strict interpretation of set membership and
equality. This means that set membership holds only when
the value exists; and equality holds only when both sides
are defined and denote the same object. 2

There are several observations worth making at this point.
First, as a consequence of 2 and 5, the semantics of value
restrictions and PFDs coincide with the original semantics
when features were interpreted as total functions. Note also
that our PFDs agree with the definition of identity con-
straints in (Calvanese et al. 2008), where Pf0 = id, which
also require path values to exist. To further clarify the im-
pact of this observation note that a PFD subsumption of the
form “C1 v C2 : Pf1, . . . ,Pfk → Pf0 ” is violated when
(a) all path functions Pf0, . . . ,Pfk are defined for a C1 ob-
ject e1 and a C2 object e2, and (b) PfIi (e1) = PfIi (e2) holds
only for 1 ≤ i ≤ k. Formally, and more explicitly, this leads
to the following interpretation of PFDs in the presence of
partial features:

(C : Pf1, . . . ,Pfk → Pf0)I =
{x | ∀y.y ∈ CI ∧ x ∈ (∃Pf0)I ∧ y ∈ (∃Pf0)I ∧∧k

i=1(x ∈ (∃Pfi)I ∧ y ∈ (∃Pfi)I ∧ PfIi (x) = PfIi (y))

→ PfI0 (x) = PfI0 (y) }.

Second, as a consequence of item 5, we have the tautology
∀f.E v ∃f for arbitrary f and E (in other words, ∃f is a
top-free notation for ∀f.>).

Finally, since features are still functional, so-called “qual-
ified existential restrictions” of the form “∃f.C”, with se-
mantics given as follows:

(∃f.C)I = {x | ∃y ∈ 4.fI(x) = y ∧ y ∈ CI},

are the same as “∀f.C”. Hence we will write “(∃Pf)” as
shorthand for “(∃f1 u ∀f1.(∃f2 u ∀f2.(. . . (∃fk) . . .)))”.

Example 11 Now that we have partial functions, we can re-
fine our conceptual model to more properly reflect the do-

2999

main and range of features:

(Building u ∃salary) v ⊥
(Building u ∃inBldg) v ⊥
. . .
Building v ∃name u ∃campus u . . .

The new constructor ∃f naturally extends our normal form
to partial-CFDI∀−kc TBoxes by allowing ∃f to appear on
both sides of subsumptions.

The following definition now shows how CFDI∀−kc is able
to simulate its extension with partial functions and existen-
tial restrictions in a straightforward manner. The idea is to
introduce a new atomic concept G that intuitively stands for
“objects in the total model that exist in the partial model”.

Definition 12 Let T be a partial-CFDI∀−kc TBox in normal
form. We then derive a CFDI∀−(k+1)c TBox T ′ from T by
applying the following rules:

1. A v ⊥ 7→ A uG v ⊥
2. A v B 7→ A uG v B
3. A uB v C 7→ A uB uG v C
4. A v ∀f.B 7→ A uG v ∀f.B u ∀f.G
5. ∀f.A v B 7→ ∀f.A u ∀f.G v B
6. A v ∃f 7→ A uG v ∀f.G
7. ∃f v A 7→ ∀f.G v A

and then by adding the subsumption ∀f.G v G to T ′. 2

It is easy to verify that T ′, defined above, is a CFDI∀−(k+1)c

TBox and that:

Theorem 13 Let K = (T ,A) be a partial-CFDI∀−kc KB,
and let T ′ be defined as above. Then K is consistent
if and only if the CFDI∀−(k+1)c KB (T ′,A ∪ {G(a) |
a appears in A}) is consistent. 2

Note that PFDs do not interact with TBox completion and
are applied only in the process of ABox closure. Hence the
only extension necessary is to verify that, in ABox-PFD in-
teractions, the object e necessarily exists (all the other ob-
jects involved are explicitly in the ABox already). This is
achieved by modifying the precondition on the objects a and
b to A u ∃Pf(a) and B u ∃Pf(b), respectively.

Hereon, we assume that logical consequence with respect
to partial-CFDI∀−kc TBoxes is reduced to KB unsatisfiabil-
ity in the standard way.

4.1 On Value Restrictions
In partial-CFDI∀−kc , the value restriction ∀f.A inherits its
definition from CFDI∀−kc , i.e., it is the set of all objects o
that have a feature f and such that f(o) ∈ AI . Note that this
does not impact the fact that features in partial-CFDI∀−kc are
partial. For example, to express that A objects do not have
feature f , one can say Au ∃f v ⊥. Similarly, to restrict the
range of a partial feature without making it total for all A
objects, we can say A u ∃f v ∀f.B.

