
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Reasoning over Streaming Data in Metric Temporal Datalog

Przemysław Andrzej Wałęga,1,2 Mark Kaminski,1 Bernardo Cuenca Grau1

1Department of Computer Science, University of Oxford, UK
2Institute of Philosophy, University of Warsaw, Poland

{przemyslaw.walega, mark.kaminski, bernardo.cuenca.grau}@cs.ox.ac.uk

Abstract

We study stream reasoning in datalogMTL—an extension of
Datalog with metric temporal operators. We propose a sound
and complete stream reasoning algorithm that is applicable to
a fragment datalogMTLFP of datalogMTL, in which propa-
gation of derived information towards past time points is pre-
cluded. Memory consumption in our algorithm depends both
on the properties of the rule set and the input data stream;
in particular, it depends on the distances between timestamps
occurring in data. This is undesirable since these distances
can be very small, in which case the algorithm may require
large amounts of memory. To address this issue, we propose
a second algorithm, where the size of the required memory
becomes independent on the timestamps in the data at the ex-
pense of disallowing punctual intervals in the rule set. Finally,
we provide tight bounds to the data complexity of standard
query answering in datalogMTLFP without punctual inter-
vals in rules, which yield a new PSPACE lower bound to the
data complexity of the full datalogMTL.

Introduction
Decisions in industry increasingly depend on the analysis
of large volumes of streaming data. Algorithmic trading re-
quires real-time processing of stock tickers and news items
(Nuti et al. 2011); oil companies monitor sensor readings
to detect equipment malfunction and predict maintenance
needs (Cosad et al. 2009); network providers analyse flow
data to identify traffic anomalies (Münz and Carle 2007);
and IoT applications such as Smart Cities analyse data com-
ing from multiple devices (Lécué 2017).

Data analysis in these applications typically relies on the
ability to recognise interesting events. For example, an ana-
lyst in a diagnostics centre could be interested in identifying
whether a certain signal has been received with high fre-
quency over a period of time. Metric Temporal Logic (MTL)
has been proposed as a suitable formalism for specifying
and reasoning over such complex events in real-time systems
(Heintz and Doherty 2004; Thati and Roşu 2005; Doherty,
Kvarnström, and Heintz 2009; Ničković and Piterman 2010;
Baldor and Niu 2012; Ho, Ouaknine, and Worrell 2014;
Basin, Klaedtke, and Zălinescu 2018). MTL allows for for-
mulas such as [k1,k2]ϕ and [k1,k2]ϕ, with k1 and k2 ra-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tional numbers, which hold at time t if ϕ holds at each (re-
spectively, some) moment in [t − k2, t − k1]. In particular,
we can capture our previous example using an MTL formula

[0,k1] [0,k2]signal , which holds if the signal has been re-
ceived continuously over an interval lasting at least k1 with
gaps between consecutive readings of length at most k2.

MTL satisfiability checking, however, cannot be used to
capture analysis tasks involving recursive propagation of in-
formation. Query answering in a recursive rule language
with metric operators such as datalogMTL (Brandt et al.
2018) is better suited to that effect.
Example 1. Consider a network where nodes are monitoring
different signals. A node receiving readings for a signal with
sufficiently high frequency flags the signal by sending a mes-
sage to all neighbouring nodes in the network, which will
then also monitor the signal for a fixed period of time. The
analyst is interested in tracking which nodes are monitoring
which signals at any point in time. This generic monitoring
task involves analysing how information propagates recur-
sively over time throughout the topology of the network, and
can be captured by the following datalogMTL rules:

flags(x, z)← node(x) ∧monitors(x, z) ∧

[0,k1] [0,k2]signal(z);

[0,k]monitors(x, z)← connected(x, y) ∧ flags(y, z).

Here, the MTL formula [0,k1] [0,k2]signal(z) is as before,
whereas [0,k]monitors(x, z) indicates that x will monitor
signal z continuously for a period of time of length k.

In contrast to the standard query answering problem,
where input data is assumed to be finite, streaming data is
seen as an unbounded sequence of facts that flow through
the system and must be processed incrementally. Stream
reasoning—the problem of answering queries over stream-
ing data in the presence of background knowledge—has re-
ceived a great deal of attention in the literature, and we
refer the reader to our Related Work section for a de-
tailed discussion (Barbieri et al. 2009; Anicic et al. 2011;
Dell’Aglio et al. 2014; Özçep, Möller, and Neuenstadt 2014;
Margara et al. 2014; Zaniolo 2012; Ronca et al. 2018b;
Beck, Dao-Tran, and Eiter 2018). Stream reasoning in a
recursive metric temporal language such as datalogMTL,
however, has not been studied to the best of our knowledge,
and raises a number of technical challenges discussed next.

