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Abstract

We present a novel extension to embedding-based knowl-
edge graph completion models which enables them to per-
form open-world link prediction, i.e. to predict facts for en-
tities unseen in training based on their textual description.
Our model combines a regular link prediction model learned
from a knowledge graph with word embeddings learned from
a textual corpus. After training both independently, we learn
a transformation to map the embeddings of an entity’s name
and description to the graph-based embedding space.
In experiments on several datasets including FB20k, DBPe-
dia50k and our new dataset FB15k-237-OWE, we demon-
strate competitive results. Particularly, our approach exploits
the full knowledge graph structure even when textual descrip-
tions are scarce, does not require a joint training on graph and
text, and can be applied to any embedding-based link predic-
tion model, such as TransE, ComplEx and DistMult.

1 Introduction
Knowledge graphs are a vital source for disambiguation and
discovery in various tasks such as question answering (Fer-
rucci et al. 2010), information extraction (Dong et al. 2014)
and search (Singhal 2012). They are, however, known to suf-
fer from data quality issues (Paulheim 2017). Most promi-
nently, since formal knowledge is inherently sparse, relevant
facts are often missing from the graph.

To overcome this problem, knowledge graph completion
(KGC) or link prediction strives to enrich existing graphs
with new facts. Formally, a knowledge graph G ⊂E×R×E
consists of facts or triples (head, rel, tail), where E and
R denote finite sets of entities and relations respectively.
Knowledge graph completion is targeted at assessing the
probability of triples not present in the graph. To do so,
a common approach involves representing the entities and
relations in triples using real-valued vectors called embed-
dings. The probability of the triple is then inferred by ge-
ometric reasoning over the embeddings. Embeddings are
usually generated by learning to discriminate real triples
from randomly corrupted ones (Nickel et al. 2016; Shi and
Weninger 2017b; Trouillon et al. 2016).

A key problem with most existing approaches is that the
plausibility of links can be determined for known entities
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only. For many applications, however, it is of interest to in-
fer knowledge about entities not present in the graph. Imag-
ine answering the question “What is German actress Ju-
lia Lindig known for?”, where Julia Lindig is not a known
entity. Here, information can be inferred from the ques-
tion, typically using word embeddings (Mikolov et al. 2013;
Pennington, Socher, and Manning 2014; Peters et al. 2018).
Similar to entity embeddings, these techniques represent
words with embedding vectors. These can be pre-trained on
text corpora, thereby capturing word similarity and seman-
tic relations, which may help to predict the plausibility of the
triple (Julia Lindig, starred in, Lola Rennt). This chal-
lenge is known as open-world (or zero-shot) KGC. To the
best of our knowledge, few open-world KGC models have
been proposed so far, all of which are full replacements for
regular KGC models and require textual descriptions for all
entities (Xie et al. 2016; Shi and Weninger 2017a).

In this paper, we suggest a different approach, namely
to extend existing KGC models with pre-trained word em-
beddings. Given an new entity, we aggregate its name and
description into a text-based entity representation. We then
learn a transformation from text-based embedding space to
graph-based embedding space, where we can now apply the
graph-based model for predicting links. We show that this
simple approach yields competitive results, and offers two
key benefits: First, it is independent of the specific KGC
model used, which allows us to use multiple different link
prediction models from which we can pick the best one.
Second, as training on the graph structure happens indepen-
dently from training on text, our approach can exploit the
full-scale knowledge graph structure in situations where tex-
tual information is scarce because learning the transforma-
tion is robust even for such situations. We coin our approach
OWE for Open World Extension and combine it with several
common KGC models, obtaining TransE-OWE, DistMult-
OWE, and ComplEx-OWE.

We demonstrate competitive results on common datasets
for open-world prediction, and also introduce a new dataset
called FB15k-237-OWE, which avoids bias towards long
textual descriptions and trivial regularities like inverse re-
lations. The code and the new FB15k-237-OWE dataset are
available online1.

1https://github.com/haseebs/OWE

3044



2 Related Work
Knowledge Graph Completion Interest in KGC has in-
creased in the past few years, with a focus on embedding-
based methods. A concise survey of earlier works such as
NTN (Socher et al. 2013) and TransE (Bordes et al. 2013)
is provided by (Nickel et al. 2016). TransE has been re-
cently complemented by other models like DistMult (Yang
et al. 2014), ComplEx (Trouillon et al. 2016), ProjE (Shi
and Weninger 2017b) and RDF2Vec (Ristoski and Paulheim
2016).

