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Abstract
With the rapid development of deep learning, there have been
an unprecedentedly large number of trained deep network
models available online. Reusing such trained models can
significantly reduce the cost of training the new models from
scratch, if not infeasible at all as the annotations used for
the training original networks are often unavailable to public.
We propose in this paper to study a new model-reusing task,
which we term as knowledge amalgamation. Given multiple
trained teacher networks, each of which specializes in a dif-
ferent classification problem, the goal of knowledge amalga-
mation is to learn a lightweight student model capable of han-
dling the comprehensive classification. We assume no other
annotations except the outputs from the teacher models are
available, and thus focus on extracting and amalgamating
knowledge from the multiple teachers. To this end, we pro-
pose a pilot two-step strategy to tackle the knowledge amal-
gamation task, by learning first the compact feature represen-
tations from teachers and then the network parameters in a
layer-wise manner so as to build the student model. We ap-
ply this approach to four public datasets and obtain very en-
couraging results: even without any human annotation, the
obtained student model is competent to handle the compre-
hensive classification task and in most cases outperforms the
teachers in individual sub-tasks.

Introduction
Recent years have witnessed the unprecedented
progress of deep learning. Many deep models, such as
AlexNet (Krizhevsky, Sutskever, and Hinton 2012), VGG
(Simonyan and Zisserman 2014), GoogLeNet (Szegedy
et al. 2015), and ResNet (He et al. 2016), have been pro-
posed and applied to almost every single computer vision
task, yielding state-of-the-art performances. However, the
promising results come with the costs of the huge amount of
annotations required and the resource-consuming training
process, which may take up to weeks on multiple GPUs.

Yet encouragingly, many researchers have published on-
line their trained models, tailored for various tasks like
classification, detection, and segmentation. Reusing these
trained models, either for the primary task or novel ones,
can significantly reduce the effort to retrain the new models
from scratch, which is in many cases not feasible at all as
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the annotations used to train the original models may not be
publicly available.

To this end, researchers have started to look at prospec-
tive approaches to reuse trained deep models. For example,
(Buciluǎ, Caruana, and Niculescu-Mizil 2006) proposes a
model compression approach that trains a neural network
using the predictions of an ensemble of heterogeneous mod-
els trained a priori. (Hinton, Vinyals, and Dean 2015) intro-
duces the concept of Knowledge Distillation (KD), whose
goal is to derive a compact student model that imitates the
teacher by learning from the teacher’s outputs. (Romero et
al. 2014) makes one step further by learning a student model
that is deeper and thinner than the teacher so as to improve
the performance. These model-reusing approaches, despite
their very promising results, focus on tackling the same task
as the trained teacher models.

In this paper, we propose to investigate a new model-
reusing task, which we term as knowledge amalgamation.
Given multiple trained teacher models, each of which spe-
cializes in a different classification problem, knowledge
amalgamation aims to learn a compact student model ca-
pable of handling the comprehensive classification problem.
In other words, the classification problem addressed by the
student is the superset of those by all the teachers. For exam-
ple, say we have two teacher classifiers, the first one classi-
fies sedan cars and SUVs while the second classifies pickups
and vans. The student model is expected to be able to clas-
sify all the four types of cars simultaneously. Note that, here
we assume no human annotations and only the predictions
from the teacher models are available.

The proposed knowledge amalgamation task is, to our
best knowledge, both novel and valuable. It is novel be-
cause, in contrast to prior model-reusing tasks that restrict
the student model to handle the same problem as the teachers
do, knowledge amalgamation learns the “super knowledge”
covering the specialties from all the teachers. It is valuable
because, it allows reusing the trained models, without any
human annotation, to learn a compact student model that ap-
proximates or even outperforms the teacher models.

We also propose a pilot strategy towards solving the
knowledge amalgamation task. Our approach comprises two
steps, feature amalgamation and parameter learning. The
feature amalgamation step first extracts features of the multi-
ple teachers, obtained by feeding input samples to the teach-
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ers, and then compresses the stacked features into a compact
and discriminative set. The obtained set of features are then
used as the supervision information for learning the network
parameters in a layer-wise manner in the parameter learning
step. This strategy turns out to effective, as the learned com-
pact student model, without any human-labeled annotations,
is capable of handling the comprehensive classification task
and achieves performances superior to those of the teachers
on individual sub-tasks.