3092

To ensure correctness of query answering over stream-
ing data, systems must compute results over received par-
tial data as if the entire (infinite) stream had been available.
Furthermore, to achieve low latency and satisfy memory re-
strictions, systems can only store a limited history of re-
ceived information to perform further computations. Rules
in datalogMTL, however, can propagate derived informa-
tion both towards past and future time points and hence re-
sults can depend on data that has not yet been received or
which arrived far in the past. This may force the system to
keep in memory a large (or even unbounded) input history,
and/or to delay the output of results (even indefinitely) to
ensure correctness. This leads to a fundamental trade-off in-
volving the basic properties that an algorithm must satisfy,
namely (i) soundness—every computed answer follows log-
ically from the rules and the entire infinite stream; (ii) com-
pleteness—each answer that follows from the rules and the
infinite stream will eventually be streamed out; and (iii) min-
imal storage and latency—answers are streamed out as early
as possible, and stored information is kept to a minimum.
Our contribution We investigate the problems surrounding
stream reasoning for datalogMTL. In line with other works
(Baldor and Niu 2012; Ronca et al. 2018a; Basin, Klaedtke,
and Zălinescu 2018), we focus on a fragment that precludes
propagation of derived information towards the past, which
we call datalogMTLFP . This fragment is motivated by the
observation that received data in streaming applications typ-
ically influences only present and future events (e.g., a flag is
raised only after a pattern in signal data has been detected).

We propose a sound and complete stream reasoning al-
gorithm for datalogMTLFP that relies on a sliding window
to limit memory usage. The analysis of our algorithm, how-
ever, reveals that memory usage not only depends on the
rule set defining the query and the number of different ob-
jects mentioned in the stream, but also on the distances be-
tween timestamps in the stream. This is undesirable since
the minimum distance between consecutive time points in a
stream can be very small (i.e., bounded by the precision of
the measuring devices) and, in particular, orders of magni-
tude smaller than the length of intervals in rules. As a result,
the memory consumption of our algorithm may be too large
in practice. To address this issue, we propose a modified al-
gorithm, where memory consumption no longer depends on
the distance between consecutive facts, at the expense of dis-
allowing punctual operators such as [1,1] in rules.

We finally study the data complexity of standard query
answering, which is in known to be in EXPSPACE and P-
hard for datalogMTL (Brandt et al. 2018). We show tight
P and PSPACE bounds for datalogMTLFP rule sets without
punctual intervals under the assumption that numbers are en-
coded in unary and binary, respectively. These results yield
a new PSPACE lower bound for the data complexity of the
full datalogMTL language under binary encoding.

Preliminaries
We consider intervals over the non-negative rationals Q≥0

and ∞, and denote with %− the greatest lower bound (glb)
and with %+ the least upper bound (lub) of interval %, writing

%+ =∞ when % is unbounded to the right; % is left closed if
%− ∈ %, and right closed if %+ ∈ %. The length |%| of % is∞
if %+ =∞ and otherwise |%| = %+−%−; an interval [t, t] of
length 0 is punctual, and we denote it as t. For intervals %1

and %2, we define their union %1∪%2 and intersection %1∩%2

as usual; %1 + %2 is the interval with glb %1
− + %2

− and lub
%1

++%2
+ that is left (right) closed if and only if both %1 and

%2 are left (right) closed. We define %1 ⊕ %2 as the interval
with glb %1

− + %2
+ and lub %1

+ + %2
− that is left closed if

and only if %1 is left closed and %2 is right closed, and that
is right closed if and only if %1 is right closed and %2 is left
closed; if such interval does not exist, then %1 ⊕ %2 = ∅. We
assume that each t ∈ Q is given by two integers (numerator
and denominator), and say that t is encoded in unary (binary)
if both integers are represented in unary (binary). A setX ⊆
Q is discrete if for each t ∈ X that is not largest in X there
is t′ > t in X such that there is no t′′ ∈ X with t < t′′ < t′.
For a discrete X and any t ∈ Q we define succX(t) as the
least t′ ∈ X such that t′ > t, or ∞ if no such t′ exists.
Finally, the greatest common divisor of X , written gcd(X),
is the greatest rational number which divides all numbers in
X to integer values.

Next, we introduce datalogMTL. As in (Brandt et al.
2018), we adopt the so-called continuous semantics of MTL
as opposed to the pointwise semantics.
Syntax We assume countably infinite and pairwise disjoint
sets of variables, constants, and predicates with a nonnega-
tive integer arity. A term is a variable or a constant. An atom
is of the form P (τ) with P a predicate symbol and τ a tuple
of terms of matching arity; an atom is ground if it contains
no variables. A rule is an expression of the following form:

B ← A1 ∧ . . . ∧Ak (k ≥ 0), (1)

where its elements are defined by the following grammar:

A := P (τ) | %A | %A | %A | %A | AU%A | AS%A;

B := P (τ) | %B | %B.

We assume that rules are safe: each variable occurs in some
Ai. A datalogMTL program is a finite set Π of rules. Pro-
gram Π is datalogMITL if it has no punctual intervals. The
granularity gran(Π) of Π is the minimal length of the inter-
vals in Π. A fact is of the form α@t with α a ground atom
and t ∈ Q≥0. A datasetD is a (possibly infinite) set of facts.
Semantics An interpretation M is based on a non-empty
domain ∆; it determines, for each ground atom α and t ∈ Q,
whether α holds at t (in which case, we write M, t |= α). Let
ν map terms into ∆ such that ν(c) = c for each constant c;
then, satisfaction of complex expressions by M is defined
inductively in Table 1. Interpretation M satisfies rule (1) if,
for each ν, M, t |=ν B whenever M, t |=ν Ai for each
1 ≤ i ≤ k. Interpretation M is a model of program Π if it
satisfies all its rules, and is a model of datasetD if M, t |= α
for each α@t ∈ D. We say that Π and D entail α@t, written
(Π,D) |= α@t, if M, t |= α for each model M of Π and D.