On the other hand, value restrictions in more traditional
role-based description logics, such as ALC, also cover the
vacuous cases, containing objects for which f is undefined

(in addition to the above). This definition unfortunately leads
to computational difficulties: the disjunctive nature of such
value restriction, when used on left-hand sides of subsump-
tions, destroys the canonical model property of the logic.
This leads to intractability of query answering as shown by
Calvanese et al. (Calvanese et al. 2013).

To regain tractability of our logic we would have to re-
strict the use of value restrictions on the left-hand side of
subsumptions. In our normal form, we would have to re-
place ∀f.A with ∀f.A u ∃f in the grammar for left-hand
side concepts. This would then lead to alternative rules when
simulating the partial-feature logic in the total-feature coun-
terpart in Definition 12:

4′. A v ∀f.B 7→ A uG v ∀f.B
5′. (∀f.A u ∃f) v B 7→ (∀f.A u ∀f.G) v B

5 OBDA for partial-CFDI∀−kc
Conjunctive queries are, as usual, formed from atomic
queries (or atoms) of the form C(x) and x.Pf1 = y.Pf2,
where x and y are variables, using conjunction and exis-
tential quantification. To simplify notation, we conflate con-
junctive queries with the set of its constituent atoms and a
set of answer variables:
Definition 14 (Conjunctive Query)
Let ϕ be a set of atoms (representing a conjunction) C(xi)
and xi1 .Pf1 = xi2 .Pf2 (where C is a concept description),
Pfi path functions, and x̄ a tuple of variables. We call the
expression {x̄ | ϕ} a conjunctive query (CQ). 2

A conjunctive query {x̄ | ϕ} is therefore a notational variant
of the formula ∃ȳ.

∧
ψ∈ϕ ψ in which ȳ contains all variables

appearing in ϕ but not in x̄. The usual definition of certain
answers is given by the following:
Definition 15 (Certain Answer)
Let K be a partial-CFDI∀−kc KB and Q = {x̄ | ϕ} a CQ.
A certain answer to Q over K is a substitution of constant
symbols ā, [x̄ 7→ ā], such that K |= Q[x̄ 7→ ā]. 2

As is the case with TBoxes and ABoxes, a CQ can be rep-
resented in a normal form, a form in which all atoms in the
CQ are of the form “A(x)” or “x.f = y”, whereA is a prim-
itive concept and f a feature. This can be easily achieved by
introducing additional non-answer (existentially quantified)
variables and primitive concepts equivalent to the complex
ones in the query. For the remainder of the paper, we also as-
sume CQs are always connected. (Evaluating disconnected
CQs is easily achieved by considering each component sep-
arately.)
Example 16 A query asking for all students whose man-
agers are professors is

{(x) | {Student(x), x.hasMgrRef = w,Prof(w)}}

The second step in query answering, following ABox com-
pletion, relies on query reformulation with respect to T . This
step is necessary to keep the data complexity of query an-
swering in PTIME: CFDI∀−kc can force exponentially many
anonymous objects with distinct class membership to ex-
ist due to value restrictions using a construction similar to

3000

1. If {A1(x), . . . , An(x)} ⊆ ψ and T |= A1 u . . . uAn v ⊥ then Fold(Q) := Fold(Q)− {{ȳ | ψ}}.

2. If {x.f = y, x.f = z} ⊆ ψ then Fold(Q) := Fold(Q)− {{ȳ | ψ}} ∪ {{ȳ | ψ}[z/y]}.

3. If {x.f = z, y.f = z} ⊆ ψ then Fold(Q) := Fold(Q) ∪ {{ȳ | ψ}[x/y]}.

4. If {A1(x), . . . , An(x), B(x)} ⊆ ψ and T |= A1u. . .uAn v B then Fold(Q) := Fold(Q)−{{ȳ | ψ}}∪{{ȳ | ψ−{B(x)}}}.

5. If {x.f = y,A1(y), . . . , An(y)} ⊆ ψ and y does not appear elsewhere in ψ nor in ȳ then Fold(Q) := Fold(Q) ∪ {{ȳ | ψ′}}
for all ψ′ = ψ − {x.f = y,A1(y), . . . , An(y)} ∪ {B0,i0(x), . . . , Bn,in(x)} for which T |= B0,i0 v ∃f and T |= Bi,ij v
∀f.Ai for i > 0 and where Bi,ij are all such maximal primitive concepts w.r.t. v.

6. If {y.f = x,A1(y), . . . , An(y)} ⊆ ψ and y does not appear elsewhere in ψ nor in ȳ then Fold(Q) := Fold(Q)∪ {{ȳ | ψ′}},
for all ψ′ = ψ − {y.f = x,A1(y), . . . , An(y)} ∪ {B0,i0(x), . . . , Bn,in(x)} for which T |= B0,i0 v ∃f−1 and T |=
∀f.Bi,ij v Ai for i > 0 and where Bi,ij are all such maximal primitive concepts w.r.t. v.

