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Abstract

Knowledge graph embedding has been an active research
topic for knowledge base completion, with progressive im-
provement from the initial TransE, TransH, DistMult et al
to the current state-of-the-art ConvE. ConvE uses 2D con-
volution over embeddings and multiple layers of nonlin-
ear features to model knowledge graphs. The model can be
efficiently trained and scalable to large knowledge graphs.
However, there is no structure enforcement in the embed-
ding space of ConvE. The recent graph convolutional net-
work (GCN) provides another way of learning graph node
embedding by successfully utilizing graph connectivity struc-
ture. In this work, we propose a novel end-to-end Structure-
Aware Convolutional Network (SACN) that takes the benefit
of GCN and ConvE together. SACN consists of an encoder of
a weighted graph convolutional network (WGCN), and a de-
coder of a convolutional network called Conv-TransE. WGCN
utilizes knowledge graph node structure, node attributes and
edge relation types. It has learnable weights that adapt the
amount of information from neighbors used in local aggrega-
tion, leading to more accurate embeddings of graph nodes.
Node attributes in the graph are represented as additional
nodes in the WGCN. The decoder Conv-TransE enables the
state-of-the-art ConvE to be translational between entities and
relations while keeps the same link prediction performance
as ConvE. We demonstrate the effectiveness of the proposed
SACN on standard FB15k-237 and WN18RR datasets, and it
gives about 10% relative improvement over the state-of-the-
art ConvE in terms of HITS@1, HITS@3 and HITS@10.

Introduction
Over the recent years, large-scale knowledge bases (KBs),

such as Freebase (Bollacker et al. 2008), DBpedia (Auer et
al. 2007), NELL (Carlson et al. 2010) and YAGO3 (Mahdis-
oltani, Biega, and Suchanek 2013), have been built to store
structured information about common facts. KBs are multi-
relational graphs whose nodes represent entities and edges
represent relationships between entities, and the edges are
labeled with different relations. The relationships are orga-
nized in the forms of (s, r, o) triplets (e.g. entity s = Abra-
ham Lincoln, relation r = DateOfBirth, entity o = 02-12-
1809). These KBs are extensively used for web search, rec-
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ommendation and question answering. Although these KBs
have already contained millions of entities and triplets, they
are far from complete compared to existing facts and newly
added knowledge of the real world. Therefore knowledge
base completion is important in order to predict new triplets
based on existing ones and thus further expand KBs.

One of the recent active research areas for knowledge
base completion is knowledge graph embedding: it encodes
the semantics of entities and relations in a continuous low-
dimensional vector space (called embeddings). These em-
beddings are then used for predicting new relations. Started
from a simple and effective approach called TransE (Bor-
des et al. 2013), many knowledge graph embedding meth-
ods have been proposed, such as TransH (Wang et al. 2014),
TransR (Lin et al. 2015), DistMult (Yang et al. 2014),
TransD (Ji et al. 2015), ComplEx (Trouillon et al. 2016),
STransE (Nguyen et al. 2016). Some surveys (Nguyen 2017;
Wang et al. 2017) give details and comparisons of these em-
bedding methods.

The most recent ConvE (Dettmers et al. 2017) model uses
2D convolution over embeddings and multiple layers of non-
linear features, and achieves the state-of-the-art performance
on common benchmark datasets for knowledge graph link
prediction. In ConvE, the embeddings of s and r are re-
shaped and concatenated into an input matrix and fed to the
convolution layer. Convolutional filters of n × n are used
to output feature maps that are across different dimensional
embedding entries. Thus ConvE does not keep the transla-
tional property as TransE which is an additive embedding
vector operation: es + er ≈ eo ((Nguyen et al. 2017)). In
this paper, we remove the reshape step of ConvE and oper-
ate convolutional filters directly in the same dimensions of s
and r. This modification gives better performance compared
with the original ConvE, and has an intuitive interpretation
which keeps the global learning metric the same for s, r, and
o in an embedding triple (es, er, eo). We name this embed-
ding as Conv-TransE.

