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Abstract

There are multiple notions of coalitional responsibility. The
focus of this paper is on the blameworthiness defined through
the principle of alternative possibilities: a coalition is blam-
able for a statement if the statement is true, but the coali-
tion had a strategy to prevent it. The main technical result is
a sound and complete bimodal logical system that describes
properties of blameworthiness in one-shot games.

Introduction
It was a little after 9am on Friday, July 20th 2018, when a
four-year-old boy accidentally shot his two-year old cousin
in the town of Muscoy in Southern California. The vic-
tim was taken to a hospital, where she died an hour
later (Oreskes 2018). The police arrested Cesar Lopez, vic-
tim’s grandfather, as a felon in possession of a firearm and
for child endangerment (Juarez and Miracle 2018).

The first charge against Lopez, a previously convicted
felon, is based on California Penal Code §29800 (a) (1) that
prohibits firearm access to “any person who has been con-
victed of, or has an outstanding warrant for, a felony un-
der the laws of the United States, the State of California, or
any other state, government, or country...”. We assume that
Lopez knew that California state law bans him from owning
a gun, but his actions guaranteed that he broke the law.

The second charge is different because Lopez clearly
never intended for his granddaughter to be killed. He never
took any actions that would force her death. Nevertheless,
he is blamed for not taking an action (locking the gun) to
prevent the tragedy. Blameworthiness is tightly connected to
the legal liability for negligence (Goudkamp 2004).

We are interested in logical systems for reasoning about
different forms of responsibility. Xu (1998) introduced a
complete axiomatization of a modal logical system for rea-
soning about responsibility defined as taking actions that
guarantee a certain outcome. In our example, by possessing
a gun Lopez guaranteed that he was responsible for break-
ing California law. Broersen, Herzig, and Troquard (2009)
extended Xu’s work from individual responsibility to group
responsibility. In this paper we propose a complete logical
system for reasoning about another form of responsibility
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that we call blameworthiness: a coalition is blamable for an
outcome ϕ if ϕ is true, but the coalition had a strategy to
prevent ϕ. In our example, Lopez had a strategy to prevent
the death by keeping the gun in a safe place.

Principle of Alternative Possibilities Throughout cen-
turies, blameworthiness, especially in the context of free will
and moral responsibility, has been at the focus of philosophi-
cal discussions (Singer and Eddon 2013). Modern works on
this topic include (Fields 1994; Fischer and Ravizza 2000;
Nichols and Knobe 2007; Mason 2015; Widerker 2017).
Frankfurt (1969) acknowledges that a dominant role in these
discussions has been played by what he calls a principle of
alternate possibilities: “a person is morally responsible for
what he has done only if he could have done otherwise”.
As with many general principles, this one has many limita-
tions that Frankfurt discusses; for example, when a person
is coerced into doing something. Following the established
tradition (Widerker 2017), we refer to this principle as the
principle of alternative possibilities. Cushman (2015) talks
about counterfactual possibility: “a person could have pre-
vented their harmful conduct, even though they did not.”

Halpern and Pearl proposed several versions of a for-
mal definition of causality as a relation between sets of
variables (Halpern 2016). This definition uses the counter-
factual requirement which formalizes the principle of al-
ternative possibilities. Halpern and Kleiman-Weiner (2018)
used a similar setting to define degrees of blameworthi-
ness. Batusov and Soutchanski (2018) gave a counterfactual-
based definition of causality in situation calculus. (Alechina,
Halpern, and Logan 2017) applied Halpern and Pearl defini-
tion of causality to team plans.

Coalitional Power in Strategic Games Pauly (2001;
2002) introduced logics of coalitional power that can be
used to describe group abilities to achieve a certain re-
sult. His approach has been widely studied in the litera-
ture (Goranko 2001; van der Hoek and Wooldridge 2005;
Borgo 2007; Sauro et al. 2006; Ågotnes et al. 2010; Ågotnes,
van der Hoek, and Wooldridge 2009; Belardinelli 2014;
Goranko, Jamroga, and Turrini 2013; Alechina et al. 2011;
Galimullin and Alechina 2017; Goranko and Enqvist 2018).

In this paper we use Marc Pauly’s framework to define
blameworthiness of coalitions of players in strategic (one-
shot) games. We say that a coalition C could be blamed for
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an outcome ϕ if ϕ is true, but the coalition C had a strat-
egy to prevent ϕ. Thus, just like Halpern and Pearl’s formal
definition of causality, our definition of blameworthiness is
based on the principle of alternative possibilities. However,
because Marc Pauly’s framework separates agents and out-
comes, the proposed definition of blameworthiness is differ-
ent and, arguably, more succinct.

The main technical result of this paper is a sound and
complete bimodal logical system describing the interplay
between group blameworthiness modality and necessity (or
universal truth) modality. Our system is significantly differ-
ent from earlier mentioned axiomatizations (Xu 1998) and
(Broersen, Herzig, and Troquard 2009) because our seman-
tics incorporates the principle of alternative possibilities.

Paper Outline This paper is organized as follows. First,
we introduce the formal syntax and semantics of our logical
system. Next, we state and discuss its axioms. In the section
that follows, we give examples of formal derivations in our
system. In the next two sections we prove the soundness and
the completeness. The last section concludes with a discus-
sion of possible future work.