Our contribution is thus introducing the knowledge amal-
gamation task and a simple yet competent approach to-
wards solving it, as demonstrated on several datasets. We
would like to promote, via the introduction of the knowledge
amalgamation task, that researchers should look at reusing
trained models to novel tasks, in which way the annotation-,
training-, and running-cost can be dramatically reduced.

Related Work
Knowledge Distillation Hinton et al. (Hinton, Vinyals,
and Dean 2015) proposes a teacher-student paradigm where
a smaller student network imitates the soft prediction of the
large teacher ones. This method introduces a temperature
concept to highlight the similarities among categories, ben-
efiting the learning of student network.

Following (Hinton, Vinyals, and Dean 2015), Fit-
Net (Romero et al. 2014) adopts a deeper but thinner stu-
dent network to learn the knowledge of a teacher. To im-
prove the optimization of deep student network, not only the
soft prediction but also the intermediate representation are
taken into consideration to supervise the training of the stu-
dent network. Specifically, the intermediate representation
includes both the feature maps from the convolutional lay-
ers and the feature vectors from the intermediate fully con-
nected layers.

DK2PNet (Wang, Deng, and Wang 2016) introduces a
dominant convolutional kernel method to compress convo-
lutional layers. AT (Zagoruyko and Komodakis 2017) ex-
ploits two types of spatial attention maps, activation-based
and gradient-based from teacher network, to guide the learn-
ing of student network. NST (Huang and Wang 2017) re-
gards the knowledge distillation as a distribution matching
problem, where the student network is trained to match the
distribution of intermediate representation with that of the
teacher network.

The knowledge distillation task, despite its solid motiva-
tion and proven significance, has a major goal-wise limi-
tation. It aims at learning a student model only from one
teacher and thus expects the student to master only the
specialization from that teacher. By contrast, the proposed
knowledge amalgamation task enables the student to learn
from multiple teacher models and amalgamates all of their
knowledge so as to handle the “super” task.

In addition, the work of (Huang and Wang 2017) demon-
strates that when the number of classes is large, the variants
of knowledge distillation approaches (Romero et al. 2014;
Wang, Deng, and Wang 2016; Zagoruyko and Komodakis
2017; Huang and Wang 2017) yield worse classification per-
formances than the original version of (Hinton, Vinyals, and
Dean 2015). Such variants thus do not fit our purpose, as we

aim to amalgamate from multiple teachers with potentially
large number of classes shown in our experiments.

Transfer Learning Transfer learning is proposed to trans-
fer knowledge from source domain to target domain so as
to reduce the demand for labeled data on the target do-
main (Pan, Yang, and others 2010). It can be roughly cate-
gorized into cross-domain (Long et al. 2013; Huang, Huang,
and Krähenbühl 2018; Hu, Lu, and Tan 2015; Ding et al.
2018) and cross-task transfer learning (Hong et al. 2016;
Cui et al. 2018; Gholami, Rudovic, and Pavlovic 2017).
More specifically, cross-domain transfer learning aims to
transfer knowledge among datasets with different data dis-
tributions but the same categories. And cross-task transfer
learning tries to alleviate the deficit of data for categories on
the target task by transferring knowledge from other cate-
gories on the source task. However, knowledge amalgama-
tion focuses on amalgamating the existing models with un-
labeled data to obtain a versatile neural network.

Cross-modal transfer learning (Huang, Peng, and Yuan
2017; Gupta, Hoffman, and Malik 2015; Xu et al. 2018)
transfers knowledge among different modalities to improve
the performance on the target modality with the same cat-
egories, which is different from knowledge amalgamation.
FMR (Yang et al. 2017) is proposed to introduce extra fea-
tures into Convolutional Neural Network (CNN) to improve
the performance on the original classification task. It is dif-
ferent from knowledge amalgamation, which amalgamates
multiple teachers for the comprehensive classification task
instead of the original one.

Knowledge Amalgamation Task
We give the definition of the knowledge amalgamation task
as follows. Assume that we are given N teacher models
{ti}Ni=1 trained a priori, each of which implements a spe-
cific classification problem. Let Di denote the set of classes
handled by model ti. Without loss of generality, we assume
Di 6= Dj ,∀i 6= j. In other words, for any pair of models ti
and tj , we assume they classify different sets of classes. The
goal of knowledge amalgamation is to derive a compact stu-
dent model that is able to conduct the comprehensive clas-
sification task, in other words, to be able to simultaneously
classify all the classes in D = ∪Ni=1Di.

