
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

TransGate: Knowledge Graph Embedding with Shared Gate Structure

Jun Yuan,1,2,3 Neng Gao,1,2 Ji Xiang1,2∗
1Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2State Key Laboratory of Information Security, Chinese Academy of Sciences, Beijing, China
3School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

{yuanjun,gaoneng,xiangji}@iie.ac.cn

Abstract

Embedding knowledge graphs (KGs) into continuous vec-
tor space is an essential problem in knowledge extraction.
Current models continue to improve embedding by focus-
ing on discriminating relation-specific information from enti-
ties with increasingly complex feature engineering. We noted
that they ignored the inherent relevance between relations
and tried to learn unique discriminate parameter set for each
relation. Thus, these models potentially suffer from high
time complexity and large parameters, preventing them from
efficiently applying on real-world KGs. In this paper, we
follow the thought of parameter sharing to simultaneously
learn more expressive features, reduce parameters and avoid
complex feature engineering. Based on gate structure from
LSTM, we propose a novel model TransGate and develop
shared discriminate mechanism, resulting in almost same
space complexity as indiscriminate models. Furthermore, to
develop a more effective and scalable model, we reconstruct
the gate with weight vectors making our method has com-
parative time complexity against indiscriminate model. We
conduct extensive experiments on link prediction and triplets
classification. Experiments show that TransGate not only out-
performs state-of-art baselines, but also reduces parameters
greatly. For example, TransGate outperforms ConvE and R-
GCN with 6x and 17x fewer parameters, respectively. These
results indicate that parameter sharing is a superior way to
further optimize embedding and TransGate finds a better
trade-off between complexity and expressivity.

Introduction
Knowledge graphs (KGs) such as WordNet (Miller 1995)
and Freebase (Bollacker et al. 2008) have been widely
adopted in various applications, like web search, Q&A, etc.
KGs are large-scale multi-relational structures and usually
organized in the form of triplets. Each triplet is denoted as
(h, r, t), where h and t are head and tail entities, respectively,
and r is the relation between h and r. For instance, (Beijing,
CapitalOf, China) denotes the fact that the capital of China
is Beijing.

Although existing KGs already have consisted of billions
of triplets, but they are far from completeness. Thus, the

∗Corresponding author
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

knowledge graph completion (KGC) has emerged an im-
portant open research problem (Nickel, Tresp, and Kriegel
2011). For example, it is shown by (Dong et al. 2014) that
more than 66% of the person entities are missing a birthplace
in Freebase and DBLP. The aim of KGC task is to predict re-
lations and determine specific-relation type between entities
based on existing triplets. Due to the extremely large data
size, an effective and scalable solution is crucial for KGC
task (Liu, Wu, and Yang 2017).

Various KGC methods have been developed in recent
years, and the most successful methods are representa-
tion learning based methods which encode KGs into low-
dimensional vector spaces. Among these methods, TransE
(Bordes et al. 2013) is a simple and effective model and
regards every relation as translation between the heads and
tails. We denote embedding vector with the same letters in
boldface. When (h, r, t) holds, the embedding h is close to
the embedding t by adding the embedding r, that is h+r ≈ t.

Indiscriminate models, like TransE, can scale to real-
world KGs (Xu et al. 2017a), due to the limited num-
ber of parameters and low computational costs. However,
indiscriminate models often learn less expressive features
(Dettmers et al. 2018), leading to either low parameter effi-
ciency or low accuracy. In fact, an entity may have multiple
aspects which may be related to different relations (Lin et
al. 2015). Therefore, relation-specific information discrimi-
nation of entities is the key to improving embeddings.

Many discriminate models (Lin et al. 2015; Ji et al. 2015;
2016) have been proposed recently and usually outperform
indiscriminate models on public data sets. We note that cur-
rent methods always assumed the independence between re-
lations and tried to learn unique discriminate parameter set
for each relation. Although there are always thousands of
relations in a KG, but they are not independent from each
other (Bordes et al. 2013). For example, among WordNet,
the most frequently encoded relation is the hierarchical re-
lation and each hierarchical relation has its inverse relation,
e.g. hyponym/hypernym.

As a result, current discriminate models potentially suf-
fer from following three problems, which all prevent current
models from efficiently applying on real-world KGs.

First, current discriminate models potentially suffer from
large parameters. For instance, when applying TransD (Ji et
al. 2015) on Freebase with an embedding size of 100, the pa-

3100

rameter size will be more than 33GB and half parameters are
discriminate parameters. Second, current discriminate mod-
els explore increasingly complex feature engineering to im-
prove embedding, resulting in high time complexity. In re-
ality, one nature of correlated relations is semantic sharing
(Trouillon et al. 2016), which can be used to improve the
discrimination. Third, due to the large parameter size and
complex design, current models have to introduce more hy-
per parameters and adopt pre-training to prevent overfitting.
Please refer to Table 1 and “Related Work” for details.