Syntax and Semantics
In this paper we assume a fixed set A of agents and a fixed
set of propositional variables Prop. By a coalition we mean
an arbitrary subset of set A.

Definition 1 Φ is the minimal set of formulae such that

1. p ∈ Φ for each variable p ∈ Prop,
2. ϕ→ ψ,¬ϕ ∈ Φ for all formulae ϕ,ψ ∈ Φ,
3. Nϕ, BCϕ ∈ Φ for each coalition C ⊆ A and each for-

mula ϕ ∈ Φ.

Formula Nϕ is read as “statement ϕ is true under each play”
and formula BCϕ as “coalition C is blamable for ϕ”.

Boolean connectives ∨, ∧, and ↔ as well as constants
⊥ and > are defined in the standard way. By formula Nϕ
we mean ¬N¬ϕ. For the disjunction of multiple formulae,
we assume that parentheses are nested to the left. That is,
formula χ1 ∨ χ2 ∨ χ3 is a shorthand for (χ1 ∨ χ2)∨ χ3. As
usual, the empty disjunction is defined to be ⊥. For any two
setsX and Y , byXY we denote the set of all functions from
Y to X .

The formal semantics of modalities N and B is defined in
terms of models, which we call games.

Definition 2 A game is a tuple (∆,Ω, P, π), where

1. ∆ is a nonempty set of “actions”,
2. Ω is a set of “outcomes”,
3. the set of “plays” P is an arbitrary set of pairs (δ, ω)

such that δ ∈ ∆A and ω ∈ Ω,
4. π is a function that maps Prop into subsets of P .

The example from the introduction can be captured in our
setting by assuming that Lopez is the only actor who has
two possible actions: hide and expose the gun in the game
with two outcomes alive and dead. Although a complete
action profile is a function from the set of all agents to

the domain of actions, in a single agent case any such pro-
file can be described by specifying just the action of the
single player. Thus, by complete action profile hide we
mean action profile that maps agent Lopez into action hide.
The set of possible plays of this game consists of pairs
{(hide, alive), (expose, alive), (expose, dead)}.

The above definition of a game is very close but not iden-
tical to the definition of a game frame in Pauly (2001; 2002)
and the definition of a concurrent game structure, the se-
mantics of ATL (Alur, Henzinger, and Kupferman 2002).
Unlike these works, here we assume that the domain of
choices is the same for all states and all agents. This dif-
ference is insignificant because all domains of choices in
a game frame/concurrent game structure could be replaced
with their union. More importantly, we assume that the
mechanism is a relation, not a function. Our approach is
more general, as it allows us to talk about blameworthiness
in nondeterministic games, it also results in fewer axioms.
Also, we do not assume that for any complete action pro-
file δ there is at least one outcome ω such that (δ, ω) ∈ P .
Thus, we allow the system to terminate under some action
profiles without reaching an outcome. Without this assump-
tion, we would need to add one extra axiom: ¬BC> and to
make minor changes in the proof of the completeness.

Finally, in this paper we assume that atomic propositions
are interpreted as statements about plays, not just outcomes.
For example, the meaning of an atomic proposition p could
be statement “either Lopez locked his gun or his grand-
daughter is dead”. This is a more general approach than the
one used in the existing literature, where atomic propositions
are usually interpreted as statements about just outcomes.
This difference is formally captured in the above definition
through the assumption that value of π is a set of plays, not
just a set of outcomes. As a result of this more general ap-
proach, all other statements in our logical system are also
statements about plays, not outcomes. This is why relation
 in Definition 3 has a play (not an outcome) on the left.

If s1 and s2 are action profiles of coalitions C1 and C2,
respectively, and C is any coalition such that C ⊆ C1 ∩ C2,
then we write s1 =C s2 to denote that s1(a) = s2(a) for
each agent a ∈ C.

Next is the key definition of this paper. Its item 5 formally
specifies blameworthiness using the principle of alternative
possibilities.

Definition 3 For any play (δ, ω) ∈ P of a game
(∆,Ω, P, π) and any formula ϕ ∈ Φ, the satisfiability re-
lation (δ, ω)  ϕ is defined recursively as follows:

1. (δ, ω)  p if (δ, ω) ∈ π(p), where p ∈ Prop,
2. (δ, ω)  ¬ϕ if (δ, ω) 1 ϕ,
3. (δ, ω)  ϕ→ ψ if (δ, ω) 1 ϕ or (δ, ω)  ψ,
4. (δ, ω)  Nϕ if (δ′, ω′)  ϕ for each play (δ′, ω′) ∈ P ,
5. (δ, ω)  BCϕ if (δ, ω)  ϕ and there is s ∈ ∆C

such that for each play (δ′, ω′) ∈ P , if s =C δ′, then
(δ′, ω′) 1 ϕ.

Note that in part 5 of the above definition we do not as-
sume that coalition C is a minimal one that could have pre-
vented the outcome. This is different from the definition of
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blameworthiness in (Halpern 2017). Our approach is con-
sistent with how word “blame” is often used in English. For
example, the sentence “Millennials being blamed for decline
of American cheese” (Gant 2018) does not imply that no one
in the millennial generation likes American cheese.

Axioms
In addition to the propositional tautologies in language Φ,
our logical system contains the following axioms.