ConvE also does not incorporate connectivity structure in
the knowledge graph into the embedding space. In contrast,
graph convolutional network (GCN) has been an effective
tool to create node embeddings which aggregate local in-
formation in the graph neighborhood for each node (Kipf
and Welling 2016b; Hamilton, Ying, and Leskovec 2017a;
Kipf and Welling 2016a; Pham et al. 2017; Shang et al.

3060



2018). GCN models have additional benefits (Hamilton,
Ying, and Leskovec 2017b), such as leveraging the attributes
associated with nodes. They can also impose the same ag-
gregation scheme when computing the convolution for each
node, which can be considered a method of regularization,
and improves efficiency. Although scalability is originally
an issue for GCN models, the latest data-efficient GCN, Pin-
Sage (Ying et al. 2018), is able to handle billions of nodes
and edges.

In this paper, we propose an end-to-end graph Structure-
Aware Convolutional Networks (SACN) that take all benefits
of GCN and ConvE together. SACN consists of an encoder
of a weighted graph convolutional network (WGCN), and
a decoder of a convolutional network called Conv-TransE.
WGCN utilizes knowledge graph node structure, node at-
tributes and relation types. It has learnable weights to deter-
mine the amount of information from neighbors used in local
aggregation, leading to more accurate embeddings of graph
nodes. Node attributes are added to WGCN as additional
for easy integration. The output of WGCN becomes the in-
put of the decoder Conv-TransE. Conv-TransE is similar to
ConvE but with the difference that Conv-TransE keeps the
translational characteristic between entities and relations.
We show that Conv-TransE performs better than ConvE, and
our SACN improves further on top of Conv-TransE in the
standard benchmark datasets. The code for our model and
experiments is publicly available 1.

Our contributions are summarized as follows:

• We present an end-to-end network learning framework
SACN that takes benefit of both GCN and Conv-TransE.
The encoder GCN model leverages graph structure and
attributes of graph nodes. The decoder Conv-TransE sim-
plifies ConvE with special convolutions and keeps the
translational property of TransE and the prediction per-
formance of ConvE;

• We demonstrate the effectiveness of our proposed SACN
on the standard FB15k-237 and WN18RR datasets, and
show about 10% relative improvement over the state-
of-the-art ConvE in terms of HITS@1, HITS@3 and
HITS@10.

Related Work
Knowledge graph embedding learning has been an active
research area with applications directly in knowledge base
completion (i.e. link prediction) and relation extractions.
TransE (Bordes et al. 2013) started this line of work by
projecting both entities and relations into the same embed-
ding vector space, with translational constraint of es + er ≈
eo. Later works enhanced KG embedding models such as
TransH (Wang et al. 2014), TransR (Lin et al. 2015), and
TransD (Ji et al. 2015) introduced new representations of
relational translation and thus increased model complex-
ity. These models were categorized as translational dis-
tance models (Wang et al. 2017) or additive models, while
DistMult (Yang et al. 2014) and ComplEx (Trouillon et al.

1https://github.com/JD-AI-Research-Silicon-Valley/SACN

2016) are multiplicative models (Sharma, Talukdar, and oth-
ers 2018), due to the multiplicative score functions used for
computing entity-relation-entity triplet likelihood.

The most recent KG embedding models are ConvE
(Dettmers et al. 2017) and ConvKB (Nguyen et al. 2017).
ConvE was the first model using 2D convolutions over em-
beddings of different embedding dimensions, with the hope
of extracting more feature interactions. ConvKB replaced 2D
convolutions in ConvE with 1D convolutions, which con-
strains the convolutions to be the same embedding dimen-
sions and keeps the translational property of TransE. Con-
vKB can be considered as a special case of Conv-TransE
that only uses filters with width equal to 1. Although Con-
vKB was shown to be better than ConvE, the results on two
datasets (FB15k-237 and WN18RR) were not consistent, so
we leave these results out of our comparison table. The other
major difference of ConvE and ConvKB is on the loss func-
tions used in the models. ConvE used the cross-entropy loss
that could be sped up with 1-N scoring in the decoder, while
ConvKB used a hinge loss that was computed from positive
examples and sampled negative examples. We take the de-
coder from ConvE because we can easily integrate the en-
coder of GCN and the decoder of ConvE into an end-to-end
training framework, while ConvKB is not suitable for our
approach.