Streams and Stream Queries
Streaming data is often represented as an unbounded se-
quence of timestamped facts. As in (Brandt et al. 2018), we

3093

M, t |=ν P (τ) if M, t |= P (ν(τ));

M, t |=ν
%A if M, s |=ν A for all s with s− t ∈ %;

M, t |=ν
%A if M, s |=ν A for all s with t− s ∈ %;

M, t |=ν
%A if M, s |=ν A for some s with s− t ∈ %;

M, t |=ν
%A if M, s |=ν A for some s with t− s ∈ %;

M, t |=ν AU%A′ if M, t′ |=ν A′ for some t′ with t′ − t ∈ %
and M, s |=ν A for all s ∈ (t, t′);

M, t |=ν AS%A′ if M, t′ |=ν A′ for some t′ with t− t′ ∈ %
and M, s |=ν A for all s ∈ (t′, t).

Table 1: Semantics of datalogMTL.

represent timestamps as non-negative rational numbers; this
generalises other models of streaming data in the literature
where timestamps are assumed to be natural numbers (Beck,
Dao-Tran, and Eiter 2018; Ronca et al. 2018b). We also as-
sume that the timeline of a stream is discrete as opposed to
dense—that is, it is always possible to tell which is the next
time point for which data is available in the stream.

Definition 2. A stream is a function S assigning a finite set
S(t) of ground atoms to each t ∈ Q≥0. The object domain of
S is the set of constantsOS occurring in S; the temporal do-
main of S is the set of rationals TS to which S assigns a non-
empty set. For any stream S we require TS to be a discrete
set. By slight abuse of notation, we make no distinction be-
tween S and the (maybe infinite) dataset {α@t | α ∈ S(t)}.

A query defines a transformation of an input stream into
an output stream by means of logical entailment.

Definition 3. A stream query is a pair (Π, Q), with Π a pro-
gram andQ a predicate. LetX ⊆ Q≥0 be a discrete set. The
answer to (Π, Q) over a stream I relative to X is the stream
{Q(c)@t | t ∈ X and (Π, I) |= Q(c)@t}.

Note that setX in the definition specifies the temporal do-
main of the answer stream—that is, the timepoints for which
answers are required in the output.

Forward-propagating datalogMTL
We next introduce the language of forward-propagating
datalogMTL—a fragment of datalogMTL that allows for
recursive derivation of facts into present and future time-
points, while precluding propagation towards past points.
Similar restrictions have been adopted in the stream rea-
soning (Ronca et al. 2018a), monitoring (Basin, Klaedtke,
and Zălinescu 2018) and database view update literature
(Chomicki 1995). The fragment is motivated by the observa-
tion that events in streaming applications are typically recog-
nised based on previously received data only (and not based
on future data). From an algorithmic perspective, this restric-
tion will allow us to limit memory consumption by “forget-
ting” previously received facts without losing completeness.

Algorithm 1 A generic stream reasoning algorithm.

Parameters: Query (Π, Q), discrete X ⊆ Q≥0, step ∈ Q>0

Input: Stream I
1: t := −step . current time point
2: Set w to the maximal number in Π . window size
3: W := ∅ and H := ∅ . memory
4: loop:
5: if succI(t) ≤ t+ step then
6: tnext := succI(t) and W := W ∪ I(tnext)
7: else
8: tnext := t+ step

9: Exhaustively apply the rules from Table 2
10: for Q(c)@% ∈W do
11: if t ∈ % ∩ (t, tnext] ∩X then
12: stream out Q(c)@t

13: Exhaustively apply the rules from Table 3
14: t := tnext

Definition 4. A rule (1) is forward-propagating if its ele-
ments are generated by the following grammar:

A := P (τ) | %A | %A; B := P (τ) | %B.

A program is datalogMTLFP if it consists of forward-
propagating rules and it is datalogMITLFP if, additionally,
it contains no punctual intervals.1

Note that the program given in Example 1 is forward-
propagating. For convenience, we will assume w.l.o.g. that
datalogMTLFP are given in the normal form defined next,
where there is no nesting of temporal operators.

Definition 5. A datalogMTLFP program is in normal form
if it contains only rules of the following forms:

P0(τ 0)← %P1(τ 1); (2)

P0(τ 0)← %P1(τ 1); (3)
P0(τ 0)← P1(τ 1) ∧ . . . ∧ Pn(τn) (n ≥ 0), (4)

where Pi(τ i) are atoms and each interval is either left and
right closed, or left and right open.

Proposition 6. Each datalogMTLFP program Π can be
transformed in polynomial time into Π′ in normal form such
that for each dataset D and fact α@t over the vocabulary
of Π: (Π, D) |= α@t if and only if (Π′, D) |= α@t.

A Generic Stream Reasoning Algorithm
In this section, we present a stream reasoning algorithm for
datalogMTLFP . Our algorithm takes as input a stream I and
outputs (also as a stream) the answers to a standing query
(Π, Q), which we fix as a parameter. The algorithm is also
parametrised with a discrete set X , which specifies the tem-
poral domain of the answer stream, and a value step which
controls the incrementality of query processing.