The student model is thus expected to be more powerful as
it handles the “super” classification problem, and meanwhile
more portable as it is smaller and more resource-efficient
than the ensemble of the teacher models.

The Proposed Method
Towards solving the proposed knowledge amalgamation
task, a simple yet effective pilot approach is introduced. In
what follows, we first give an overview of the method, then
detail the two steps, and finally show the training objective.

Overview
The pilot approach assumes that, for the time being, the
teacher models share the same network architecture. This
assumption might be arguably strong but it does hold in
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Figure 1: The overall workflow of the proposed approach in the two-teacher case. It consists of two steps, feature amalgamation
and parameter learning. The feature amalgamation step, as depicted by the black block, computes the features of the student
model from those of the teachers. For example, the feature maps F l

1 and F l
2 from the teachers are fed into the feature amalga-

mation module to obtain the compact feature map F l
a of the student. The parameter learning step, as depicted by the red arrows,

computes the network parameters of the student network, given the features amalgamated from the first step.

many cases especially on large-scale datasets, where multi-
ple models are trained on subsets of the classes. We hope this
proposed approach could serve as a baseline method towards
solving the knowledge amalgamation, based on which fur-
ther research could improve. Specifically, the proposed ap-
proach follows a two-step procedure: feature amalgamation
and parameter learning. In the feature amalgamation step,
we derive a set of learned features for each layer of each
teacher model, obtained by feeding input samples to each
such teacher. The features from the same layer across differ-
ent teachers are then concatenated and further compressed
into a compact set, which is treated as the corresponding
feature map for the student. In the parameter learning step,
we treat the obtained feature sets as the supervision informa-
tion for learning the parameters of the student network. This
is achieved by looking at the feature sets from two consec-
utive layers and then computing the corresponding network
parameters between them.

The overall process of the knowledge amalgamation, in
the case of two teacher models, is shown in Figure 1. The
details of the feature amalgamation step and the parameter
learning step are given as follows.

Feature Amalgamation
We start by discussing first the feature amalgamation from
two teacher models, and then two possible solutions for
multi-teacher feature amalgamation, followed by the score-
vector amalgamation.

Amalgamation from Two Teacher Models We first con-
sider the case of feature amalgamation from two teacher
models. A straightforward amalgamation approach would be
to directly concatenate the feature sets, obtained by feeding
inputs to the teacher models, on the same layer of the two
teachers. In this way, however, the obtained student model
would be very cumbersome: the student would be four times

Concatenation 
operation
Identical 

connection
1×1 convolution

operation

C

C

Figure 2: Feature amalgamation from two teacher models.
F1 and F2 respectively denote the features from two teacher
models, each of which has C1 channels. They are further
encoded to a compact feature map Fa of C2 channels, where
C1 < C2 < 2C1. The whole module is trained using an
auto-encoder architecture that enforces Fa to preserve the
information of input features.

as large as the teachers, as between the two layers we will
have twice as many the inputs and twice the outputs.

Recall that the goal of amalgamation is to obtain a com-
pact model that is more resource-efficient and thus handy
to deploy. To this end, we apply an auto-encoder architec-
ture that compresses the concatenated features from the two
teachers, as depicted in Figure 2. We choose auto-encoder
because it reduces the size of the feature maps and mean-
while preserves the critical information, as the compact fea-
tures approximately reconstruct the original concatenated
one.

A convolution kernel of 1 × 1 that has demonstrated its
success (Szegedy et al. 2015; He et al. 2016) in many state-
of-the-art CNN architectures is adopted to implement the
auto-encoder. This kernel is used to reduce the channel num-
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ber of feature maps and the computation load, and mean-
while preserves the size of the receptive field. We write

Fa,c =

Cin∑
c′=1

wc,c′ · Fc′ , (1)

where wc,c′ denotes the c′-th channel weight of the 1 × 1
convolution kernel, c ∈ {1, . . . , Cout}, Fc′ denotes the c′-th
channel of the input feature map F , Fa,c denotes the c-th
channel of the output feature map Fa, Cin and Cout denote
the channel numbers of input feature map F and output fea-
ture map Fa, respectively. Note that, we have Cout < Cin

due to the feature compression.

Amalgamation from Multiple Teacher Models Two
ways to amalgamate features from more than two teacher
models are proposed as follows.