These embedding models achieved good performance for
knowledge base completion in terms of efficiency and scal-
ability. However, these approaches only modeled relational
triplets, while ignoring a large number of attributes associ-
ated with graph nodes, e.g., ages of people or release re-
gion of music. Furthermore, these models do not enforce any
large-scale connectivity structure in the embedding space,
and totally ignore the knowledge graph structure. The pro-
posed (SACN) handles these two problems in an end-to-end
training framework, by using a variant of graph convolu-
tional network (GCN) as the encoder, and a variant of ConvE
as the decoder.

GCNs were first proposed in (Bruna et al. 2013) where
graph convolutional operations were defined in the Fourier
domain. The eigendecomposition of the graph Laplacian
caused intense computation. Later, smooth parametric spec-
tral filters (Henaff, Bruna, and LeCun 2015; Defferrard,
Bresson, and Vandergheynst 2016) were introduced to
achieve localization in the spatial domain and improve com-
putational efficiency. Recently, Kipf et al. (Kipf and Welling
2016b) simplified these spectral methods by a first-order
approximation with the Chebyshev polynomials. The spa-
tial graph convolution approaches (Hamilton, Ying, and
Leskovec 2017a) define convolutions directly on graph,
which sum up node features over all spatial neighbors us-
ing adjacency matrix.

GCN models were mostly criticized for its huge memory
requirement to scale to massive graphs. However, (Ying et
al. 2018) developed a data efficient GCN algorithm called
PinSage, which combined efficient random walks and graph
convolutions to generate embeddings of nodes that incor-
porated both graph structure as well as node features. The
experiments on Pinterest data were the largest application
of deep graph embeddings to date with 3 billion nodes and
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Figure 1: An illustration of our end-to-end Structure-Aware Convolutional Networks model. For encoder, a stack of multiple
WGCN layers builds an entity/node embedding matrix. For decoder, es and er are fed into Conv-TransE. The output embeddings
are vectorized and projected, and matched with all candidate eo embeddings via inner products. A logistic sigmoid function is
used to get the scores.

18 billion edges (Ying et al. 2018). This success paves the
way for a new generation of web-scale recommender sys-
tems based on GCNs. Therefore we believe that our pro-
posed model could take advantage of huge graph structures
and high computational efficiency of Conv-TransE.

Method
In this section, we describe the proposed end-to-end SACN.
The encoder WGCN is focused on representing entities by
aggregating connected entities as specified by the relations
in the KB. With node embeddings as the input, the decoder
Conv-TransE network aims to represent the relations more
accurately by recovering the original triplets in the KB. Both
encoder and decoder are trained jointly by minimizing the
discrepancy (cross-entropy) between the embeddings es+er
and eo to preserve the translational property es + er ≈ eo.
We consider an undirected graph G = (V,E) throughout
this section, where V is a set of nodes with |V | = N , and
E ⊆ V × V is a set of edges with |E| = M .

Weighted Graph Convolutional Layer
The WGCN is an extension of classic GCN (Kipf and
Welling 2016b) in the way that it weighs the different types
of relations differently when aggregating and the weights are
adaptively learned during the training of the network. By this
adaptation, the WGCN can control the amount of informa-
tion from neighboring nodes used in aggregation. Roughly
speaking, the WGCN treats a multi-relational KB graph as
multiple single-relational subgraphs where each subgraph
entails a specific type of relations. The WGCN determines
how much weights to give to each subgraph when combin-
ing the GCN embeddings for a node.

The l-th WGCN layer takes the output vector of length F l
for each node from the previous layer as inputs and gener-

ates a new representation comprising F l+1 elements. Let hli
represent the input (row) vector of the node vi in the l-th
layer, and thus H l ∈ RN×F l

be the input matrix for this
layer. The initial embedding H1 is randomly drawn from
Gaussian. If there are a total of L layers in the WGCN, the
output HL+1 of the L-th layer is the final embedding. Let
the total number of edge types be T in a multi-relational KB
graph with E edges. The interaction strength between two
adjacent nodes is determined by their relation type and this
strength is specified by a parameter {αt, 1 ≤ t ≤ T} for
each edge type, which is automatically learned in the neural
network.