1. Truth: Nϕ→ ϕ and BCϕ→ ϕ,
2. Distributivity: N(ϕ→ ψ)→ (Nϕ→ Nψ),
3. Negative Introspection: ¬Nϕ→ N¬Nϕ,
4. None to Blame: ¬B∅ϕ,
5. Joint Responsibility: if C ∩D = ∅, then

NBCϕ ∧ NBDψ → (ϕ ∨ ψ → BC∪D(ϕ ∨ ψ)),
6. Blame for Cause: N(ϕ → ψ) → (BCψ → (ϕ →

BCϕ)),
7. Monotonicity: BCϕ→ BDϕ, where C ⊆ D,
8. Fairness: BCϕ→ N(ϕ→ BCϕ).

We write ` ϕ if formula ϕ is provable from the axioms of
our system using the Modus Ponens and the Necessitation
inference rules:

ϕ,ϕ→ ψ

ψ
,
ϕ

Nϕ
.

We write X ` ϕ if formula ϕ is provable from the theo-
rems of our logical system and an additional set of axioms
X using only the Modus Ponens inference rule.

The Truth axiom for modality N, the Distributivity ax-
iom, and the Negative Introspection axiom together with the
Necessitation inference rule capture the fact that modality
N, per Definition 3, is an S5 modality and thus satisfies all
standard S5 properties.

The Truth axiom for modality B states that any coalition
can be blamed only for a statement which is true. The None
to Blame axiom states that the empty coalition cannot be
blamed for anything. Intuitively, this axiom is true because
the empty coalition has no power to prevent anything.

The Joint Responsibility axiom states that if disjoint coali-
tions C and D can be blamed for statements ϕ and ψ, re-
spectively, on some other (possibly two different) plays of
the game and the disjunction ϕ ∨ ψ is true on the current
play, then the union of the two coalitions can be blamed for
this disjunction on the current play. This axiom remotely re-
sembles Xu (1998) axiom for the independence of individual
agents, which in our notations can be stated as

NBa1
ϕ1 ∧ · · · ∧ NBan

ϕn → N(Ba1
ϕ1 ∧ · · · ∧ Ban

ϕn).

Broersen, Herzig, and Troquard (2009) captured the inde-
pendence of disjoint coalitions C and D in their Lemma 17:

NBCϕ ∧ NBDψ → N(BCϕ ∧ BDψ).

In spite of these similarities, the definition of responsibil-
ity used in (Xu 1998) and (Broersen, Herzig, and Troquard
2009) does not assume the principle of alternative possibili-
ties. The Joint Responsibility axiom is also similar to Marc

Pauly (2001; 2002) Cooperation axiom for logic of coali-
tional power:

SCϕ ∧ SDψ → SC∪D(ϕ ∧ ψ),

where coalitions C and D are disjoint and SCϕ stands for
“coalition C has a strategy to achieve ϕ”.

The Blame for Cause axiom states that if formula ϕ uni-
versally implies ψ (informally, ϕ is a “cause” of ψ), then
any coalition blamable for ψ should also be blamable for the
“cause” ϕ as long as ϕ is actually true. The Monotonicity
axiom states that any coalition is blamed for anything that a
subcoalition is blamed for. Finally, the Fairness axiom states
that if a coalitionC is blamed for ϕ, then it should be blamed
for ϕ whenever ϕ is true.

Examples of Derivations
The soundness of the axioms of our logical system is es-
tablished in the next section. In this section we give sev-
eral examples of formal proofs in our system. Together with
the Truth axiom, the first example shows that statements
BCBCϕ and BCϕ are equivalent in our system. That is,
coalition C can be blamed for being blamed for ϕ if and
only if it can be blamed for ϕ.
Lemma 1 ` BCϕ→ BCBCϕ.

PROOF. Note that ` BCϕ → ϕ by the Truth axiom. Thus,
` N(BCϕ→ ϕ) by the Necessitation rule. At the same time,

` N(BCϕ→ ϕ)→ (BCϕ→ (BCϕ→ BCBCϕ))

is an instance of the Blame for Cause axiom. Then,
` BCϕ → (BCϕ → BCBCϕ) by the Modus Ponens
inference rule. Therefore, ` BCϕ → BCBCϕ by the
propositional reasoning. �

The rest of the examples in this section are used later in
the proof of the completeness.

Lemma 2 ` NBCϕ→ (ϕ→ BCϕ).

PROOF. Note that ` BCϕ → N(ϕ → BCϕ) by the Fairness
axiom. Hence, ` ¬N(ϕ → BCϕ) → ¬BCϕ, by the law
of contrapositive. Thus, ` N(¬N(ϕ→ BCϕ)→ ¬BCϕ) by
the Necessitation inference rule. Hence, by the Distributivity
axiom and the Modus Ponens inference rule,

` N¬N(ϕ→ BCϕ)→ N¬BCϕ.

At the same time, by the Negative Introspection axiom:

` ¬N(ϕ→ BCϕ)→ N¬N(ϕ→ BCϕ).

Thus, by the laws of propositional reasoning,

` ¬N(ϕ→ BCϕ)→ N¬BCϕ.

Hence, by the law of contrapositive,

` ¬N¬BCϕ→ N(ϕ→ BCϕ).

Note that N(ϕ → BCϕ) → (ϕ → BCϕ) is an instance of
the Truth axiom. Thus, by propositional reasoning,

` ¬N¬BCϕ→ (ϕ→ BCϕ).