The algorithm is initialised in Lines 1–3. Line 1 initialises
the pointer to the current time point in the input stream to a
value smaller than all time points in TI . In Line 2, we de-
fine the size of a sliding window w as the maximal rational

1For simplicity, we omit from the language the operator S%.

3094

Table 2: Derivation rules.

() If α@%1 ∈ W and β ← %2α is a ground instance of
a rule in Π and % = (%1 + %2) ∩ (t, tnext] is non-empty,
then add β@% to W ;

(
∞

) If α ∈ H and β ← %2α is a ground instance of a
rule in Π with %+2 =∞, then add β@(t, tnext] to W ;

() If α@%1 ∈ W , β ← %2α is a ground instance of a
rule in Π, and % = (%1 ⊕ %2) ∩ (t, tnext] is non-empty
then add β@% to W ;

(horn) If β ←
∧n
i=1 αi is a ground instance of a rule in Π,

for each i αi@%i ∈ W , and % =
⋂n
i=1 %i is non-empty,

then add β@% to W ;

(∪) If {α@%1, α@%2} ⊆W and % = %1 ∪ %2 is an interval,
then add α@% to W ;

(H) If α@% ∈W and %− < t− w, then add α to H .

number occurring as a bound of an interval in Π. Line 3 ini-
tialises the memory, which we partition into two parts:

• The window W stores information about the most recent
w time points; it consists of extended facts of the form
α@% with α a ground atom and % an interval, meaning
that α holds in all rational numbers in %.

• The history H stores information about older time points
that are not covered by W ; it consists of ground atoms α,
meaning that α was true at some such older time point,
without specifying exactly when.

The core of the algorithm is an infinite loop, where each
iteration consists of the steps detailed next and where the
current time point t is incremented at the end of each iter-
ation. In Lines 5–8, the algorithm reads the next chunk of
the input by either moving forward by step (if there is no
data point between t and t+ step), or by moving to the next
time point with data and loading the relevant facts into the
window memory (Line 6). In Line 9, the algorithm applies
exhaustively the rules in Table 2, which derive new informa-
tion based on the rules in Π and the contents of the memory:

• Rules (), (), and (horn) capture the semantics of the
normalised datalogMTLFP rules of the form (2), (3), and
(4), respectively, when applied to the contents of W ; the
application of rules () and () is illustrated in Figure 1.

• Rule (∞) deals with normalised rules of the form (2)
when applicable to “old” facts in the history H .

• Rule (∪) merges extended facts in W about the same
ground atom into an extended fact over a larger interval.

• Rule (H) extends the history with old information that is
outside the window.

In Lines 10–12 the algorithm outputs all answers in the an-
swer stream in-between t and tnext. Finally, in Line 13 the
algorithm “compacts” the window memory W by exhaus-
tively applying the rules in Table 3. In particular, Rule (c1)
slides the window by deleting from W old information that

Table 3: Memory compacting rules.

(c1) If α@% ∈ W and %− < t − w, then delete α@% from
W . Moreover, if %′ = % ∩ [t − w, tnext] is non-empty,
then add α@%′ to W ;

(c2) If {α@%1, α@%2} ⊆ W and %1 (%2, then delete
α@%1 from W .

falls outside the window; Rule (c2) eliminates redundancy
by deleting from W all extended facts subsumed by others.

The following theorem establishes soundness and com-
pleteness of our algorithm.

Theorem 7. Algorithm 1 outputs the answer to (Π, Q) over
I relative to X for any value of the step parameter.

Proof sketch. The derivation rules from Table 2 mimic the
semantics of rules in a normalised datalogMTLFP program;
as a result, it can be shown that in each iteration of Algo-
rithm 1, α@% ∈ W implies (Π, I) |= α@t′ for all t′ ∈ %,
and α ∈ H implies (Π, I) |= α@t′ for some t′ < t − w.
Thus, (Π, I) |= Q(c)@t whenever Q(c)@t is streamed out,
which implies soundness of the algorithm.

To show completeness, we prove that the algorithm never
deletes from its memory information that may be used to
derive new facts in future. In particular, if the algorithm has
derived α in t′ in some iteration, then in each further iter-
ation we have α@% ∈ W for some % including t′ (if t′ is
inside the window) or α ∈ H (if t′ sticks out of the win-
dow). Then, we use the datalogMTL fixpoint characterisa-
tion from (Brandt et al. 2018) and show by induction on the
construction of the fixpoint of Π on the input stream I that,
whenever a fact α@t′ is in the fixpoint, memory W contains
α@% for some interval % including t′ in the iteration of the
loop of Algorithm 1 for which t′ ∈ (t, tnext].

We next analyse the memory requirements of the algo-
rithm in terms of the properties of the query (Π, Q), the in-
put stream I , and the step parameter.

Theorem 8. Let I be a stream such that gcd(TI) exists. Then
throughout each iteration of Algorithm 1, the number of el-
ements in W ∪H is at most(

4 ·
(

w + 2 · step
gcd(TI ∪ N ∪ {step})

+ 1

)2

+ 1

)
· P · |OI |A,

with N the set of rationals mentioned in Π, P the number of
predicates in Π and A the maximum arity of such predicates.