To optimize embedding and reduce parameters simultane-
ously, we follow the thought of parameter sharing and pro-
pose a novel method TransGate. Unlike previous methods
tried to learn relation-specific discriminate parameter set,
TransGate discriminates relation-specific information with
only two shared gates for all relations. Hence, TransGate has
almost same space complexity as TransE on real-world KGs.
Furthermore, shared gates share statistical strength across
different relations to optimize embedding without complex
feature engineering.

We conduct extensive experiments on link prediction and
triplets classification on large-scale public KGs, namely
Freebase and WordNet. TransGate achieves better perfor-
mance than ConvE (Dettmers et al. 2018) and R-GCN
(Michael Sejr et al. 2018) with 6x and 17x fewer parameters,
respectively. Unlike many of the related models that require
pre-training, TransGate is a self-contained model and does
not need any extra hyper parameter to prevent overfitting.

Our specific contributions are as follows:
• We identify the significance of inherent relevance be-

tween relations, which is largely overlooked by existing
literature. We follow the thought of parameter sharing to
learn more expressive features and reduce parameters at
the same time.

• Based on gate structure from LSTM (Hochreiter and
Schmidhuber 1997), we propose TransGate and develop
shared discriminate mechanism to avoid large discrimi-
nate parameters.

• To develop a more effective and scalable model, we re-
construct standard gate with weight vectors. In this way,
we reduce calculation brought by matrix-vector multipli-
cation operations and decrease the time complexity to the
same order as TransE.

• Experiments show that TransGate not only delivers sig-
nificant improvements compared to state-of-art baselines,
but also reduces parameters greatly. These results indicate
that parameter sharing is a superior way to further opti-
mize embedding and our method finds a better trade-off
between complexity and expressivity.

Related Work
Indiscriminate Models
Indiscriminate models usually focus more on the scalability
on real-world KGs. But they often have either low parameter
efficiency or low accuracy (Dettmers et al. 2018).

TransE. As mentioned in Introduction section, TransE
(Bordes et al. 2013) encodes entities and relations in the

same space Rm. Then it regards each relation as transla-
tion between the heads and tails and wants h + r ≈ t
when (h, r, t) holds. Hence, TransE assumes score function
fr(h, t) = ||h + r− t||L1/L2

is low if (h,r,t) holds, and high
otherwise.

DistMult. DistMult (Yang et al. 2015) has the same time
and space complexity as TransE. DistMult uses weighted
element-wise dot product to define the score function
fr(h, t) =

∑
hkrktk. Although DistMult has better overall

performance than TransE, but it is unable to model asym-
metric relations.

ComplEx. ComplEx (Trouillon et al. 2016) makes use
of complex valued embeddings and Hermitian dot product
to address the antisymmetric problem in DistMult. As men-
tioned in its paper, though ComplEx doubles the parameter
size of TransE, but TransE and DistMult perform better on
symmetry relations.

CombinE. CombinE (Tan, Zhao, and Wang 2017) consid-
ers triplets features from two aspects: relation rp ≈ hp + tp
and entity rm ≈ hm − tm. The score function is fr(h, t) =
||hp + tp − rp||2L1/L2

+ ||hm − tm − rm||2L1/L2
. CombinE

doubles the parameter size of TransE, but does not yield sig-
nificant boost in performance on link prediction.

Discriminate Models
Discriminate models focus more on precision. They usually
contain two stages: relation-specific information discrimina-
tion and score computation.

TransH. TransH (Wang et al. 2014) maps entity em-
bedding into relation hyperplanes to discriminate relation-
specific information. The score function is defined as
fr(h, t) = ||h − wTr hwr + r − (t − wTr twr)||L1/L2, where
wr is the normal vector of r’s relation hyperplane.

TransR/CTransR. TransR (Lin et al. 2015) learns a map-
ping matrix Mr for each relation. It maps entity embedding
into relation space to realize the discrimination. The score
function is fr(h, t) = ||Mrh + r − Mrt||L1/L2

. CTransR
is an extension of TransR. It clusters diverse head-tail entity
pairs into groups and sets a relation vector for each group.

TranSparse. TranSparse (Ji et al. 2016) replaces transfer
matrix in TransR by two sparse matrices for each relation.
And it uses two sparse degree hyper parameters, θhr and θtr,
to reduce parameters of mapping matrices.