A common approach is to estimate the probabil-
ity of triples (head, rel, tail) using a scoring function
φ(uhead, urel, utail), where ux denotes the embedding of
entity/relation x and is a real-valued or complex-valued vec-
tor. φ depends on the model and varies from simple trans-
lation (Bordes et al. 2013) over bilinear forms (Yang et
al. 2014) to complex-valued forms (Trouillon et al. 2016).
Training happens by randomly perturbing triples in the
graph and learning to discriminate real triples from per-
turbed ones, typically by using negative sampling.

Word Embeddings Embedding-based representations of
text have become a common approach in natural language
processing (Goldberg 2016). They represent terms, sen-
tences or documents in form of a vector. Word embed-
dings are known to capture term similarities and seman-
tic relations (Mikolov et al. 2013; Pennington, Socher, and
Manning 2014). Word embeddings can also include sub-
word information for out-of-training-vocabulary generaliza-
tion (Bojanowski et al. 2017; Peters et al. 2018), and have
been combined with anchor and link information obtained
from Wikipedia to produce entity-specific embeddings (Ya-
mada et al. 2016).

Text-Enhanced Knowledge Graph Completion While
the knowledge graph completion models described above
leverage only the triple structure of the graph, some ap-
proaches combine text information with the graph infor-
mation. Some of these approaches regularize word em-
beddings based on semantic information, for example, by
adding synonym and other relations from WordNet to the
training set of contextual term pairs (Faruqui et al. 2015;
Yu and Dredze 2014) or by modelling relations like syn-
onyms with translations (Xu et al. 2014). These methods,
however, are not targeted at KGC.

Closer to our work are actual KGC models that em-
ploy text information, such that for entities scarcely linked
in the graph, extra information can be drawn from text.
(Socher et al. 2013; Wang and Li 2016) use averaged pre-
trained word vectors (CBOW) as entity descriptions for ge-
ometric reasoning with affine mappings. (Xu et al. 2017)
tests different aggregation functions for word embeddings
(CBOW, LSTMs, attentive LSTMs) and proposes learning
an entity-wise linear interpolation between graph-based and
text-based embedding, which is combined with a transla-
tional KGC model. (Toutanova and Chen 2015) enhance
KGC with a large set of relations extracted from dependency
parses on a text corpus, and formulate a joint loss func-
tion for text-based and graph-based inputs. However, none

of these works address the open-world setting that we target
in this paper.

Only few other works address open-world KGC.
Description-Embodied Knowledge Representation Learning
(DKRL) (Xie et al. 2016) uses a joint training of graph-based
embeddings (TransE) and text-based embeddings while reg-
ularizing both types of embeddings to be aligned using
an additional loss. ConMask (Shi and Weninger 2017a) is
a text-centric approach where text-based embeddings for
head, relation and tail are derived by an attention model over
names and descriptions, and the triple (h, r, t) is scored by a
pairwise matching of the embeddings, followed by a soft-
max regression. In contrast to these approaches, we train
graph and text embeddings independently. This comes with
two benefits: First, our approach can fully leverage knowl-
edge graphs with incomplete or scarce textual descriptions.
Second, it is applicable to any embedding-based link predic-
tion model such as TransE, DistMult and ComplEx.

3 Approach
Our approach starts with a regular link prediction model (in
the following also referred to as the graph-based model) as
outlined in Section 2 and visualised in Fig. 1. The model
scores triples (h, r, t):

score(h, r, t) = φ(uh, ur, ut) (1)

where ux denotes the embedding of entity/relation x. Typ-
ically, ux ∈ Rd, but other options are possible. For example,
in ComplEx (Trouillon et al. 2016), ux is complex-valued
(ux ∈ Cd). φ is a scoring function that depends on the link
prediction model and will be adressed in more detail in Sec-
tion 3.1.