Proof sketch. Since each element of H is a ground atom,
the cardinality of H is bounded by P · |OI |A. Similarly, for a
given interval %, there are at most P · |OI |A extended facts of
the form α@% in W . Thus, it suffices to determine the num-
ber of intervals that may occur in W . We show by induction
on the construction of W that α@% ∈ W implies that %−
and %+ divided by gcd(TI ∪ N ∪ {step}) yield integer val-
ues and that % ⊆ [t− step− w, t+ step]. As a result, there

3095

tnextt
α@%1

%−2

%+2

(%1 + %2)

β@(%1 + %2) ∩ (t, tnext]

(a)

tnextt
α@%1

%+2

%−2

(%1 ⊕ %2)

β@(%1 ⊕ %2) ∩ (t, tnext]

(b)

Figure 1: Application of rules () and (), namely in (a) β@(%1 + %2) ∩ (t, tnext] is added to W by β ← %2α, whereas in
(b) β@(%1 ⊕ %2) ∩ (t, tnext] is added to W by β ← %2α.

are w+2·step
gcd(TI∪N∪{step}) + 1 possible endpoints of %, and thus %

is one of at most 4 · (w+2·step
gcd(TI∪N∪{step}) + 1)2 intervals, where

factor 4 takes into account whether the interval is left/right
open or closed. Then, the bound in the theorem follows.

We emphasise that Theorem 8 does not provide a finite
bound on the number of elements in memory, even if the
stream query and the step parameter are considered fixed. In
particular, the algorithm may consume unbounded memory
if the input stream I satisfies any of the following conditions:
(1) the object domain OI has infinitely many elements; or
(2) TI has no gcd. In many applications, it is reasonable to
assume that these conditions do not hold—that is, the object
domain of all streams is finite (e.g., the set of nodes and
monitored signals in our example is finite over time) and that
the timestamps occurring in a stream have a fixed gcd (e.g.,
the devices timestamping the data have a finite precision).

The gcd of the input stream however, can be very small
compared to the size of the window, resulting in an impracti-
cally large bound on the number of elements in memory; fur-
thermore, it may not be known to the designer of the query,
which makes it difficult to estimate memory efficiency of
the algorithm at design time. It is hence desirable to have
an algorithm for which the size of the window and the his-
tory can be bounded independently of the temporal domain
of the input stream. In the next section, we modify our algo-
rithm for datalogMTLFP to a stream reasoning algorithm
for datalogMITLFP that enjoys this desirable property.

An Algorithm for datalogMITL
We next present a variant of Algorithm 1 for which memory
usage can be bounded independently of the temporal domain
of the input streams whenever the query (Π, Q) is given in
datalogMITLFP and hence has no punctual intervals. The
only modification required to Algorithm 1 is an extension
of the derivation and memory compacting rules from Tables
2 and 3; this will also require that we keep a new type of
extended fact in the window memory.

Our modifications exploit the following observations:
1. Extended facts in W holding at “short” intervals cannot

be used to derive new information using Rule () from
Table 2. In particular, α@%′ inW cannot be used to apply
() to a ground rule β ← %α where |%′| < |%|.

2. If a ground atom α holds in W in a set S of intervals
the gaps between which are all smaller than the gran-

Table 4: Derivation rules for datalogMITLFP

Rules (
∞

), (), (horn), and (∪) from Table 2 and the
following rules:

(#) If α#%1 ∈ W , β ← %2α is a ground instance of
a rule in Π, and % = (%1 + %2) ∩ (t, tnext] is non-empty,
then add β@% to W;

(#∪) If {α#%1, α#%2} ⊆ W where %1 ∪ %2 is an interval
or %−2 ≥ %+1 and %−2 − %

+
1 < gran(Π), then add α#% to

W where % is the smallest interval containing %1 and %2;

(#H) If α#% ∈W and %− < t− w, then add α to H;

(@→ #) If α@% ∈W , then add α#% to W .

ularity of Π, then to correctly derive new information
with ground rules β ← %α, it suffices to keep in mem-
ory the extended fact α@% for the minimal % containing
all intervals in S. Note that this condition only makes
sense if Π contains no punctual intervals, as otherwise
gran(Π) = 0.

To capture the second observation, we allow in the win-
dow memory W a new type of extended fact of the form
α#%, with α a ground atom and % an interval, meaning that
α holds “sufficiently often” in % as represented in Figure 2—
that is, α holds in the endpoints of % and at some point of
each subinterval of % of length at least gran(Π).2

%1
− %1

+

α α α

< gran(Π) < gran(Π)

α#%

Figure 2: α#% means that α holds “sufficiently often” in %.

The new derivation rules of the algorithm are given in Ta-
ble 4. In order to capture the semantics of extended facts of
the form α#%, Rule () in Table 2 is replaced with Rule
(#) and new rules (#∪), (#H), and (@→ #) are added.

2The precise meaning of α#% is slightly more complicated, as
it needs to cover the cases when % is an open interval and when it
was produced by Rule (c3) from Table 5.

3096

Table 5: Memory compacting rules for datalogMITLFP .

Rules from Table 3 and the following rules:

(c3) If α#% ∈ W and %− < t − w, then delete α#% from
W . Moreover, if %′ = % ∩ [t − w, tnext] is non-empty,
then add α#%′ to W ;

(c4) If {α#%1, α#%2} ⊆ W with %1 (%2, then delete
α#%1 from W ;

(c5) If α@% ∈ W , %+ < tnext, and |%| < gran(Π) then
delete α@% from W .