Figure 1 illustrates the entire process of SACN. In this ex-
ample, the WGCN layers of the network compute the em-
beddings for the red node in the middle graph. These lay-
ers aggregate the embeddings of neighboring entity nodes as
specified in the KB relations. Three colors (blue, yellow and
green) of the edges indicate three different relation types in
the graph. The corresponding three entity nodes are summed
up with different weights according to αt in this layer to ob-
tain the embedding of the red node. The edges with the same
color (same relation type) use the same αt. Each layer has
its own set of relation weights αlt. Hence, the output of the
l-th layer for the node vi can be written as follows:

hl+1
i = σ

∑
j∈Ni

αltg(hli, h
l
j)

 , (1)

where hlj ∈ RF l

is the input for node vj , and vj is a node
in the neighbor Ni of node vi. The g function specifies how
to incorporate neighboring information. Note that the acti-
vation function σ here is applied to every component of its
input vector. Although any function g suitable for a KB em-
bedding can be used in conjunction with the proposed frame-
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Figure 2: A weighted graph convolutional network (WGCN)
for entity embedding.

work, we implement the following g function:

g(hli, h
l
j) = hljW

l, (2)

where W l ∈ RF l×F l+1

is the connection coefficient matrix
and used to linearly transform hli to hl+1

i ∈ RF l+1

.
In Eq. (1), the input vectors of all neighboring nodes are

summed up but not the node vi itself, hence self-loops are
enforced in the network. For node vi, the propagation pro-
cess is defined as:

hl+1
i = σ(

∑
j∈Ni

αlth
l
jW

l + hliW
l). (3)

The output of the layer l is a node feature matrix: H l+1 ∈
RN×F l+1

, and hl+1
i is the i-th row of H l+1, which repre-

sents features of the node vi in the (l + 1)-th layer.
The above process can be organized as a matrix multi-

plication as shown in Figure 2 to simultaneously compute
embeddings for all nodes through an adjacency matrix. For
each relation (edge) type, an adjacency matrixAt is a binary
matrix whose ij-th entry is 1 if an edge connecting vi and vj
exists or 0 otherwise. The final adjacency matrix is written
as follows:

Al =

T∑
t=1

(αltAt) + I, (4)

where I is the identity matrix of size N × N . Basically,
the Al is the weighted sum of the adjacency matrices of
subgraphs plus self-connections. In our implementation, we
consider all first-order neighbors in the linear transformation
for each layer as shown in Figure 2:

H l+1 = σ(AlH lW l). (5)

Node Attributes. In a KB graph, nodes are of-
ten associated with several attributes in the form of
(entity, relation, attribute). For example, (s = Tom, r =
people.person.gender, a = male) is an instance where gen-
der is an attribute associated with a person. If a vector
representation is used for node attributes, there would be
two potential problems. First, the number of attributes for
each node is usually small, and differs from one to another.
Hence, the attribute vector would be very sparse. Second,
the value of zero in the attribute vectors may have ambigu-
ous meanings: the node does not have the specific attribute,

or the node misses the value for this attribute. These zeros
would affect the accuracy of the embedding.

In this work, the entity attributes in the knowledge graph
are represented by another set of nodes in the network called
attribute nodes. Attribute nodes act as the “bridges” to link
the related entities. The entity embeddings can be trans-
ported over these “bridges” to incorporate the entity’s at-
tribute into its embedding. Because these attributes exhibit
in triplets, we represent the attributes similarly to the repre-
sentation of the entity o in relation triplets. Note that each
type of attribute corresponds to a node. For instance, in our
example, gender is represented by a single node rather than
two nodes for “male” and “female”. In this way, the WGCN
not only utilizes the graph connectivity structure (relations
and relation types), but also leverages the node attributes (a
kind of graph structure) effectively. That is why we name
our WGCN as a structure-aware convolution network.

Conv-TransE
We develop the Conv-TransE model as a decoder that is
based on ConvE but with the translational property of
TransE: es + er ≈ eo. The key difference of our approach
from ConvE is that there is no reshaping after stacking es and
er. Filters (or kernels) of size 2 × k , k ∈ {1, 2, 3, ...}, are
used in the convolution. The example in Figure 1 uses 2× 3
kernels to compute 2D convolutions. We experimented with
several of such settings in our empirical study.