Figure 4: Query Rewriting Rules for {ȳ | ψ} ∈ FoldT (Q).

(St. Jacques, Toman, and Weddell 2016). While, in principle
we could create a representative for each such possibility
along the lines of the combined approach (Lutz, Toman, and
Wolter 2009; Kontchakov et al. 2010), the resulting com-
pleted ABox would no longer be polynomial in the size of
the original knowledge base. To avoid the need for such an
“expensive” ABox completion, our approach treats matches
to anonymous individuals by query reformulation—an idea
first suggested in (Calvanese et al. 2007). Note however that
our rewriting differs from “perfect rewriting”: since we per-
form ABox completion for all objects in a given ABox (see
Fig. 3) we can greatly simplify the query rewriting and make
the result smaller since we no longer need to expand the
query, e.g., w.r.t. concept hierarchies.

Definition 17 Let Q = {ȳ | ϕ} be a CQ. We write
FoldT (Q) to denote the set of CQs (implicitly denoting the
union of their results) that is obtained by applying exhaus-
tively the rewrite rules in Fig. 4 to the initial set {{ȳ | ϕ}}.
2

The key idea underlying this definition is that, to find query
answers, it is now sufficient to match queries in FoldT (Q)
explicitly against the (completed) ABox CompletionT (A);
matches outside the ABox are captured by query reformula-
tion (rules 5 and 6); removed parts of the query (rules 1,2,4)
are implied by T ; rule 3 makes possible the application of
rules 5 and 6.

Lemma 18 Let Q be a CQ with at least one answer vari-
able. Then ā is a certain answer to Q over K = (T ,A) if
and only if ā is an answer for some {x̄ | ψ} ∈ FoldT (Q)
over CompletionT (A).

Proof (sketch): By observing that the extended ABox
CompletionT (A) is essentially a part of the minimal model
of K (since K is Horn) and that every element of FoldT (Q)
implies Q, it is easy to see that whenever (1-6) are satis-
fied, there is a match of Q in the minimal model and thus
ā is an answer. Conversely, if a match of Q in a minimal
model exists yielding ā as an answer, then part of the match
will be realized in the ABox (since at least the answer vari-
ables must be bound to ABox individuals) and the remain-
der of the match must be forest-like. Hence, an element in

FoldT (Q) matches in the ABox since the remaining con-
juncts must be implied by T . 2

Example 19 Suppose we have an additional axiom in our
TBox which specializes the range of hasMgrRef for
StudentWorkers to be professors: StudentWorker v
∀hasMgrRef.Prof. To find FoldT (Q) for the query in
Example 16, we consider the subset {x.hasMgrRef =
w,Prof(w)} is replaced by {StudentWorker(x)} by
applying rule 5: using the above axiom and axioms in our
original ontology, StudentWorker v ∃hasMgrRef can
be derived from StudentWorker v Student (from
the definition of StudentWorker), and Student v
∀hasMgrRef.Employee u ∃hasMgrRef, which is ob-
tained from the foreign key hasMgr, once features become
partial, as in Example 11. Then, the query becomes the
set {Student(x),StudentWorker(x)}, which in turn
is reduced to {StudentWorker(x)}, since the ontology
has StudentWorker v Student.
For CQ without answer variables, we need an additional step
that checks whether the query, when it can be folded to a
concept (called C below) matches in the tree part of every
model of K. We use the KB consistency check to determine
whether a concept is forced in a model of a KB. Thus, given
a partial-CFDI∀−kc TBox T we check for every combination
of primitive concepts A1, . . . , Ak (that could potentially la-
bel an object in an ABox):
• (T , {A1(a), . . . , Ak(a)}) is consistent, and
• (T ∪ {C v ⊥}, {A1(a), . . . , Ak(a)}) is not consistent.
If so we say that A1, . . . , Ak force C in T . To account for
forcing we extend the query rewriting in Definition 17 as
follows:

7. If x̄ = 〈〉 in Q = {x̄ | ϕ} and ϕ is equivalent to a concept
C. Then Fold(Q) := Fold(Q)∪{〈〉 | A1(x)∧. . .∧Ak(x)}
for every combination of primitive concepts A1, . . . , Ak
that force C in T .

This construction accounts for matches in the anonymous
part of the minimal model of K, and yields the following
Lemma:
Lemma 20 Let Q be a CQ without answer variables and
K a partial-CFDI∀−kc KB. Then K |= Q if and only if

3001

at least one {〈〉 | ψ} ∈ FoldT (Q) evaluates to true over
CompletionT (A).