• Incremental Feature Amalgamation (IFA): we con-
duct amalgamation in a progressive manner, by each time
amalgamating two sets of feature maps, as depicted in
Figure 3 (a).

• Direct Feature Amalgamation (DFA): we directly amal-
gamate feature maps from multiple teachers, as depicted
in Figure 3 (b). Similar to the two-teacher case, the feature
sets are concatenated into one and then passed through an
auto-encoder to obtain a compressed feature set.

Although the architecture of DFA is more intuitively
straightforward, IFA is in fact easier to generalize as the
same auto-encoder can be repetitively adopted and thus ex-
tended to arbitrary number of teachers, while DFA needs to
retrain the whole auto-encoder when a new teacher is added.

Amalgamation of Score Vectors The score vector can
be regarded as the response scores of the categories to
be classified. For disjoint teacher models that handle non-
overlapping classes, we directly concatenate their score vec-
tors as the amalgamated one, and use the amalgamated score
vector as the target for the student, as shown in Figure 1. In
fact, the same strategy can also be used for teachers with
overlapping classes, in which case we treat the multiple en-
tries of the overlapping categories in the concatenate score
vector as different classes during training but as the same
one at test time. We also test the results of preserving only
one entry and removing the rest entries of each overlapping
category, which can be found in our supplementary material.

Parameter Learning
In the parameter learning stage, the obtained compact fea-
ture maps in consecutive layers are treated as the supervision
information to learn the weights in between. Specifically,
this is achieved by first learning the weights in a layer-wise
manner and then fine-tuning all the layers jointly. To facil-
itate the layer-wise training, a feature adaptation strategy is
adopted.

Layer-wise Parameter Learning Let F l
a and F l−1

a re-
spectively denote the compact features of the l-th and (l−1)-
th layer in the student network obtained by feature amalga-
mation. In the layer-wise parameter learning step, F l−1

a is

Algorithm 1 Knowledge Amalgamation from Multiple
Teachers
Input: N trained teacher models T = {ti}Ni=1, and unla-

beled samples D = {xk}Kk=1.
Output: The parameters of the student model S: {Θl}Ll=1

1: for l = 1 to L− 1 do
2: Obtain {F l

i }Ni=1 from {ti}Ni=1 with D;
3: Amalgamate feature maps {F l

i }Ni=1 to obtain F l
a;

4: Compute the output of S from l-th layer: F̂ l
a;

5: Compute the loss Ll
PL according to Eq. 5;

6: Update the parameters Θl using SGD;
7: end for
8: Obtain L-th layer score vectors {FL

i }Ni=1 from {ti}Ni=1;
9: Obtain score vector for S: FL

a ← concat({FL
i }Ni=1);

10: Compute the output of S from L-th layer: F̂L
a ;

11: Compute the loss LL
PL according to Eq. 5;

12: Jointly update the parameters {Θl}Ll=1 using SGD.

fed as input and goes through a series of operations includ-
ing pooling, activation and convolution to approximate F l

a.
We write

F̂ l
a = conv(pool(activation(F l−1

a ))), (2)

where F̂ l
a corresponds to the estimated features in the l-th

layer. Since the pooling layer and activation layer have no
parameters, pool(activation(F l−1

a )) is deterministic for a
given F l−1

a . Therefore, the goal of the layer-wise learning
stage is to obtain the weights of the convolutional layer. This
leads to a linear optimization problem, which is much easier
to be solved than optimizing all the parameters of the net-
work jointly.

Feature Adaption A straightforward way to compute the
weights of the convolutional layers is to solve directly the
linear transformation that maps pool(activation(F l−1

a )) to
F l
a. This however turns out to be sub-optimal, as F l−1

a is
obtained directly from feature amalgamation and is fixed,
meaning that F l−1

a is not adjustable to the non-parametric
operations like pooling and activation. As such, the non-
parametric layers may remove some discriminant informa-
tion from F l−1

a , making the parameter learning troublesome.
For example, the ReLU layer will suppress all the non-
positive values from the feature map F l−1

a , which might be
the critical information to be passed to F l

a.
To facilitate the learning, we introduce a Feature Adaption

Module (FAM) to the layer-wise parameter learning stage,
and transform the features into a form that can be well adap-
tive to other non-parametric layers. Specifically, a 1×1 con-
volution operation is adopted to implement FAM. We write

F̂ l
a = conv(pool(activation(FAM(F l−1

a )))). (3)