Note that in the encoder of SACN, the dimension of the
relation embedding is commonly chosen to be the same as
the dimension of the entity embedding, so in other words, is
equal to FL. Hence, the two embeddings can be stacked.
For the decoder, the inputs are two embedding matrices:
one RN×FL

from WGCN for all entity nodes, and the other
RM×FL

for relation embedding matrix which is trained as
well. Because we use a mini-batch stochastic training algo-
rithm, the first step of the decoder performs a look-up oper-
ation upon the embedding matrices to retrieve the input es
and er for the triplets in the mini-batch.

More precisely, given C different kernels where the c-th
kernel is parameterized by ωc, the convolution in the decoder
is computed as follows:

mc(es, er, n) =

K−1∑
τ=0

ωc(τ, 0)ês(n+ τ)

+ ωc(τ, 1)êr(n+ τ),

(6)

where K is the kernel width, n indexes the entries in the
output vector and n ∈ [0, FL − 1], and the kernel param-
eters ωc are trainable. ês and êr are padding version of es
and er respectively. If the dimension s of kernel is odd,
the first bK/2c and last bK/2c components are filled with
0. Here bvaluec returns the floor of value. Otherwise, the
first bK/2c − 1 and last bK/2c components are filled with
0. Other components are copied from es and er directly.
As shown in Eq. (6) the convolution operation amounts to
a sum of es and er after the one-dimensional convolution.
Hence, it preserves the translational property of the embed-
dings of es, er. The output forms a vector Mc(es, er) =
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Table 1: Scoring function ψ(es, eo). Here ēs and ēr denote
a 2D reshaping of es and er.

Model Scoring Function ψ(es, eo)
TransE ||es + er − eo||p
DistMult < es, er, eo >
ComplEx < es, er, eo >
ConvE f(vec(f(concat(ēs, ēr) ∗ ω))W )eo
ConvKB concat(g([es, er, eo] ∗ ω))β
SACN f(vec(M(es, er))W )eo

[mc(es, er, 0), ...,mc(es, er, F
L − 1)]. Aligning the output

vectors from the convolution with all kernels yield a matrix
M(es, er) ∈ RC×FL

.
Finally, the scoring function for the Conv-TransE method

after the nonlinear convolution is defined as below:

ψ(es, eo) = f(vec(M(es, er))W )eo, (7)

where W ∈ RCFL×FL

is a matrix for the linear transforma-
tion, and f denotes a non-linear function. The feature map
matrix is reshaped into a vector vec(M) ∈ RCFL

and pro-
jected into a FL dimensional space usingW for linear trans-
formation. Then the calculated embedding is matched to eo
by an appropriate distance metric. During the training in our
experiments, we apply the logistic sigmoid function to the
scoring:

p(es, er, eo) = σ(ψ(es, eo)). (8)

In Table 1, we summarize the scoring functions used by
several state of the art models. The vector es and eo are the
subject and object embedding respectively, er is the relation
embedding, “concat” means concatenates the inputs, and “*”
denotes the convolution operator.

In summary, the proposed SACN model takes advantage
of knowledge graph node connectivity, node attributes and
relation types. The learnable weights in WGCN help to col-
lect adaptive amount of information from neighboring graph
nodes. The entity attributes are added as additional nodes in
the network and are easily integrated into the WGCN. Conv-
TransE keeps the translational property between entities and
relations to learn node embeddings for the link prediction.
We also emphasize that our SACN has significant improve-
ments over ConvE with or without the use of node attributes.

Experiments
Benchmark Datasets
Three benchmark datasets (FB15k-237, WN18RR and
FB15k-237-Attr) are utilized in this study to evaluate the
performance of link prediction.

FB15k-237. The FB15k-237 (Toutanova and Chen 2015)
dataset contains knowledge base relation triples and textual
mentions of Freebase entity pairs, as used in the work
published in (Toutanova and Chen 2015). The knowledge
base triples are a subset of the FB15K (Bordes et al. 2013),
originally derived from Freebase. The inverse relations are

Table 2: Statistics of datasets.