Hence, ` NBCϕ→ (ϕ→ BCϕ) by the definition of N. �
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Lemma 3 If ` ϕ↔ ψ, then ` BCϕ→ BCψ.

PROOF. By the Blame for Cause axiom,

` N(ψ → ϕ)→ (BCϕ→ (ψ → BCψ)).

Assumption ` ϕ ↔ ψ implies ` ψ → ϕ by the laws of
propositional reasoning. Thus, ` N(ψ → ϕ) by the Neces-
sitation inference rule. Hence, by the Modus Ponens rule,

` BCϕ→ (ψ → BCψ).

Thus, by the laws of propositional reasoning,

` (BCϕ→ ψ)→ (BCϕ→ BCψ). (1)

Note that ` BCϕ → ϕ by the Truth axiom. At the same
time, ` ϕ ↔ ψ by the assumption of the lemma. Thus,
by the laws of propositional reasoning, ` BCϕ → ψ.
Therefore, ` BCϕ → BCψ by the Modus Ponens inference
rule from statement (1). �

Lemma 4 ϕ ` Nϕ.

PROOF. By the Truth axioms, ` N¬ϕ → ¬ϕ. Thus, by the
law of contrapositive, ` ϕ→ ¬N¬ϕ. Hence, ` ϕ→ Nϕ by
the definition of the modality N. Therefore, ϕ ` Nϕ by the
Modus Ponens inference rule. �

The next lemma generalizes the Joint Responsibility ax-
iom from two coalitions to multiple coalitions.
Lemma 5 For any integer n ≥ 0 and any pairwise disjoint
sets D1, . . . , Dn,

{NBDi
χi}ni=1, χ1 ∨ · · · ∨χn ` BD1∪···∪Dn

(χ1 ∨ · · · ∨χn).

PROOF. We prove the lemma by induction on n. If n = 0,
then disjunction χ1∨· · ·∨χn is Boolean constant false⊥ by
definition. Thus, the statement of the lemma is ⊥ ` B∅⊥,
which is provable in the propositional logic due to the as-
sumption ⊥ on the left-hand side of `.

Next, suppose that n = 1. Then, from Lemma 2 it follows
that NBD1

χ1, χ1 ` BD1
χ1.

Suppose that n ≥ 2. By the Joint Responsibility axiom
and the Modus Ponens inference rule,

NBD1∪···∪Dn−1(χ1 ∨ · · · ∨ χn−1),NBDnχn,

χ1 ∨ · · · ∨ χn−1 ∨ χn

` BD1∪···∪Dn−1∪Dn
(χ1 ∨ · · · ∨ χn−1 ∨ χn).

Thus, by Lemma 4,

BD1∪···∪Dn−1(χ1 ∨ · · · ∨ χn−1),NBDn
χn,

χ1 ∨ · · · ∨ χn−1 ∨ χn

` BD1∪···∪Dn−1∪Dn
(χ1 ∨ · · · ∨ χn−1 ∨ χn).

At the same time, by the induction hypothesis,

{NBDi
χi}n−1i=1 , χ1 ∨ · · · ∨ χn−1

` BD1∪···∪Dn−1
(χ1 ∨ · · · ∨ χn−1).

Hence,
{NBDi

χi}ni=1, χ1 ∨ · · · ∨ χn−1, χ1 ∨ · · · ∨ χn−1 ∨ χn

` BD1∪···∪Dn−1∪Dn (χ1 ∨ · · · ∨ χn−1 ∨ χn).

Since χ1 ∨ · · · ∨ χn−1 ` χ1 ∨ · · · ∨ χn−1 ∨ χn is provable
in propositional logic,

{NBDiχi}ni=1, χ1 ∨ · · · ∨ χn−1

` BD1∪···∪Dn−1∪Dn
(χ1 ∨ · · · ∨ χn−1 ∨ χn). (2)

Similarly, by the Joint Responsibility axiom and the Modus
Ponens inference rule,

NBD1χ1,NBD2∪···∪Dn(χ2 ∨ · · · ∨ χn),

χ1 ∨ (χ2 ∨ · · · ∨ χn)

` BD1∪···∪Dn−1∪Dn
(χ1 ∨ (χ2 ∨ · · · ∨ χn)).

Since formula χ1 ∨ (χ2 ∨ · · · ∨ χn)↔ χ1 ∨ χ2 ∨ · · · ∨ χn

is provable in the propositional logic, by Lemma 3,

NBD1χ1,NBD2∪···∪Dn (χ2 ∨ · · · ∨ χn), χ1 ∨ χ2 ∨ · · · ∨ χn

` BD1∪···∪Dn−1∪Dn (χ1 ∨ χ2 ∨ · · · ∨ χn).

Thus, by Lemma 4,

NBD1
χ1,BD2∪···∪Dn (χ2 ∨ · · · ∨ χn), χ1 ∨ χ2 ∨ · · · ∨ χn

` BD1∪···∪Dn−1∪Dn (χ1 ∨ χ2 ∨ · · · ∨ χn).

At the same time, by the induction hypothesis,

{NBDiχi}ni=2, χ2 ∨ · · · ∨χn ` BD2∪···∪Dn(χ2 ∨ · · · ∨χn).

Hence,

{NBDi
χi}ni=1, χ2 ∨ · · · ∨ χn, χ1 ∨ χ2 ∨ · · · ∨ χn

` BD1∪D2∪···∪Dn(χ1 ∨ χ2 ∨ · · · ∨ χn).