Joint Parameter Learning The layer-wise learning
yields errors in the optimization stage, which accumulates
layer by layer across the whole deep network. To remedy
this, after the layer-wise learning, we look at all the parame-
ters simultaneously and train them end to end, in which way
the convolutional layers adopt to each other better.
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(a) Incremental Feature Amalgamation (IFA) (b) Direct Feature Amalgamation (DFA) 
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Figure 3: Feature amalgamation from multiple teacher models. (a) IFA amalgamates features progressively by each time looking
at two teachers, while (b) DFA amalgamates features from multiple teachers in one shot. More specifically, IFA first amalga-
mates the features F1 and F2 to obtain features Fa1

, which is then amalgamated with F3 to obtain final feature set Fa; DFA, on
the other hand, simultaneously amalgamates F1, F2 and F3.

Loss Functions
Loss of Feature Amalgamation Recall that the target of
feature amalgamation step is to remove redundant informa-
tion of the concatenated features and obtain a compact fea-
ture map that preserves the critical information of the multi-
ple teachers. Our objective is therefore set to be the L2 loss
to reconstruct the origin feature maps of l-th layer, as fol-
lows:

Ll
FA =

1

2
‖[F̂ l

1, . . . , F̂
l
N ]− [F l

1, . . . , F
l
N ]‖2. (4)

Loss of Parameter Learning The loss function of the pa-
rameter learning stage, including both layer-wise learning
and joint learning, is taken to be

Ll
PL =

1

2
‖F̂ l

a − F l
a‖2, (5)

where F̂ l
a and F l

a correspond to the compact feature maps for
layer-wise learning and to the score vector for joint learn-
ing. The complete algorithm for knowledge amalgamation
from multiple teacher models is summarized in Algorithm 1,
where SGD stands for Stochastic Gradient Descent.

Experiments
To evaluate the effectiveness of our proposed method, we
conduct experiments on several publicly available bench-
marks. More experimental results can be found in the sup-
plementary material.

Experimental Setup
Dataset The first two datasets we adopt, CUB-200-
2011 (Wah et al. 2011) and Stanford Dogs (Khosla et al.
2011), are related to animals and the last two, FGVC-
Aircraft (Maji et al. 2013) and Cars (Krause et al. 2013), are
related to vehicles. CUB-200-2011 consists of 11,788 im-
ages from 200 bird species, Stanford Dogs contains 12,000
images about 120 different kinds of dogs, FGVC-Aircraft

consists of 10,000 images of 100 aircraft variants, and Cars
comprises 16,185 images of 196 classes of cars.

For each dataset, we randomly split their categories,
which are considerably correlated, into parts of equal size to
train two networks. These networks are regarded as teach-
ers to guide the learning of student network that recognizes
all categories. In our supplementary material, we also show
the amalgamation results across different datasets where the
categories are uncorrelated.

Implementation The proposed method is implemented
using PyTorch (Paszke et al. 2017) on a Quadro P5000 16G
GPU. In our experiment, all the teacher models adopt the
same AlexNet architecture (Krizhevsky, Sutskever, and Hin-
ton 2012), obtained by finetuning the ImageNet pretrained
models1. The student model has a very similar network ar-
chitecture as teachers. The only difference is that the student
model has in each layer a different number of kernels, i.e.,
a different number of feature map channels. Intuitively, the
number of kernels within the student model should be larger
than that of the teachers, as the student is more “knowledge-
able” than the teachers due to its capability of handling the
whole set of classes, and meanwhile be smaller than the sum
of all teachers, as it is assumed that the features from teach-
ers share redundancies. Please refer to the supplementary
material for the detailed configuration of the network archi-
tecture.

Experimental Results

Knowledge Amalgamation from Two Teachers To ver-
ify the effectiveness of our approach, we evaluate the per-
formance of our learned student model that amalgamates
knowledge from two teacher models and implements clas-
sification task of both teachers. The following four methods
are compared.

1https://download.pytorch.org/models/alexnet-owt-4df8aa71.
pth
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Table 1: Performance of knowledge amalgamation from two teachers on comprehensive classification task. The best accuracy
is marked in bold font.