Dataset FB15k-237 WN18RR FB15k-237-Attr
Entities 14,541 40,943 14,744
Relations 237 11 484
Train Edges 272,115 86,835 350,449
Val. Edges 17,535 3,034 17,535
Test Edges 20,466 3,134 20,466
Attributes Triples — — 78,334
Attributes — — 203

removed in FB15k-237.
WN18RR. WN18RR (Dettmers et al. 2017) is created from
WN18 (Bordes et al. 2013), which is a subset of WordNet.
WN18 consists of 18 relations and 40,943 entities. However,
many text triples obtained by inverting triples from the
training set. Thus WN18RR dataset (Dettmers et al. 2017)
is created to ensure that the evaluation dataset does not have
inverse relation test leakage. In summary, WN18RR dataset
contains 93,003 triples with 40,943 entities and 11 relation
types.

Data Construction
Most of the previous methods only model the entities and
relations, and ignore the abundant entity attributes. Our
method can easily model a large number of entity attribute
triples. In order to prove the efficiency, we extract the
attribute triples from the FB24k (Lin, Liu, and Sun 2016)
dataset to build the evaluation dataset called FB15k-237-
Attr.

FB24k. FB24k (Lin, Liu, and Sun 2016) is built based
on Freebase dataset. FB24k only selects the entities and
relations which constitute at least 30 triples. The number
of entities is 23,634, and the number of relations is 673.
In addition, the reversed relations are removed from the
original dataset. In the FB24k datasets, the attribute triples
are provided. FB24k contains 207,151 attribute triples and
314 attributes.
FB15k-237-Attr. We extract the attribute triples of entities
in FB15k-237 from FB24k. During the mapping, there are
7,589 nodes from the original 14,541 entities which have
the node attributes. Finally, we extract 78,334 attribute
triples from FB24k. These triples include 203 attributes
and 247 relations. Based on these triples, we create the
“FB15k-237-Attr” dataset, which includes 14,541 entity
nodes, 203 attribute nodes, 484 relation types. All the
78,334 attribute triples are combined with the training set of
FB15k-237.

Experimental Setup
The hyperparameters in our Conv-TransE and SACN
models are determined by a grid search during the
training. We manually specify the hyperparame-
ter ranges: learning rate {0.01, 0.005, 0.003, 0.001},
dropout rate {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, embedding size

3064



Table 3: Link prediction for FB15k-237, WN18RR and FB15k-237-Attr datasets.

FB15k-237 WN18RR
Hits Hits

Model @10 @3 @1 MRR @10 @3 @1 MRR
DistMult (Yang et al. 2014) 0.42 0.26 0.16 0.24 0.49 0.44 0.39 0.43

ComplEx (Trouillon et al. 2016) 0.43 0.28 0.16 0.25 0.51 0.46 0.41 0.44
R-GCN (Schlichtkrull et al. 2018) 0.42 0.26 0.15 0.25 — — — —

ConvE (Dettmers et al. 2017) 0.49 0.35 0.24 0.32 0.48 0.43 0.39 0.46
Conv-TransE 0.51 0.37 0.24 0.33 0.52 0.47 0.43 0.46

SACN 0.54 0.39 0.26 0.35 0.54 0.48 0.43 0.47
SACN using FB15k-237-Attr 0.55 0.40 0.27 0.36 — — — —
Performance Improvement 12.2% 14.3% 12.5% 12.5% 12.5% 11.6% 10.3% 2.2%

{100, 200, 300}, number of kernels {50, 100, 200, 300},
and kernel size {2× 1, 2× 3, 2× 5}.

Here all the models use the WGCN with two layers. For
different datasets, we have found that the following settings
work well: for FB15k-237, set the dropout to 0.2, number
of kernels to 100, learning rate to 0.003 and embedding size
to 200 for SACN; for WN18RR dataset, set dropout to 0.2,
number of kernels to 300, learning rate to 0.003, and embed-
ding size to 200 for SACN. When using the Conv-TransE-
alone model, these settings still work well.