Since χ2 ∨ · · · ∨ χn ` χ1 ∨ · · · ∨ χn−1 ∨ χn is provable in
propositional logic,

{NBDi
χi}ni=1, χ2 ∨ · · · ∨ χn

` BD1∪···∪Dn−1∪Dn(χ1 ∨ χ2 ∨ · · · ∨ χn). (3)

Finally, note that the following statement is provable in the
propositional logic for n ≥ 2,

` χ1 ∨ · · · ∨ χn → (χ1 ∨ · · · ∨ χn−1) ∨ (χ2 ∨ · · · ∨ χn).

Therefore, from statement (2) and statement (3),

{NBDi
χi}ni=1, χ1 ∨ · · · ∨ χn ` BD1∪···∪Dn

(χ1 ∨ · · · ∨ χn)

by the laws of propositional reasoning. �

Note that modality N satisfies all axioms of S5. The fol-
lowing two lemmas state well-known property of S5. Their
proofs can be found, for example, in (Naumov and Tao
2018a).

Lemma 6 If ϕ1, . . . , ϕn ` ψ, then Nϕ1, . . . ,Nϕn ` Nψ.
�

Lemma 7 ` Nϕ→ NNϕ. �

Lemma 8 For any integer n ≥ 0 and any disjoint sets
D1, . . . , Dn ⊆ C,

{NBDi
χi}ni=1,N(ϕ→ χ1 ∨ · · · ∨ χn) ` N(ϕ→ BCϕ).
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PROOF. By Lemma 5,

{NBDi
χi}ni=1, χ1 ∨ · · · ∨χn ` BD1∪···∪Dn

(χ1 ∨ · · · ∨χn).

Thus, by the Monotonicity axiom,

{NBDiχi}ni=1, χ1 ∨ · · · ∨ χn ` BC(χ1 ∨ · · · ∨ χn).

Hence, by the Modus Ponens inference rule

{NBDi
χi}ni=1, ϕ, ϕ→ χ1 ∨ · · · ∨χn ` BC(χ1 ∨ · · · ∨χn).

By the Truth axiom and the Modus Ponens inference rule,

{NBDiχi}ni=1, ϕ,N(ϕ→ χ1∨· · ·∨χn) ` BC(χ1∨· · ·∨χn).

Note that N(ϕ→ χ1 ∨ · · · ∨χn)→ (BC(χ1 ∨ · · · ∨χn)→
(ϕ → BCϕ)) is an instance of the Blame for Cause axiom.
Thus, by the Modus Ponens inference rule applied twice,

{NBDi
χi}ni=1, ϕ,N(ϕ→ χ1 ∨ · · · ∨ χn) ` ϕ→ BCϕ.

By the Modus Ponens inference rule,

{NBDi
χi}ni=1, ϕ,N(ϕ→ χ1 ∨ · · · ∨ χn) ` BCϕ.

By the deduction lemma,

{NBDiχi}ni=1,N(ϕ→ χ1 ∨ · · · ∨ χn) ` ϕ→ BCϕ.

By Lemma 6,

{NNBDi
χi}ni=1,NN(ϕ→ χ1 ∨ · · · ∨ χn) ` N(ϕ→ BCϕ).

By the definition of modality N, the Negative Introspection
axiom, and the Modus Ponens inference rule,

{NBDi
χi}ni=1,NN(ϕ→ χ1 ∨ · · · ∨ χn) ` N(ϕ→ BCϕ)

Therefore, by Lemma 7 and the Modus Ponens inference
rule, the statement of the lemma follows. �

Soundness
In the following lemmas, (δ, ω) ∈ P is a play of an arbitrary
game (∆,Ω, P, π) and ϕ,ψ ∈ Φ are arbitrary formulae.

Lemma 9 (δ, ω) 1 B∅ϕ.

PROOF. Suppose that (δ, ω)  B∅ϕ. Thus, by Definition 3,
we have (δ, ω)  ϕ and there is an action profile s ∈ ∆∅

such that for each play (δ′, ω′) ∈ P , if s =∅ δ′, then
(δ′, ω′) 1 ϕ.

Consider δ′ = δ and ω′ = ω. Note that s =∅ δ′

is vacuously true. Hence, (δ′, ω′) 1 ϕ. In other words,
(δ, ω) 1 ϕ, which leads to a contradiction. �

Lemma 10 For all sets C,D ⊆ A such that C ∩D = ∅, if
(δ, ω)  NBCϕ, (δ, ω)  NBDψ, and (δ, ω)  ϕ ∨ ψ, then
(δ, ω)  BC∪D(ϕ ∨ ψ).

PROOF. Let (δ, ω)  NBCϕ and (δ, ω)  NBDψ. Thus, by
Definition 3 and the definition of modality N, there are plays
(δ1, ω1) ∈ P and (δ2, ω2) ∈ P such that (δ1, ω1)  BCϕ
and (δ2, ω2)  BDψ.

By Definition 3, statement (δ1, ω1)  BCϕ implies that
there is s1 ∈ ∆C such that for each play (δ′, ω′) ∈ P , if
s1 =C δ′, then (δ′, ω′) 1 ϕ.

Similarly, by Definition 3, statement (δ2, ω2)  BDψ
implies that there is s2 ∈ ∆D such that for each play
(δ′, ω′) ∈ P , if s2 =D δ′, then (δ′, ω′) 1 ψ.