Closed-world Link Prediction Closed-world link predic-
tion involves predicting facts about entities on which the link
prediction model is trained on. For tail prediction, head and
relation are given and the objective is to predict the tail en-
tity with the highest score. This is done by calculating the
score of the (h, r) pair with every t ∈ E.

tail∗ = arg max
t∈E

score(h, r, t) (2)

Similarly, for head prediction, the score of (r, t) is calculated
with every h ∈ E:

head∗ = arg max
h∈E

score(h, r, t) (3)

For the remaining part of the paper, we will only discuss the
task of tail prediction. The same concepts can be applied to
the task of head prediction.

Open-world Extension Open-world link prediction in-
volves predicting facts about entities that the link predic-
tion model was not trained on. Our contribution lies in
extending the above graph-based model to perform open-
world link prediction. We assume an unseen head entity
head 6∈ E to be represented by its name and textual descrip-
tion, which we concatenated into a word sequence W =
(w1, w2, ..., wn). Word embeddings (such as Word2Vec or
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Figure 1: Our approach first trains a KGC model on the graph without using textual information (bottom left). For every entity
we can obtain a text-based embedding v by aggregating the word embeddings for tokens in the name and description (top left).
A transformation Ψmap is learned on the training entities to map v to the space of graph-based embeddings (right). The learned
mapping can then be applied to unknown entities, thus allowing the trained KGC model to be applied.

Glove) pre-trained on a text corpus are then used to trans-
form the sequence of tokens W into a sequence of embed-
dings (vw1

, vw2
, ..., vwn

). This sequence of embeddings is
then aggregated with a function Ψagg to obtain a text-based
embedding of the head entity vh ∈ Rd′

:

vh := Ψagg
(
vw1

, vw2
, ..., vwn

)
(4)

Since text-based and graph-based embeddings are trained
independently on different information sources, we cannot
expect them to match. Therefore, a transformation Ψmap

is learned from text-based embedding space to graph-based
embedding space such that Ψmap(vh) ≈ uh. Then we score
triples with the unseen head entity by applying the graph-
based model from Equation 1 with the mapped text-based
head description:

score(h, r, t) = φ
(

Ψmap(vh), ur, ut

)
(5)

The single steps of our model are outlined in more detail in
the following.

3.1 Link Prediction Models
Since our approach is independent of the specific link pre-
diction model used, we test three commonly used models in
this work:

1. TransE: φ(uh, ur, ut) = −||uh+ur−ut||2
2. DistMult: φ(uh, ur, ut) = 〈uh, ur, ut〉
3. ComplEx: φ(uh, ur, ut) = Re(〈uh, ur, ut〉)
Note that the first two use real-valued embeddings, while
ComplEx uses complex-valued embeddings (where u =
Re(u) − i·Im(u) denotes the complex conjugate of embed-
ding u). All models are trained using their original loss func-
tions and validated using closed-world validation data.

3.2 Word Embeddings and Aggregation

We use pre-trained word embeddings trained on large text
corpora. Since the number of entities in the datasets used is
limited and we found overfitting to be an issue, we omit any
refinement of the embeddings. We tested 200-dimensional
Glove embeddings (Pennington, Socher, and Manning 2014)
and 300-dimensional Wikipedia2Vec embeddings (Yamada
et al. 2016).

Note that Wikipedia2Vec embeddings contain phrase em-
beddings, which we use as an embedding for entity names
(like ”Julia Lindig”). If no phrase embedding is available,
we split the name into single tokens and use token-wise em-
beddings. If no embedding is available for a token, we use a
vector of zeros as an “unknown” token.

To aggregate word embeddings to an entity embed-
ding (function Ψagg , Equation 4), approaches in the liter-
ature range from simple averaging (Pennington, Socher, and
Manning 2014) over Long Short Term Memory Networks
(LSTMs) (Xu et al. 2017) to relation-specific masking (Shi
and Weninger 2017a). We use averaging as an aggregation
function. Here, the word embedding vectors are averaged to
obtain a single representative embedding. To prevent over-
fitting, we apply dropout during training, i.e. embeddings of
some words are randomly replaced by the unknown token
before averaging.

3.3 Transformation Functions

The key to open-world prediction is the mapping from text-
based entity embeddings ve to graph-based ones ue. Several
different transformation functions Ψmap can be learned for
this task. In this paper, we discuss three options:

Linear A simple linear function Ψmap(v) = A·v. For
ComplEx, separate matrices are used for the real and imagi-
nary part: Ψmap(v) = A·v + i ·A′·v
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Affine Here, Ψmap is an affine function Ψmap(v) = A·v+
b. For ComplEx, separate matrices and vectors are trained
just like above: Ψmap(v) = (A·v + b) + i · (A′·v + b′)

MLP Ψmap is a four layer Multi-Layer Perceptron (MLP)
with ReLU activation functions. The output layer is affine.
We did not perform an extensive hyperparameter search
here.