Each dataset is split into three sets for: training, valida-
tion and testing, which is same with the setting of the origi-
nal ConvE. We use the adaptive moment (Adam) algorithm
(Kingma and Ba 2014) for training the model. Our models
are implemented by PyTorch and run on NVIDIA Tesla P40
Graphics Processing Units. For the FB15k-237 dataset, the
computation time of SACN for each epoch is about 1 minute.
For the WN18RR, the computation time of SACN for one
epoch is about 1.5 minutes.

Results
Evaluation Protocol Our experiments use the the propor-
tion of correct entities ranked in top 1,3 and 10 (Hits@1,
Hits@3, Hits@10) and the mean reciprocal rank (MRR) as
the metrics. In addition, since some corrupted triples exist in
the knowledge graphs, we use the filtered setting (Bordes et
al. 2013), i.e. we filter out all valid triples before ranking.

Link Prediction Our results on the standard FB15k-237,
WN18RR and FB15k-237-Attr are shown in Table 3. Ta-
ble 3 reports Hits@10, Hits@3, Hits@1 and MRR results of
four different baseline models and two our models on three
knowledge graphs datasets. The FB15k-237-Attr dataset is
used to prove the efficiency of node attributes. So we run our
SACN in FB15k-237-Attr to do the comparison with SACN
using FB15k-237.

We first compare our Conv-TransE model with the four
baseline models. ConvE has the best performance compar-
ing all baselines. In FB15k-237 dataset, our Conv-TransE
model improves upon ConvE’s Hits@10 by a margin of
4.1% , and upon ConvE’s Hits@3 by a margin of 5.7% for
the test. In WN18RR dataset, Conv-TransE improves upon
ConvE’s Hits@10 by a margin of 8.3% , and upon ConvE’s

Hits@3 by a margin of 9.3% for the test. For these results,
we conclude that Conv-TransE using neural network keeps
the translational characteristic between entities and relations
and achieve better performance.

Second, the structure information is added into our SACN
model. In Table 3, SACN also get the best performances in
the test dataset comparing all baseline methods. In FB15k-
237, comparing ConvE, our SACN model improves Hits@10
value by a margin of 10.2%, Hits@3 value by a margin of
11.4%, Hits@1 value by a margin of 8.3% and MRR value
by a margin of 9.4% for the test. In WN18RR dataset, com-
paring ConvE, our SACN model improves Hits@10 value by
a margin of 12.5%, Hits@3 value by a margin of 11.6%,
Hits@1 value by a margin of 10.3% and MRR value by a
margin of 2.2% for the test. So our method has significant
improvements over ConvE without attributes.

Third, we add node attributes into our SACN model, i.e.
we use the FB15k-237-Attr to train SACN. Note that SACN
has significant improvements over ConvE without attributes.
Adding attributes improves performance again. Our model
using attributes improves upon ConvE’s Hits@10 by a mar-
gin of 12.2% , Hits@3 by a margin of 14.3%, Hits@1 by
a margin of 12.5% and MRR by a margin of 12.5%. In ad-
dition, our SACN using attributes improved Hits@10 by a
margin of 1.9% , Hits@3 by a margin of 2.6%, Hits@1 by
a margin of 3.8% and MRR by a margin of 2.9% comparing
with SACN without attributes.

In order to better compare with ConvE, we also use the
attributes into ConvE. Here the attributes will be treated as
the entity triplets. Following the official ConvE code with
default setting, the test result in FB15k-237-Attr was: 0.46
(Hits@10), 0.33 (Hits@3), 0.22 (Hits@1) and 0.30 (MRR).
Comparing to the performance without the attributes, adding
the attributes into the ConvE didn’t improve performance.

Convergence Analysis Figure 3 shows the convergence of
the three models. We can see that the SACN (the red line) is
always better than Conv-TransE (the yellow line) after sev-
eral epochs. And the performance of SACN keeps increas-
ing after around 120 epochs. However, the Conv-TransE
has achieved the best performance after around 120 epochs.
The gap between these two models proves the usefulness
of structural information. When using the FB15k-237-Attr
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Figure 3: The convergence study of SACN, Conv-TransE
models in FB15k-237 and SACN in FB15k-237-Attr (SACN
+ Attr) using the validation set. Due to the page limitation,
only the results of Hits@1 and MRR are reported here.