The memory compacting rules in Table 3 are extended
with those in Table 5. Rules (c3) and (c4) are the analogue
to (c1) and (c2) in Table 3 for the new type of extended fact;
in turn, Rule (c5) captures our first observation; it deletes
from memory all extended facts α@% where % is too short
since they cannot derive new information. Correctness of our
modified algorithm is established in the following theorem.
Theorem 9. Consider the variant of Algorithm 1 using the
derivation rules from Table 4 and the compacting rules from
Table 5. The algorithm outputs the answer to (Π, Q) over I
relative to X for any value of the step parameter.

Proof sketch. To show soundness we prove by simultaneous
induction on the iterations of the algorithm that the two con-
ditions from the soundness proof in Theorem 7 hold together
with the following condition: if α#% ∈W , then each subin-
terval of % of length at least gran(Π), includes a time point in
which α holds. Hence, if Q(c)@t is streamed out, we have
(Π, I) |= Q(c)@t, so the algorithm is sound.

For completeness, we show that if α was derived in t′ in
some iteration of the algorithm, then in each further itera-
tion we have: α#% ∈ W for some % including t′ (if t′ is
inside the window) or α ∈ H (if t′ sticks out of the win-
dow). Moreover, if α was derived in % in some iteration and
|%| ≥ gran(Π), then in each further iteration for which %−
is still in the window, we have α@%′ ∈ W for some %′ con-
taining %. Then, we show by induction on the construction of
the fixpoint of Π on the input stream I that if a fact α@t′ is
in the fixpoint, then the memory W contains α@% for some
% including t′ in the iteration of the loop of Algorithm 1 for
which t′ ∈ (t, tnext]. Hence, the algorithm is complete.

Finally, we obtain a bound on memory size that no longer
depends on the temporal domain of input streams.
Theorem 10. Consider the variant of Algorithm 1 using the
derivation rules from Table 4 and the compacting rules from
Table 5. For Π a datalogMITLFP program mentioning at
least one interval,3 in any step of the algorithm the number
of elements in W ∪H is at most

4

((
2G

(
w + step

gran(Π)
+ 1

)
+ 2

)
· R

w+2·step
K

)2

+ G,

3If Π mentions no intervals, it is Datalog, and the number of
elements in W ∪H is bounded by 7 · P · |OI |A.

where R is the number of rules in Π, K is the least non-zero
glb or lub of an interval and G = P · |OI |A for P the number,
and A the maximum arity of predicates occurring in Π.

Proof sketch. We first determine the size of W after com-
pacting memory in Line 13. Consider α@% in W ; from (c1)
it follows that % ⊆ [t−w, tnext] and, by (c5), |%| ≥ gran(Π)
or %+ = tnext, which implies, by (∪) and (c2), that W con-
tains at most w+step

gran(Π) such facts. Next, consider α#% inW ; it
follows from (c3) that % ⊆ [t−w, tnext] and it follows from
(#∪) and (c4) that the minimal distance between % and any
%′ 6= % with α′#%′ in W is at least gran(Π). Hence, there
are at most w+step

gran(Π) + 1 elements α#% in W . Thus, W has at
most Wc = 2G(w+step

gran(Π) + 1) elements after Line 13.
Next, we analyse the number of elements in W ∪H after

applying derivation rules in Line 9. SetH contains at most G
ground atoms. Assume that α@% or α#% was added toW in
Line 9; then, % ⊆ [t−w− step, t+ step], and by analysing
the rules in Table 5 we can show that each of %− and %+

can take at most (Wc+2) ·R
w+2·step

K different values, which
implies the bound from the theorem.

Query Answering
We now turn our attention to the data complexity of standard
query answering (i.e., over finite datasets). We first establish
tight P and PSPACE bounds for datalogMITLFP under the
assumption that numbers in the input are encoded in unary
and binary, respectively. The upper bounds are obtained by
applying our algorithm in the previous section by consider-
ing the input dataset as a finite stream.
Theorem 11. Checking whether (Π,D) |= α@t for Π a
fixed datalogMITLFP program, D an input dataset, and
α@t an input fact is (i) PSPACE-complete if time points in
the input are encoded in binary; and (ii) P-complete if time
points in the input are encoded in unary.

Proof sketch. We can check (Π,D) |= α@t using a straight-
forward adaptation of the algorithm for datalogMITLFP in
the previous section: simply use D as a finite stream and
terminate whenever the algorithm reaches time point t. The
rules from Table 4 and Table 5 can be exhaustively applied in
polynomial time in each iteration if Π is fixed; furthermore,
the number of iterations is linear in the input under unary
encoding, giving the P upper bound. Although the number
of iterations is exponential under binary encoding, the size
of the memory kept by the algorithm is polynomial if Π is
fixed, so the PSPACE bound follows. The P lower bound fol-
lows from P-completeness of fact entailment in plain (non-
temporal) Datalog. The PSPACE lower bound is obtained by
reduction from the halting problem for a Turing Machine
using polynomial space; it uses the observation that, on an
input string w, the machine uses a number tw of steps that is
at most exponential in |w| but tw can be encoded in binary
using polynomially many bits.