Stanford Dogs CUB-200-2011 FGVC-Aircraft Cars
Method Params Accuracy Params Accuracy Params Accuracy Params Accuracy

Ensemble ∼114.4M 43.5% ∼114.8M 41.4% ∼114.4M 47.1% ∼114.8M 37.8%
Baseline ∼69.9M 10.4% ∼70.2M 30.0% ∼69.8M 39.9% ∼70.2M 17.0%

Layer-wise Learning ∼69.9M 38.4% ∼70.2M 31.8% ∼69.8M 39.8% ∼70.2M 33.6%
Joint Learning ∼69.9M 45.3% ∼70.2M 42.6% ∼69.8M 49.4% ∼70.2M 40.6%

Table 2: Comparing the results of the teacher models and
the learned student models on Stanford Dogs and CUB-200-
2011 dataset. Layer denotes layer-wise parameter learning
strategy, and Joint denotes joint learning strategy .

Stanford Dogs CUB-200-2011
Method whole part1 part2 whole part1 part2
Teacher1 - 60.8% - - 53.8% -
Teacher2 - - 58.5% - - 49.7%

Layer 38.4% 54.1% 54.3% 31.8% 44.8% 41.2%
Joint 45.3% 61.5% 59.6% 42.3% 53.2% 50.3%

• Ensemble: We concatenate the score vectors from the two
teacher models and classify the input sampling by assign-
ing the class of the highest score in the concatenated score
vector as the label of the input.

• Baseline: We learn a student model by applying Hin-
ton’s knowledge distillation method (Hinton, Vinyals, and
Dean 2015), which has proven a superior performance to
its variants on large number (≥100) of classes. Specifi-
cally, we stack the score vectors from the teachers and use
the concatenated vector as the target to train the student.

• Layer-wise Learning: After the feature amalgamation
step, we conduct only layer-wise parameter learning to
obtain the student network parameters.

• Joint Learning: Our complete model, with parameters
first layer-wise learned and then jointly learned.

The comparative results are shown in Table 1. On all
benchmark datasets, our complete method Joint Learning
achieves the highest performance among the four methods,
and demands significantly fewer parameters than Ensemble.

We also compare the performance of the learned student
model with those of the teachers. Let part1 and part2 de-
note the categories handled by the two teachers models,
teacher1 and teacher2, respectively, and let whole denote
the complete set of categories. As shown in Table 2 and Ta-
ble 3, our complete student model, joint learning, in fact
outperforms the teacher models on the corresponding sub-
tasks. For example, on the Stanford Dogs dataset, the stu-
dent model achieves a part1 accuracy of 61.5% and a part2
one of 59.6%, while those for teacher1 and teacher2, which
specialize in handling part1 and part2, are 60.8% and 58.5%
respectively. These interesting and encouraging results show
that our approach is indeed able to learn the amalgamated
knowledge from both teachers, and the knowledge learned
from one teacher benefits the classification task of the other.

Table 3: Comparing the results of the teacher models and the
learned student models on FGVC-Aircraft and Cars dataset.
Layer denotes layer-wise parameter learning strategy, and
Joint denotes joint learning strategy .

FGVC-Aircraft Cars
Method whole part1 part2 whole part1 part2
Teacher1 - 67.6% - - 52.2% -
Teacher2 - - 58.8% - - 50.1%

Layer 39.8% 59.0% 50.8% 33.6% 47.3% 43.4%
Joint 49.4% 67.8% 59.2% 40.6% 53.0% 50.4%

Knowledge Amalgamation from Multiple Teachers We
also test the performance of multi-teacher amalgamation.
We first conduct experiments on amalgamating different
numbers of teacher models. We split the Stanford Dogs
dataset comprising 120 classes into four even parts, each
of which contains 30 classes, and then test the classifica-
tion performances on these parts by amalgamating knowl-
edge from two, three and all four teachers using the DFA
model. We show the results in Table 4. Interestingly, the
more teachers used for amalgamation, the higher the clas-
sification performance is. For example, the performance on
part1 increases from 68.7% to 69.9% and further to 70.3%
for two, three and four teachers. This again indicates that the
potentially complementary knowledge from multiple classi-
fication tasks indeed benefits each other.

We then compare the two schemes for multi-teacher amal-
gamation, DFA and IFA. Note that the performances of DFA
and IFA differ only when amalgamating from more than
two teachers, and thus we compare their performances us-
ing three and four teachers. We show the results in Table 5.
The performances of the two strategies are in general much
the same where DFA yields slightly better results on one
part while IFA on the others. In our supplementary material,
we also provide experimental results of IFA with different
amalgamating orders.