Table 4: Kernel size analysis for FB15k-237 and FB15k-
237-Attr datasets. “SACN+Attr” means the SACN using
FB15k-237-Attr dataset.

FB15k-237
Hits

Model Kernel Size @10 @3 @1 MRR
Conv-TransE 2 × 1 0.504 0.357 0.234 0.324
Conv-TransE 2 × 3 0.513 0.365 0.240 0.331
Conv-TransE 2 × 5 0.512 0.361 0.239 0.329

SACN 2 × 1 0.527 0.379 0.255 0.345
SACN 2 × 3 0.536 0.384 0.260 0.351
SACN 2 × 5 0.536 0.385 0.261 0.352

SACN+Attr 2 × 1 0.535 0.384 0.260 0.351
SACN+Attr 2 × 3 0.543 0.394 0.268 0.360
SACN+Attr 2 × 5 0.547 0.396 0.268 0.360

dataset, the performance of “SACN + Attr” is better than
“SACN” model.

Kernel Size Analysis In Table 4, different kernel sizes
are examined in our models. The kernel of “2 × 1” means
the knowledge or information translating between one at-
tribute of entity vector and the corresponding attribute of re-
lation vector. If we increase the kernel size to “2× k” where
k = {3, 5}, the information is translated between a com-
bination of s attributes in entity vector and a combination
of k attributes in relation vector. The larger view to collect
attribute information can help to increase the performance
as shown in Table 4. All the values of Hits@1, Hits@3,
Hits@10 and MRR can be improved by increasing the kernel
size in the FB15k-237 and FB15k-237-Attr datasets. How-
ever, the optimal kernel size may be task dependent.

Node Indegree Analysis The indegree of the node in
knowledge graph is the number of edges connected to the
node. The node with larger degree means it have more neigh-
boring nodes, and this kind of nodes can receive more in-
formation from neighboring nodes than other nodes with
smaller degree. As shown in Table 5, we present the results
for different sets of nodes with different indegree scopes.
The average Hits@10 and Hits@3 scores are calculated.

Table 5: Node indegree study using FB15k-237 dataset.

Conv-TransE SACN
Average Hits Average Hits

Indegree Scope @10 @3 @10 @3
[0,100] 0.192 0.125 0.195 0.134

[100,200] 0.441 0.245 0.441 0.253
[200,300] 0.696 0.446 0.705 0.429
[300,400] 0.829 0.558 0.806 0.577
[400,500] 0.894 0.661 0.868 0.663

[500,1000] 0.918 0.767 0.891 0.695
[1000, maximum] 0.992 0.941 0.981 0.922

Along the increasing of indegree scope, the average value
of Hits@10 and Hits@3 will be increased. First for a node
with small indegree, it benefits from aggregation of neighbor
information from the WGCN layers of SACN. Its embedding
can be estimated robustly. Second for a node with high in-
degree, it means that a lot more information is aggregated
through GCN, and the estimation of its embedding is sub-
stantially smoothed among neighbors. Thus the embedding
learned from SACN is worse than that from Conv-TransE.
One solution to this problem would be neighbor selection as
in (Ying et al. 2018).

Conclusion and Future Work
We have introduced an end-to-end structure-aware convolu-
tional network (SACN). The encoding network is a weighted
graph convolutional network, utilizing knowledge graph
connectivity structure, node attributes and relation types.
WGCN with learnable weights has the benefit of collect-
ing adaptive amount of information from neighboring graph
nodes. In addition, the entity attributes are added as the
nodes in the network so that attributes are transformed into
knowledge structure information, which is easily integrated
into the node embedding. The scoring network of SACN is
a convolutional neural model, called Conv-TransE. It uses a
convolutional network to model the relationship as the trans-
lation operation and capture the translational characteristic
between entities and relations. We also prove that Conv-
TransE alone has already achieved the state of the art per-
formance. The performance of SACN achieves overall about
10% improvement than the state of the art such as ConvE.

In the future, we would like to incorporate the neighbor
selection idea into our training framework, such as, impor-
tance pooling in (Ying et al. 2018) which takes into account
the importance of neighbors when aggregating the vector
representations of neighbors. We would also like to extend
our model to be scalable with larger knowledge graphs en-
couraged by the results in (Ying et al. 2018).
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