To train the transformations, first a link prediction model
is trained on the full graph, obtaining entity embeddings
u1, ..., un. We then choose all entities ei1 , ..., eim with tex-
tual metadata (names and/or descriptions), and extract text-
based embedding vi1 , ..., vim for them using aggregation
(see above). Finally, Ψmap is learned by minimizing the loss
function

L(Θ) =

m∑
k=1

∣∣∣∣∣∣Ψmap
Θ (vik)− uik

∣∣∣∣∣∣
2

(6)

using batched stochastic gradient descent, where Θ denotes
the parameters of Ψmap (e.g., the weight matrices and bias
vectors A, b). For ComplEx, the above loss is summed for
real and imaginary parts, and training happens on the sum.
We apply no fine-tuning, neither on the graph nor on the text
embeddings.

4 Experiments
In this section, we study the impact of our model’s param-
eters (Ψagg,Ψmap, text embeddings) on prediction perfor-
mance. We also provide mappings of selected open-world
entities, and compare our results with the state-of-the-art.

Number of Triples

Dataset |E| |R| Train Valid Test

FB15k / FB20k 14,904 1,341 472,860 48,991 57,803
DBPedia50k 24,624 351 32,388 123 2,095
FB15k-237-OWE 12,324 235 242,489 12,806 -

Table 1: Dataset statistics for closed-world link prediction.

Head Pred. Tail Pred.

Dataset |Eopen| Valid Test Valid Test

FB20k 5,019 - 18,753 - 11,586
DBPedia50k 3,636 55 2,139 164 4,320
FB15k-237-OWE 2,081 1,539 13,857 9,424 22,393

Table 2: Dataset statistics for open-world link prediction.
Eopen is the set of novel entities not in the graph. Note that
the corresponding closed-world training set is used for train-
ing the open-world models.

4.1 Datasets
Closed-world KGC tasks are commonly evaluated on Word-
Net and Freebase subsets, such as WN18, WN18RR,

FB15k, and FB15k-237. For open-world KGC, the follow-
ing datasets have been suggested: (Xie et al. 2016) intro-
duced FB20k, which builds upon the FB15k dataset by
adding test triples with unseen entities, which are selected
to have long textual descriptions. (Shi and Weninger 2017a)
introduced DBPedia50k and DBPedia500k datasets for both
open-world and closed-world KGC tasks.

However, the above datasets display a bias towards long
textual descriptions: DBpedia50k has an average description
length of 454 words, FB20k of 147 words. Also, for neither
of the datasets precautions have been taken to avoid redun-
dant inverse relations, which allows models to exploit trivial
patterns in the data (Toutanova and Chen 2015). To over-
come these problems, we introduce a new dataset named
FB15k-237-OWE. FB15k-237-OWE is based on the well-
known FB15K-237 dataset, where redundant inverse rela-
tions have been removed. Also, we avoid a bias towards en-
tities with longer textual descriptions: Test entities are uni-
formly sampled from FB15K-237, and only short Wikidata
descriptions (5 words on average) are used.

In the following section, the sampling strategy for FB15k-
237-OWE is briefly outlined: For tail prediction test set, we
start with FB15K-237 and randomly pick heads (by uniform
sampling over all head entities). Each picked head x is re-
moved from the training graph by moving all triples of the
form (x, ?, t) to the test set and dropping all triples of the
form (?, ?, x) if t still remains in the training set after these
operations. Similarly, a head prediction test set is prepared
from the set of dropped triplets which satisfy the conditions
to be in head prediction test set i.e. head must be represented
in training set while tail must not be represented. The dataset
also contains two validation sets: A closed-world one (with
random triples picked from the training set) and an open-
world one (with random triples picked from the test set).

We evaluate our approach on DBPedia50k, FB20k, and
the new dataset FB15k-237-OWE. Statistics of the datasets
are highlighted in Table 1 and Table 2.