The lower bounds in Theorem 11 yield a new PSPACE
lower bound for the data complexity of the full datalogMTL
language (with time points encoded in binary), where the

3097

best known lower bound was the straightforward P-hardness
inherited from plain Datalog.

Corollary 12. The data complexity of fact entailment in
datalogMTLFP (and hence of datalogMTL) is PSPACE-
hard if time points are encoded in binary.

We conclude this section by studying data complexity
for datalogMTLFP . In contrast to our previous results, our
bounds apply only under the assumption that the gcd of
timestamps in the input stream is known in advance, which is
the case, e.g., when the gap between consecutive time points
in the input dataset is fixed to a constant. We leave open the
problem of providing tight bounds in the general case.

Theorem 13. Let g be a fixed positive rational. Checking
whether (Π,D) |= α@t for Π a fixed datalogMTLFP pro-
gram, α@t an input fact, and D an input dataset satisfying
g = gcd(TD) is (i) PSPACE-complete if time points in the in-
put are encoded in binary; and (ii) P-complete if time points
in the input are encoded in unary.

Proof sketch. To check whether (Π,D) |= α@t we use Al-
gorithm 1 on inputD with a parameter step = gcd({g}∪N),
where N is the set of rationals occurring in Π. The rules from
Table 2 and Table 3 can be exhaustively applied in polyno-
mial time in each iteration. The number of iterations is linear
in the input under unary encoding, giving the P upper bound.
Under binary encoding the number of iterations is exponen-
tial but the size of the memory kept by the algorithm is poly-
nomial, so the PSPACE bound follows.

The P lower bound follows from P-completeness of fact
entailment in plain Datalog. PSPACE-hardness is obtained
by the same reduction as in the proof of Theorem 11 since
all datasets involved have the same temporal domain.

Related Work
The evaluation of MTL formulas over streams has received
significant attention in the literature. Basin, Klaedtke, and
Zălinescu (2018) propose an algorithm for checking satis-
fiability of propositional MTL formulas w.r.t. a stream of
facts under continuous semantics; similarly to our work, for-
mulas are given in the past fragment of MTL, and mem-
ory consumption is limited by bounding the number of data
points in a stream per unit of time. Baldor and Niu (2012)
propose an algorithm which assumes a representation of
streams as a set of signals capturing changes of truth values
of propositional variables; memory consumption is bounded
by assuming a finite number of signal changes in any fi-
nite length interval. Formula evaluation over streams under
the pointwise semantics of MTL has also been extensively
studied (Heintz and Doherty 2004; Thati and Roşu 2005;
Doherty, Kvarnström, and Heintz 2009; Ničković and Piter-
man 2010; Baldor and Niu 2012; Ho, Ouaknine, and Wor-
rell 2014; Basin, Klaedtke, and Zălinescu 2018). In all these
works, reasoning amounts to model checking over an infi-
nite model; in contrast, we study an entailment problem over
a recursive rule set where rules can derive new information.

The complexity of query answering in datalogMTL and
its fragments under continuous semantics has been studied

by Brandt et al. (2018), who showed that the problem is EX-
PSPACE-complete for combined complexity and P-hard for
data complexity; furthermore, the authors studied the com-
plexity of non-recursive datalogMTL and proved PSPACE-
completeness for combined complexity and subpolynomial
(AC0) data complexity bounds. Low complexity fragments
of datalogMTL have been studied in (Kikot et al. 2018). Fi-
nally, disallowing punctual intervals in MTL formulas is a
well-known restriction to obtain more favourable computa-
tional properties; satisfiability and model checking of unre-
stricted MTL formulas are undecidable (Alur and Henzinger
1993), but become EXPSPACE-complete if punctual inter-
vals are disallowed (Alur, Feder, and Henzinger 1996).

Reasoning over streams in the presence of an OWL 2 on-
tology has been widely studied (Barbieri et al. 2009; Ani-
cic et al. 2011; Dell’Aglio et al. 2014; Özçep, Möller, and
Neuenstadt 2014; Margara et al. 2014). OWL 2 ontologies,
however, are non-temporal and hence their problem is very
different to ours. Stream reasoning has also been recently
studied for Datalog1S (Zaniolo 2012; Ronca et al. 2018b;
2018a) and LARS (Beck, Dao-Tran, and Eiter 2018). Sim-
ilarly to our work, Ronca et al. (2018a) study a forward-
propagating version of Datalog1S and define an algorithm
based on a sliding window. Datalog1S , however, does not
allow for metric operators, and rules are evaluated over the
natural numbers; this makes our technical results very dif-
ferent to theirs. The LARS framework (Beck, Dao-Tran, and
Eiter 2018) aims to unify various approaches to stream rea-
soning and defines a rule language with (non-metric) modal
temporal operators and windowing constructs; the frame-
work considers only reasoning over finite data, and windows
are used to select finite fragments of streams.

Conclusion and Future Work
In this paper, we have studied stream reasoning in the con-
text of datalogMTL and proposed and analysed two sound
and complete algorithms. We have also investigated the data
complexity of standard query answering for datalogMTLFP

and datalogMITLFP , and improved existing lower bounds
on the data complexity of datalogMTL.