Ablation Study
We also conduct ablation studies to validate the proposed
method as follows.

Feature Adaption To show the effectiveness of FAM, we
compare the classification performances of the proposed
model with FAM turned on and off. As shown in Table 6,
when FAM is turned on, the accuracies are significantly
higher than those with FAM turned off on all the datasets.
This indicates that the FAM is indeed able to transform
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Table 4: Classification performances of the student models,
whose knowledge is amalgamated from different numbers
of teachers using DFA.

Stanford Dogs
Method part1 part2 part3 part4

From 2 teachers 68.7% 66.1% - -
From 3 teachers 69.9% 67.7% 63.8% -
From 4 teachers 70.3% 68.0% 65.4% 67.3%

Table 5: Classification performances of the student models,
whose knowledge is amalgamated from different numbers
of teachers using DFA and IFA.

Stanford Dogs
Method part1 part2 part3 part4

DFA from 3 teachers 69.9% 67.7% 63.8% -
IFA from 3 teachers 69.6% 69.1% 64.7% -
DFA from 4 teachers 70.3% 68.0% 65.4% 67.3%
IFA from 4 teachers 69.9% 68.8% 65.5% 67.9%

amalgamated features into a form that better adapts to non-
parametric layers in the network, and meanwhile preserves
and passes the critical information to the next layer.

Layer-wise Parameter Learning We also investigate the
power of the layer-wise learning strategy, by comparing
the student model with and without the layer-wise learning,
which correspond to the joint learning method and the base-
line described in the previous section. We show their training
and testing errors versus the epochs in Figure 4. The test er-
ror of joint learning with layer-wise learning is significantly
lower than that of the baseline without layer-wise learning.
In fact, despite not shown here, without layer-wise learning
the test error at 300 epochs remains to be 60.1%, as indicated
by the baseline in Table 1. We may thus safely conclude that
layer-wise learning indeed facilitates the training compared
to learning from scratch as done for baseline.

Joint Parameter Learning We compare in Table 2 and
Table 3 the results of layer-wise learning only and joint
learning, where the latter one outperforms the former on all
the four datasets. This validates in part our hypothesis that
the layer-wise learning accumulates errors across layers dur-
ing training, which can be alleviated by joint learning.

Table 6: Classification performances of the student model
with and without FAM. For simplicity, “Dogs” denotes
“Stanford Dogs”, “CUB” denotes “CUB-200-2011” and
“Aircraft” denotes “FGVC-Aircraft”.

Method Dogs CUB Aircraft Cars
W/O FAM 25.3% 33.9% 39.7% 30.7%
W/ FAM 45.3% 42.6% 49.4% 40.6%
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Figure 4: Training and test errors of baseline and joint learn-
ing versus the number of epochs on Stanford Dogs. Joint
learning converges to much lower errors.

Conclusion and Future Work
In this paper, we propose a new model-reusing task, termed
knowledge amalgamation, which aims at learning a com-
pact student model capable of handing the “super” task
from multiple teachers, each of which specializes in a dif-
ferent task. This task is in our opinion a research-worthy
topic in the sense that it allows amalgamating well-trained
models, many of which are learned using large-scale or
private datasets that are not publicly available, to derive a
lightweight student model that approximates or even outper-
forms the teachers.

To this end, we propose a pilot approach towards solving
this task. The proposed approach follows a two-step strat-
egy by first conducting feature amalgamation from the mul-
tiple teachers and then treating the obtained features as guid-
ance to learn the parameters of the student network. We con-
duct experiments on four datasets to validate the proposed
approach, which yields very promising results: the learned
student model can in fact perform better than the teach-
ers at their specializations, at a model scale that is much
smaller than the ensemble of the teachers. We also justify
the validness of several components by conducting the abla-
tion study.

Admittedly, this pilot approach in the current form, de-
spite its very encouraging results, indeed has some limita-
tions. We assume that the teacher models and the student
one share the same network architecture, which might be
a strong assumption in some real-world scenarios. In our
near-future work, we will therefore investigate amalgamat-
ing knowledge from teachers of different network architec-
tures, which truly allows us to reuse the knowledge of mas-
sive well-trained neural networks in the wild.

In the longer term, we will explore how to bridge the
semantic gap among different network architectures and
reuse the amalgamated knowledge to new tasks, enabling the
amalgamated knowledge transfer.
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