4.2 Experimental Setup
We perform multiple runs using different KGC models,
transformation types, training data, and embeddings used.
For each run, both KGC model and transformation Ψmap

are trained on the training set: the KGC model without using
any textual information and the transformation using entity
names and descriptions. We manually optimize all hyperpa-
rameters on the validation set. Due to the lack of an open-
world validation set on FB20k, we randomly sampled 10%
of the test triples as a validation set.

Performance Measures Performance figures are com-
puted using tail prediction on the test sets: For each test triple
(h, r, t) with open-world head h /∈ E, we rank all known en-
tities t′ ∈ E by their score φ(h, r, t′). We then evaluate the
ranks of the target entities t with the commonly used mean
rank (MR), mean reciprocal rank (MRR), as well as Hits@1,
Hits@3, and Hits@10.

Note that multiple triples with the same head and
relation but different tails may occur in the dataset:
(h, r, t1), ..., (h, r, tp). Following (Bordes et al. 2013),
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DBPedia50k FB15k-237-OWE FB20k
Model H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

Target Filt. Base. 4.5 9.7 23.0 11.0* 6.4 14.2 23.3 12.7 17.5 32.1 41.2 27.2
DKRL - - 40.0 23.0 - - - - - - - -
ConMask 47.1 64.5 81.0 58.4* 21.5 39.9 45.8 29.9 42.3 57.3 71.7 53.3
Cmplx-OWE-200 49.0 62.3 73.6 57.7 29.1 41.0 52.7 37.3 44.2 55.9 68.2 52.3
Cmplx-OWE-300 51.9 65.2 76.0 60.3 31.6 43.9 56.0 40.1 44.8 57.1 69.1 53.1

Table 3: Comparison with other open-world KGC models on tail prediction. Note that we used the same evaluation protocol
with target filtering as in ConMask. The asterisk (*) denotes that the result differs from the one published, because the MRR is
calculated differently.

when evaluating triple (h, r, ti) we remove all entities
t1, ..., ti−1, ti+1, ..., tp from the result list . All results (ex-
cept MRR(raw)) are reported with this filtered approach.
Note also that when computing the MRR, given a triple
(h, r, ti) only the reciprocal rank of ti itself is evaluated
(and not the best out of t1, ..., ti, ..., tp, which would give
better results). This is common when evaluating KGC mod-
els (Bordes et al. 2013) but differs from ConMask’s eval-
uation code, which is why one result in Table 3 differs
from (Shi and Weninger 2017a) (see the (*) mark).

Note also that (Shi and Weninger 2017a) add a second
filtering method called target filtering: When evaluating a
test triple (h, r, t), tails t′ are only included in the ranked
result list if a triple of the form (?, r, t′) exists in the train-
ing data, otherwise it is skipped. We found this to improve
quantitative results substantially, but it limits the predictive
power of the model because tails can never be linked via new
relations. Therefore, we use target filtering only when com-
paring with the ConMask and DKRL models from (Shi and
Weninger 2017a) (Table 3).

Implementation Details For training TransE and Dist-
Mult, we use the OpenKE framework2 which provides im-
plementations of many common link prediction models. For
closed-world graph embedding, we use both OpenKE and
our own implementation after validating the equivalence of
both.

For training the transformation Ψmap, we used the Adam
optimizer with a learning rate of 10−3 and batch size of 128.
For DBPedia50k we use a dropout of 0.5, while for FB20k
and FB15k-237-OWE we use no dropout. The embedding
used is the pretrained 300 dimensional Wikipedia2Vec em-
bedding and the transformation used is affine unless stated
otherwise.

4.3 Comparison with State of the Art
We first compare our model ComplEx-OWE with other
open-world link prediction models in Table 3. For a fair
comparison, all the results are evaluated using target filter-
ing. For all models and all datasets, 200-dimensional Glove
embeddings were used, except for the Complex-OWE300,
which uses 300-dimensional Wikipedia2Vec embeddings.

2OpenKE framework: https://github.com/thunlp/OpenKE

The effect of different embeddings will be studied further
in Section 4.5.

The results for Target Filtering Baseline, DKRL and Con-
Mask were obtained by the implementation provided by (Shi
and Weninger 2017a). The Target Filtering Baseline is eval-
uated by assigning random scores to all targets that pass the
target filtering criterion. DKRL uses a two-layer CNN over
the entity descriptions. ConMask uses a CNN over the entity
names and descriptions along with the relation-based atten-
tion weights.