Consider an action profile s of coalition C ∪D such that

s(a) =

{
s1(a), if a ∈ C,
s2(a), if a ∈ D.

Note that the action profile s is well-defined because sets C
and D are disjoint by the assumption of the lemma.

The choice of action profiles s1, s2, and s implies
that for each play (δ′, ω′) ∈ P , if s =C∪D δ′, then
(δ′, ω′) 1 ϕ and (δ′, ω′) 1 ψ. Thus, for each play
(δ′, ω′) ∈ P , if s =C∪D δ′, then (δ′, ω′) 1 ϕ ∨ ψ.
Therefore, (δ, ω)  BC∪D(ϕ ∨ ψ) by Definition 3 and due
to the assumption (δ, ω)  ϕ ∨ ψ of the lemma. �

Lemma 11 If (δ, ω)  N(ϕ → ψ), (δ, ω)  BCψ, and
(δ, ω)  ϕ, then (δ, ω)  BCϕ.

PROOF. By Definition 3, assumption (δ, ω)  BCψ implies
that there is s ∈ ∆C such that for each play (δ′, ω′) ∈ P , if
s =C δ′, then (δ′, ω′) 1 ψ.

At the same time, (δ′, ω′)  ϕ → ψ for each play
(δ′, ω′) ∈ P by the assumption (δ, ω)  N(ϕ → ψ) of
the lemma and Definition 3.

Thus, (δ′, ω′) 1 ϕ for each play (δ′, ω′) ∈ P such that
s =C δ′ by Definition 3. Hence, (δ, ω)  BCϕ by Defini-
tion 3 and the assumption (δ, ω)  ϕ of the lemma. �

Lemma 12 For all sets C,D ⊆ A such that C ⊆ D, if
(δ, ω)  BCϕ, then (δ, ω)  BDϕ.

PROOF. By Definition 3, assumption (δ, ω)  BCϕ implies
that (δ, ω)  ϕ and there is s ∈ ∆C such that for each play
(δ′, ω′) ∈ P , if s =C δ′, then (δ′, ω′) 1 ϕ.

By Definition 2, set ∆ is not empty. Let d0 ∈ ∆. Consider
an action profile s′ of coalition D such that

s′(a) =

{
s(a), if a ∈ C,
d0, if a ∈ D \ C.

Then, by the choice of action profile s and because C ⊆ D,
for each play (δ′, ω′) ∈ P , if s′ =D δ′, then (δ′, ω′) 1 ϕ.
Therefore, (δ, ω)  BDϕ by Definition 3 and because
(δ, ω)  ϕ, as we have shown earlier. �

Lemma 13 If (δ, ω)  BCϕ, then (δ, ω)  N(ϕ→ BCϕ).

PROOF. Consider any play (δ′, ω′) ∈ P . By Definition 3, it
suffices to show that if (δ′, ω′)  ϕ, then (δ′, ω′)  BCϕ.
Thus, again by Definition 3, it suffices to prove there is
s ∈ ∆C such that for each play (δ′′, ω′′) ∈ P , if s =C δ′′,
then (δ′′, ω′′) 1 ϕ. The last statement follows from the
assumption (δ, ω)  BCϕ and Definition 3. �
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Completeness
We start the proof of the completeness by defining the
canonical game G(ω0) = (∆,Ω, P, π) for each maximal
consistent set of formulae ω0.

Definition 4 The set of outcomes Ω is the set of all maximal
consistent sets of formulae ω such that for each formula ϕ ∈
Φ if Nϕ ∈ ω0, then ϕ ∈ ω.

Informally, an action of an agent in the canonical game is
designed to “veto” a formula. The domain of choices of the
canonical model consists of all formulae in set Φ. To veto a
formula ψ, an agent must choose action ψ. The mechanism
of the canonical game guarantees that if NBCψ ∈ ω0 and all
agents in the coalitionC veto formula ψ, then ¬ψ is satisfied
in the outcome.

Definition 5 The domain of actions ∆ is set Φ.

Definition 6 The setP ⊆ ∆A×Ω consists of all pairs (δ, ω)
such that for any formula NBCψ ∈ ω0, if δ(a) = ψ for each
agent a ∈ C, then ¬ψ ∈ ω.

Definition 7 π(p) = {(δ, ω) ∈ P | p ∈ ω}.
This concludes the definition of the canonical game

G(ω0). The next four lemmas are auxiliary results leading
to the proof of the completeness in Theorem 1.

Lemma 14 For any play (δ, ω) ∈ P , any action profile s ∈
∆C , and any formula ¬(ϕ → BCϕ) ∈ ω, there is a play
(δ′, ω′) ∈ P such that s =C δ′ and ϕ ∈ ω′.
PROOF. Consider the following set of formulae:

X = {ϕ} ∪ {ψ | Nψ ∈ ω0}
∪ {¬χ | NBDχ ∈ ω0, D ⊆ C, ∀a ∈ D(s(a) = χ)}.

Claim 1 Set X is consistent.