Proof (sketch): The first condition is similar to Lemma 18,
the second allows for queries that can be folded into a con-
cept to be realized completely outside of the (extended)
ABox. Non-emptiness of the models of C indeed corre-
sponds to finding an object that makes the query true in the
minimal model. 2

Combining the results in Lemmata 18 and 20 yields the
needed query reformulation for all CQ (and in turn for all
UCQ and other syntactically positive queries).

6 Summary and Future Work
The contributions in this paper are twofold. First, we intro-
duce CFDI∀−kc , a new dialect of the CFD family of DLs
admitting a limited use of concept conjunction in left-hand
sides of TBox subsumption while maintaining parameter-
ized tractability of reasoning. We show how this makes it
possible to simulate partial functions, and also how con-
junctive queries can be reformulated to enable OBDA over a
CFDI∀−kc KB. We have also combined our results with refer-
ring expressions to provide a richer framework in which to
accomplish OBDA over relational data sources, and, in par-
ticular, to avoid object id invention needed, e.g., to capture
PFD-generated equalities in Fig. 3 (these results are beyond
the limits of this paper). Hence the techniques presented here
are expected to perform as well or better than the experi-
mental results reported in (St. Jacques, Toman, and Weddell
2016). For future work, we plan to explore how referring ex-
pressions can be used to account for other equalities outside
of an ABox that more powerful DLs might induce, e.g, by
limited use of the “same-as” concept constructor (Borgida
and Patel-Schneider 1994).

Acknowledgments
We thank the anonymous reviewers for their suggestions,
which helped considerably to improve the paper. The re-
search was supported by NSERC Discovery Grants from the
government of Canada.

References
Bienvenu, M.; Kikot, S.; Kontchakov, R.; Podolskii, V. V.;
Ryzhikov, V.; and Zakharyaschev, M. 2017. The com-
plexity of ontology-based data access with OWL 2 QL and
bounded treewidth queries. In Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS 2017, 201–216.
Borgida, A., and Patel-Schneider, P. F. 1994. A Semantics
and Complete Algorithm for Subsumption in the CLASSIC
Description Logic. J. of AI Research 1:277–308.
Brachman, R. J. 1977. What’s in a concept: structural
foundations for semantic networks. International journal
of man-machine studies 9(2):127–152.
Calı̀, A.; Gottlob, G.; and Pieris, A. 2012. Towards more ex-
pressive ontology languages: The query answering problem.
Artif. Intell. 193:87–128.

Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query
answering in description logics: The DL-Lite family. J. Au-
tom. Reasoning 39(3):385–429.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2008. Path-Based Identification Constraints
in Description Logics. In KR, 231–241.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2013. Data complexity of query answering
in description logics. Artif. Intell. 195:335–360.
Hull, R., and King, R. 1987. Semantic database model-
ing: Survey, applications, and research issues. ACM Com-
put. Surv. 19(3):201–260.
International Organization for Standardization. 2016. SQL
– Part 2: Foundation (SQL/Foundation). ISO/IEC 9075-
2:2016.
Khizder, V. L.; Toman, D.; and Weddell, G. 2000. Reason-
ing about Duplicate Elimination with Description Logic. In
DOOD, 1017–1032.
Kontchakov, R.; Lutz, C.; Toman, D.; Wolter, F.; and Za-
kharyaschev, M. 2010. The combined approach to query
answering in DL-Lite. In Proc. KR, 247–257.
Lutz, C.; Seylan, I.; Toman, D.; and Wolter, F. 2013. The
combined approach to OBDA: Taming role hierarchies using
filters. In ISWC (1), 314–330.
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In Proc. IJCAI, 2070–2075.
Mylopoulos, J.; Bernstein, P. A.; and Wong, H. K. T. 1980.
A language facility for designing database-intensive appli-
cations. ACM Trans. Database Syst. 5(2):185–207.
Simancik, F.; Motik, B.; and Horrocks, I. 2014.
Consequence-based and fixed-parameter tractable reasoning
in description logics. Artif. Intell. 209:29–77.
St. Jacques, J.; Toman, D.; and Weddell, G. E. 2016. Object-
relational queries over CFDInc knowledge bases: OBDA
for the SQL-Literate. In Proc. IJCAI, 1258–1264.
Toman, D., and Weddell, G. 2005. On Reasoning about
Structural Equality in XML: A Description Logic Approach.
Theoretical Computer Science 336(1):181–203.
Toman, D., and Weddell, G. E. 2014. On adding inverse
features to the description logic CFD∀nc. In PRICAI 2014,
587–599.
Zaniolo, C. 1983. The database language GEM. In ACM
SIGMOD Int. Conf. on Management of Data, 207–218.

3002