We see many avenues for future work. First, we will ex-
tend our algorithms to support the “Since” operator S%, and
also consider extending datalogMTL with non-monotonic
negation. Second, we will extend datalogMTLFP with a re-
stricted form of future operators and extend our algorithms
and complexity results accordingly. Finally, we believe that
our algorithms can be made practical; stream processing
algorithms based on MTL have been successfully applied
to autonomous aerial vehicles (Heintz and Doherty 2004;
Doherty, Kvarnström, and Heintz 2009), and query answer-
ing in a non-recursive fragment of datalogMTL has been
applied to monitoring turbine data (Brandt et al. 2018).

Acknowledgments
Research supported by the SIRIUS Centre for Scalable Data
Access, the EPSRC projects DBOnto, MaSI3, and ED3, the
NCN grant 2016/23/N/HS1/02168, and the Foundation for
Polish Science (FNP).

3098

References
Alur, R., and Henzinger, T. A. 1993. Real-time logics: Com-
plexity and expressiveness. Inf. Comput. 104(1):35–77.
Alur, R.; Feder, T.; and Henzinger, T. A. 1996. The benefits
of relaxing punctuality. J. ACM 43(1):116–146.
Anicic, D.; Fodor, P.; Rudolph, S.; and Stojanovic, N. 2011.
EP-SPARQL: a unified language for event processing and
stream reasoning. In WWW, 635–644.
Baldor, K., and Niu, J. 2012. Monitoring dense-time,
continuous-semantics, metric temporal logic. In RV, 245–
259.
Barbieri, D. F.; Braga, D.; Ceri, S.; Della Valle, E.; and
Grossniklaus, M. 2009. C-SPARQL: SPARQL for continu-
ous querying. In WWW, 1061–1062.
Basin, D.; Klaedtke, F.; and Zălinescu, E. 2018. Algorithms
for monitoring real-time properties. Acta Inform. 55(4):309–
338.
Beck, H.; Dao-Tran, M.; and Eiter, T. 2018. LARS: A logic-
based framework for analytic reasoning over streams. Artif.
Intell. 261:16–70.
Brandt, S.; Kalaycı, E. G.; Ryzhikov, V.; Xiao, G.; and Za-
kharyaschev, M. 2018. Querying log data with metric tem-
poral logic. J. Artif. Intell. Res. 62:829–877.
Chomicki, J. 1995. Efficient checking of temporal integrity
constraints using bounded history encoding. ACM Trans.
Database Syst. 20(2):149–186.
Cosad, C.; Dufrene, K. J.; Heidenreich, K.; McMillon, M.;
Jermieson, A.; O’Keefe, M.; and Simpson, L. 2009. Wellsite
support from afar. Oilfield Rev. 21(2):48–58.

Dell’Aglio, D.; Valle, E. D.; Calbimonte, J.; and Corcho, Ó.
2014. RSP-QL semantics: A unifying query model to ex-
plain heterogeneity of RDF stream processing systems. Int.
J. Semantic Web Inf. Syst. 10(4):17–44.
Doherty, P.; Kvarnström, J.; and Heintz, F. 2009. A temporal
logic-based planning and execution monitoring framework
for unmanned aircraft systems. Auton. Agents Multi-Agent
Syst. 19(3):332–377.
Heintz, F., and Doherty, P. 2004. DyKnow: An approach to
middleware for knowledge processing. J. Intell. Fuzzy Syst.
15(1):3–13.
Ho, H.-M.; Ouaknine, J.; and Worrell, J. 2014. Online mon-
itoring of metric temporal logic. In RV, 178–192.
Kikot, S.; Ryzhikov, V.; Wałęga, P. A.; and Zakharyaschev,
M. 2018. On the data complexity of ontology-mediated
queries with MTL operators over timed words. In DL.
Lécué, F. 2017. Deep dive on smart cities by scaling reason-
ing and interpreting the semantics of IoT. In EGC, 7–8.
Margara, A.; Urbani, J.; van Harmelen, F.; and Bal, H. E.
2014. Streaming the web: Reasoning over dynamic data. J.
Web Semant. 25:24–44.
Münz, G., and Carle, G. 2007. Real-time analysis of flow
data for network attack detection. In IM, 100–108.
Ničković, D., and Piterman, N. 2010. From MTL to deter-
ministic timed automata. In FORMATS, 152–167.

Nuti, G.; Mirghaemi, M.; Treleaven, P. C.; and Yingsaeree,
C. 2011. Algorithmic trading. IEEE Comput. 44(11):61–69.
Özçep, Ö. L.; Möller, R.; and Neuenstadt, C. 2014. A
stream-temporal query language for ontology based data ac-
cess. In KI, 183–194.
Ronca, A.; Kaminski, M.; Cuenca Grau, B.; and Horrocks,
I. 2018a. The window validity problem in rule-based stream
reasoning. In KR, 571–580.
Ronca, A.; Kaminski, M.; Cuenca Grau, B.; Motik, B.; and
Horrocks, I. 2018b. Stream reasoning in temporal datalog.
In AAAI, 1941–1948.
Thati, P., and Roşu, G. 2005. Monitoring algorithms for
metric temporal logic specifications. Electron. Notes Theor.
Comput. Sci. 113:145–162.
Zaniolo, C. 2012. Logical foundations of continuous query
languages for data streams. In Datalog 2.0, 177–189.

3099