It can be seen from Table 3 that our best model, ComplEx-
OWE300, performs competitively when compared to Con-
Mask. On DBPedia50k, our model performs best on all met-
rics except Hits@10. On FB20k it is outperformed by a
small margin by ConMask but performs better on Hits@1.
On FB15k-237-OWE our model outperforms all other mod-
els significantly. We believe that this is due to FB15k-237-
OWE having very short descriptions. ConMask generally re-
lies on extracting information from the description of en-
tities with its attention mechanism, whereas our model re-
lies more on extracting information from the textual cor-
pus that the word embedding were trained on. This enables
our model to provide good results without relying on having
long descriptions.

4.4 Analysis of Different Link Prediction Models
and Transformations

Our OWE extension for open-world link prediction can be
used with any common KGC model. Therefore, we eval-
uate three commonly used options, namely TransE, Dist-
Mult, and ComplEx. Results are displayed in Table 4: All

MRR HITS@
Model Filt. Raw 1 3 10

TransE-OWE 28.7 22.9 21.9 31.7 41.0
DistMult-OWE 34.4 25.7 26.6 37.7 49.2
ComplEx-OWE 35.2 26.1 27.8 38.6 49.1

Table 4: Open-world tail prediction by applying the transfor-
mation to different closed-world link prediction models on
the FB15k-237-OWE dataset without target filtering.
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Figure 2: Performance on FB15k-237-OWE with ComplEx-OWE-300 without target filtering when dropping (a) the entity
descriptions or (b) both descriptions and names. The x-axis shows the amount of textual data removed. Even for scarce textual
data, learning the transformation Ψmap is robust.

MRR HITS@
Transformation Filt. Raw 1 3 10

Linear 33.2 25.2 26.1 36.4 46.5
Affine 35.2 26.1 27.8 38.6 49.1
MLP 32.2 24.7 25.0 35.3 45.6

Table 5: Comparison of different transformation functions
with ComplEx-OWE-300 on the FB15k-237-OWE dataset
without target filtering.

three models are trained with embedding dimensionality
d = 300 on the closed-world dataset. For text embed-
dings, Wikipedia2Vec embeddings of the same dimension-
ality were used. It can be seen that the performance on the
open-world setting matches the expressiveness of the mod-
els: ComplEx-OWE with its ability to model even asym-
metric relations yields the best results, while the symmetric
DistMult-OWE achieves a similar performance.

We also test different transformation functions Ψmap as
illustrated in Table 5. It can be observed that quite simple
transformations achieve the strong results: The best perfor-
mance is achieved by the affine transformation with 49.1%
HITS@10 by a margin of 2–4 percent.

4.5 Text Embeddings and Robustness To Missing
Entity Metadata

In some cases, the knowledge graph may lack textual meta-
data (both the name and description) for some or all of its en-
tities. Other models like ConMask and DKRL are dependant
on textual descriptions, e.g. ConMask uses attention mech-
anisms to select relation-specific target words from long
texts. Therefore, ConMask and DKRL would require com-
pletely dropping triples without metadata and be unable to
learn about the link structure of such entities as they use
joint training. However, in our approach, we have to drop

such entities only during the phase where the transformation
Ψmap is learned, while the link prediction model can still be
learned on the full graph.

To demonstrate the robustness of our approach to missing
entity meta-data, we re-evaluate accuracy when randomly
dropping metadata for training entities. Fig. 2 outlines the
performance for two scenarios:
• Dropping descriptions: We remove only the textual de-

scriptions for a varying percentage of randomly selected
entities (between 20% to 100%). The names of these enti-
ties are not removed and therefore, we still train Ψmap on
them.

• Dropping all meta-data: We randomly select entities
and remove both their descriptions and names, effectively
removing these entities from the training set altogether
when training Ψmap.

We also included a baseline experiment to simulate an un-
successful learning of Ψmap. In this baseline, when evalu-
ating a test triple, we replace its head by the embedding of
another random head from the training data. Note that this
baseline still gives some reasonable hits for triples where
the relation is a strong indicator. For example, if we have a
triplet (X, time zone, ?): Even if the head X is unknown,
a model can achieve reasonable accuracy by simply ”guess-
ing” time zones as tails.