PROOF OF CLAIM. Suppose the opposite. Thus, there are

formulae Nψ1, . . . ,Nψm ∈ ω0, (4)
and formulae NBD1

χ1, . . . ,NBDn
χn ∈ ω0, (5)

such that D1, . . . , Dn ⊆ C, (6)
s(a) = χi for all a ∈ Di, i ≤ n, (7)

and ψ1, . . . , ψm,¬χ1, . . . ,¬χn ` ¬ϕ. (8)

Without loss of generality, we can assume that formulae
χ1, . . . , χn are distinct. Thus, assumption (7) implies that
sets D1, . . . , Dn are pairwise disjoint.

By propositional reasoning, assumption (8) implies that

ψ1, . . . , ψm ` ϕ→ χ1 ∨ · · · ∨ χn.

Thus, Nψ1, . . . ,Nψm ` N(ϕ→ χ1∨· · ·∨χn), by Lemma 6.
Hence, ω0 ` N(ϕ→ χ1 ∨ · · · ∨ χn), by assumption (4),

Thus, by Lemma 8, using assumptions (5) and the fact that
sets D1, . . . , Dn are pairwise disjoint, ω0 ` N(ϕ → BCϕ).
Hence N(ϕ → BCϕ) ∈ ω0 because set ω0 is maximal.
Then, ϕ→ BCϕ ∈ ω by Definition 4, which contradicts the
assumption ¬(ϕ → BCϕ) ∈ ω of the lemma because set ω
is consistent. Therefore, set X is consistent. �

Let ω′ be any maximal consistent extension of set X .
Thus, ϕ ∈ X ⊆ ω′ by the choice of sets X and ω′. Also,
ω′ ∈ Ω by Definition 4 and the choice of sets X and ω′.

Let the complete action profile δ′ be defined as follows:

δ′(a) =

{
s(a), if a ∈ C,
⊥, otherwise.

(9)

Then, s =C δ′.

Claim 2 (δ′, ω′) ∈ P .

PROOF OF CLAIM. Consider any formula NBDχ ∈ ω0 such
that δ′(a) = χ for each a ∈ D. By Definition 6, it suffices
to show that ¬χ ∈ ω′.
Case I: D ⊆ C. Thus, ¬χ ∈ X by the definition of set X .
Therefore, ¬χ ∈ ω′ by the choice of set ω′.
Case II: D * C. Consider any d0 ∈ D \ C. Thus,
δ′(d0) = ⊥ by equation (9). Also, δ′(d0) = χ because
d0 ∈ D. Thus, χ ≡ ⊥ and formula ¬χ is a tautology.
Hence, ¬χ ∈ ω′ by the maximality of set ω′. �

This concludes the proof of the lemma. �

Lemma 15 For any outcome ω ∈ Ω, there is a complete
action profile δ ∈ ∆A such that (δ, ω) ∈ P .

PROOF. Define a complete action profile δ such that δ(a) =
⊥ for each agent a ∈ A. To prove (δ, ω) ∈ P , consider any
formula NBDχ ∈ ω0 such that δ(a) = χ for each a ∈ D.
By Definition 6, it suffices to show that ¬χ ∈ ω.
Case I: D = ∅. Thus, ` ¬BDχ by the None to Blame ax-
iom. Hence, ` N¬BDχ by the Necessitation inference rule.
Then, ¬N¬BDχ /∈ ω0 by the consistency of the set ω0.
Therefore, NBDχ /∈ ω0 by the definition of the modality
N, which contradicts the choice of formula NBDχ.
Case II: D 6= ∅. Thus, there is at least one agent d0 ∈ D.
Hence, χ = δ(d0) = ⊥ by the definition of the complete
action profile δ. Then, ¬χ is a tautology. Thus, ¬χ ∈ ω by
the maximality of set ω. �

Lemma 16 For any play (δ, ω) ∈ P and any formula
¬Nϕ ∈ ω, there is a play (δ′, ω′) ∈ P such that ¬ϕ ∈ ω′.
PROOF. Consider the set X = {¬ϕ} ∪ {ψ | Nψ ∈ ω0}.
First, we show that set X is consistent. Suppose the oppo-
site. Thus, there are formulae Nψ1, . . . ,Nψn ∈ ω0 such
that ψ1, . . . , ψn ` ϕ. Hence, Nψ1, . . . ,Nψn ` Nϕ by
Lemma 6. Thus, ω0 ` Nϕ because Nψ1, . . . ,Nψn ∈ ω0.
Hence, ω0 ` NNϕ by Lemma 7. Therefore, Nϕ ∈ ω by
assumption ω ∈ Ω and Definition 4. Hence, ¬Nϕ /∈ ω by
the consistency of set ω, which contradicts the assumption
of the lemma. Thus, set X is consistent.

Let ω′ be any maximal consistent extension of set X .
Note that ¬ϕ ∈ X ⊆ ω′ by the definition of set X . By
Lemma 15, there is a complete action profile δ′ such that
(δ′, ω′) ∈ P . �

Lemma 17 (δ, ω)  ϕ iff ϕ ∈ ω for each play (δ, ω) ∈ P
and each formula ϕ ∈ Φ.
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PROOF. We prove the lemma by structural induction on for-
mula ϕ. If ϕ is a propositional variable, then the required
follows from Definition 3 and Definition 7. The cases when
ϕ is an implication or a negation follow from the maximality
and the consistency of set ω in the standard way.