Overall, Fig. 2 suggests that transformation learning is
able to generalize well even with very limited training data.
In Fig. 2a only the descriptions of entities have been re-
moved. For Wikipedia2Vec embeddings, this removal has
virtually no effect on prediction accuracy. We believe that
this is because Wikipedia2Vec embeddings are trained such
that we can lookup strong entity embeddings by the name
alone. Even when removing 100% of descriptions (i.e., only
training on the entity names), accuracy is only 2-3% lower
than training on the full graph. However, in case of Glove
embeddings, the drop in performance is very significant, es-
pecially when the description is dropped for all the entities.
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Test Triple Head Description Top 4 Nearest Neighbors Top 4 Predictions

(Bram Stoker,
/people/person/profession,
Writer)

Irish novelist and short story
writer, best known today for
his 1897 Gothic novel Drac-
ula

1. Ursula K. Le Guin
2. Charles Stross
3. Larry Niven
4. Kurt Vonnegut

1. Writer
2. England
3. United Kingdom
4. Author

(Parma,
/.../country,
Italy)

Italian comune 1. Essen
2. Mantua
3. Bergamo
4. Siena

1. Portugal
2. Netherlands
3. Germany
4. Italy

(Bachelor of Science,
/.../institution,
Kingston University)

Academic degree 1. Masters Degree
2. Doctoral Degree
3. Bachelor of Arts
4. Master of Arts

1. Harvard Law School
2. Wesleyan University
3. Panjab University
4. Baylor University
32. Kingston University

(Amtrak,
/.../headquarters.../citytown,
Washington DC)

Intercity rail operator in the
United States

1. AT&T
2. Southwest Airlines
3. Starbucks
4. Delta Airlines

1. Dublin
2. New York City
3. United States Dollar
4. Charlotte
72. Washington DC

Table 6: Selected results on FB15k-237-OWE. For each test triple (Column 1), the head’s name and description (Column 2)
is mapped to graph-based embedding space. The nearest training entities in that space (Column 3) indicate a good semantic
match. The model predicts reasonable tails, in the first two cases successfully, in the others not.

In Fig. 2b, we remove not only descriptions but also en-
tity names. Even in this case, learning is robust. If half of the
12, 324 training entities are removed, the drop in accuracy
is less than 1%. Only when removing 90% of training data
(leaving 123 training entities), performance starts to deteri-
orate significantly. This highlights the ability of our model
to learn from a limited amount of training data, when it is
important to be able to train the KGC model itself on all the
entities.

4.6 Selected Results

Finally, we inspect sample prediction results for ComplEx-
OWE-300 in Table 6. Besides the final prediction, we also
test whether our transformation from text-based to seman-
tic space is successful: For each test triple, we represent the
open-world head entity by its text-based embedding vhead,
match it to a graph-based embedding Ψmap(vhead), and es-
timate the nearest neighbor entities in this space. We use the
Euclidean distance on the real part of the ComplEx embed-
dings, but found results to be similar for the imaginary part.

If the transformation works well, we expect these nearest
neighbors to be semantically similar to the head entity. This
is obviously the case: For Bram Stoker (the author of Drac-
ula), the nearest neighbors are other authors of fantasy lit-
erature. For Parma, the neighbors are cities (predominantly
in Italy). For Bachelor of Science, the model predicts ap-
propriate entities (namely, Universities) but – even though
we apply filtering – the predictions are not rewarded. This
is because the corresponding triples, like (Bachelor of Sci-
ence, /.../institution, Harward Law School), are missing in
the knowledge graph.

5 Conclusion
In this work, we have presented a simple yet effective ex-
tension to embedding-based knowledge graph completion
models (such as ComplEx, DistMult and TransE) to per-
form open-world prediction. Our approach – which we
named OWE – maps text-based entity descriptions (learned
from word embeddings) to the pre-trained graph embedding
space. In experiments on several datasets (including the new
FB15K-237-OWE dataset we introduced in this work), we
showed that the learned transformations yield semantically
meaningful results, that the approach performs competitive
with respect to the state of the art, and that it is robust to
scarce text descriptions.

An interesting direction of future work will be to com-
bine our model with approaches like ConMask (Shi and
Weninger 2017a), which (1) exploit more complex aggrega-
tion functions and (2) use relation-specific attention/content
masking to draw more precise embeddings from longer de-
scriptions.
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