Suppose that formula ϕ has the form Nψ.
(⇒) : Let Nψ /∈ ω. Thus, ¬Nψ ∈ ω by the maximality of set
ω. Hence, by Lemma 16, there is a play (δ′, ω′) ∈ P such
that ¬ψ ∈ ω′. Then, ψ /∈ ω′ by the consistency of set ω′.
Thus, (δ′, ω′) 1 ψ by the induction hypothesis. Therefore,
(δ, ω) 1 Nψ by Definition 3.
(⇐) : Let Nψ ∈ ω. Thus,¬Nψ /∈ ω by the consistency of set
ω. Hence, N¬Nψ /∈ ω0 by Definition 4. Then, ω0 0 N¬Nψ
by the maximality of set ω0. Thus, ω0 0 ¬Nψ by the Nega-
tive Introspection axiom. Hence, Nψ ∈ ω0 by the maximal-
ity of set ω0. Then, ψ ∈ ω′ for each ω′ ∈ Ω by Definition 4.
Thus, by the induction hypothesis, (δ′, ω′)  ψ for each
(δ′, ω′) ∈ P . Therefore, (δ, ω)  Nψ by Definition 3.

Suppose that formula ϕ has the form BCψ.
(⇒) : Assume that BCψ /∈ ω. First, we consider the case
when ψ /∈ ω. Then, (δ, ω) 1 ψ by the induction hypothesis.
Hence, (δ, ω) 1 BCψ by Definition 3.

Next, assume that ψ ∈ ω. Note that ψ → BCψ /∈ ω.
Indeed, if ψ → BCψ ∈ ω, then ω ` BCψ by the Modus
Ponens inference rule. Thus, BCψ ∈ ω by the maximality
of set ω, which contradicts the assumption above.

Because ω is a maximal set, statement ψ → BCψ /∈ ω
implies that ¬(ψ → BCψ) ∈ ω. Thus, by Lemma 14, for
any action profile s ∈ ∆C , there is a play (δ′, ω′) such that
s =C δ′ ψ ∈ ω′. Hence, by the induction hypothesis, for
any action profile s ∈ ∆C there is a play (δ′, ω′) such that
(δ′, ω′)  ψ. Therefore, (δ, ω) 1 BCψ by Definition 3.
(⇐) : Suppose that BCψ ∈ ω. Thus, ω ` ψ by the Truth
axiom. Hence, ψ ∈ ω by the maximality of the set ω. Thus,
(δ, ω)  ψ by the induction hypothesis.

Next, define an action profile s ∈ ∆C to be such that
s(a) = ψ for each a ∈ C. Consider any play (δ′, ω′) ∈ P
such that s =C δ′. By Definition 3, it suffices to show that
(δ′, ω′) 1 ψ.

Statement BCψ ∈ ω implies that ¬BCψ /∈ ω because
set ω is consistent. Thus, N¬BCψ /∈ ω0 by Definition 4
and because ω ∈ Ω. Hence, ¬N¬BCψ ∈ ω0 due to
the maximality of the set ω0. Thus, NBCψ ∈ ω0 by the
definition of modality N. Also, δ′(a) = s(a) = ψ for each
a ∈ C. Hence, ¬ψ ∈ ω′ by Definition 6 and the assumption
(δ′, ω′) ∈ P . Then, ψ /∈ ω′ by the consistency of set ω′.
Therefore, (δ′, ω′) 1 ψ by the induction hypothesis. �

We are now ready to state and prove the strong complete-
ness of our logical system.

Theorem 1 If X 0 ϕ, then there is a game, a complete
action profile δ, and an outcome ω of this game such that
(δ, ω)  χ for each χ ∈ X and (δ, ω) 1 ϕ.

PROOF. Suppose that X 0 ϕ. Thus, set X ∪ {¬ϕ} is con-
sistent. Let ω0 be any maximal consistent extension of set
X∪{¬ϕ} andG(ω0) = (∆,Ω, P, π) be the canonical game
defined above. Note that ω0 ∈ Ω by Definition 4 and the
Truth axiom.

By Lemma 15, there exists a complete action profile
δ ∈ ∆A such that (δ, ω0) ∈ P . Thus, (δ, ω0)  χ for each
χ ∈ X and (δ, ω0)  ¬ϕ by Lemma 17 and the choice of
set ω0. Therefore, (δ, ω0) 1 ϕ by Definition 3. �

Conclusion
In this paper we defined a formal semantics of blameworthi-
ness using the principle of alternative possibilities and Marc
Pauly’s framework for logics of coalitional power. Our main
technical result is a sound and complete bimodal logical sys-
tem that captures properties of blameworthiness in this set-
ting. This work is meant to be a step towards formal reason-
ing about blameworthiness and responsibility.

Recently, there have been several works combining Marc
Pauly’s and epistemic logic frameworks to study the inter-
play between knowledge and know-how strategies (Ågotnes
and Alechina 2012; 2016; Naumov and Tao 2017; 2018b;
2018c; 2018a) as well as a study of such strategies in a
single-agent case (Fervari et al. 2017). Knowledge is clearly
relevant to the study of blameworthiness. Indeed, one can
hardly be blamed for not preventing an outcome if one had
a strategy to prevent it but did not know what this strategy
was. Furthermore, in the legal domain, responsibility is con-
nected to knowledge. For example, US Model Penal Code
specifies five types of responsibility based on what the re-
sponsible party knew or should have known (Institute 1985
Print). In the future, we plan to explore the interplay between
knowledge and blameworthiness/responsibility by introduc-
ing epistemic component to the framework of this paper.
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