TransD. TransD (Ji et al. 2015) constructs two mapping
matrices dynamically for each triplet by setting projection
vector for each entity and relation, that is Mrh = h>p rp +
Im×n, Mrt = t>p rp+Im×n. The score function is fr(h, t) =
||Mrhh + r −Mrtt||L1/L2. TransD obtains the state-of-art
performance on triplets classification.

Neural Tensor Network (NTN). NTN (Socher et al.
2013) learns a 3-way tensor and two transfer matrices for
each relation as discriminate parameter set. NTN constructs
a neural network to discriminate information. The score
function is defined as fr(h, r, t) = uTr f(h

>M̂rt + Mr1h +

Mr2t+br), where M̂r ∈ Rm×m×s, and f() is tanh operation.
The large parameters and high time complexity of NTN pre-
vent it from applying on large-scale KGs (Shi and Weninger
2017).

3101

To prevent overfitting, current discriminate models intro-
duce more hyper parameters and require pre-trained data
from prerequisite models. In addition, they often explore
linear discrimination to avoid high time complexity of non-
linear operation. Table 1 lists the details of several models.
TransGate achieves non-linear discrimination with relative
low time and space complexity by shared gates.

Other Models

A number of works attempt to improve knowledge graph
embedding in different ways. Some models explore different
loss function to improve embeddings. Zhou et al. (Zhou et al.
2017) propose a limit-based scoring loss function to provide
lower scoring of a golden triplet. ManifoldE (Xiao, Huang,
and Zhu 2016) proposes a manifold-based loss function to
achieve precise link prediction. Additionally, some addi-
tional information has been used to improve embedding. The
NLFeat model (Toutanova and Chen 2015) is a log-linear
model using simple node and link features. Jointly (Xu et al.
2017b) uses a gating mechanism to integrate representations
of structure and text information of entities. RUGE (Guo et
al. 2018) utilizes the soft-rule between triplets to enhance
ComplEX. But the extraction of additional information is
always the bottleneck.

Many researches attempt to introduce some novel tech-
niques of deep learning into knowledge graph embedding.
KBGAN (Cai and Wang 2018) introduces GAN to boost
several embedding models. ProjE (Shi and Weninger 2017)
uses a learnable combination operator to combine embed-
dings and feeds combined embeddings in a multi-class clas-
sifier to handle complex relations. Large candidate entity
number Nc will cause high time complexity, so ProjE has to
use candidate sampling to reduce Nc. R-GCN (Michael Sejr
et al. 2018) and ConvE (Dettmers et al. 2018) introduces
multi-layer convolution network in knowledge graph em-
bedding. ConvKB (Dai et al. 2018) designs a simple con-
volutional model and achieves the state-of-art results on
link prediction. ConvKB concatenates head, tail and rela-
tion vectors into a 3 ×m matrix, then feeds it into a convo-
lution network. The score function is defined as fr(h, t) =
concat(g([h, r, t] ∗Ω))w, where ∗ means convolution oper-
ation; Ω ∈ Rτ×1×3 is the set of filters; τ is the number of
filters; w ∈ Rτm×1. To learn expressive features, the magni-
tude of τ is same as dimensionm in above three convolution
models.

TransGate is a shallow model without using any addi-
tional information. This make it scale to real-world KGs eas-
ier.

Embedding with Shared Gate Structure

In this work, we follow the thought of parameter sharing and
propose an effective and scalable method named TransGate.
In this section we firstly introduce gate structure of LSTM.
Then we describe the TransGate architecture, along with the
training method. Last but not least, we make complexity
analysis on TransGate compared with some baselines.

Figure 1: TransGate Architecture. TransGate discriminates
relation-specific information with only two shared gates for
all relations. Shared gates can share the statistical strength
across different relations to optimize embedding.

Gate structure
Gate structure is the core mechanism of LSTM (Hochreiter
and Schmidhuber 1997), which has been found extremely
successful in many applications (Józefowicz, Zaremba, and
Sutskever 2015). Gate is a way to optionally let information
through. As marked in the red dashed circle in Figure 1, a
gate is composed of a layer with sigmoid activation function
and a Hadamard product operation.

The standard gate uses fully connected layer, which is
shown as Equation 1. The sigmoid operation is applied
element-wise and [,] means concatenate operation.

f = σ(b + W · [x, y]), (1)
where x is the current input vector and y is the representation
vector of the context. b, W are respectively bias and weight
matrix for the gate structure.

Sigmoid operation sets every element of f between 0 and
1, describing how much information should be let through.
Afterwards, a gate uses Hadamard product to filter informa-
tion as Equation 2

sf = s� f, (2)
where s is the vector that we want to filter, sf is the filtered
information vector, and � means the Hadamard product.

All the parameters of gate need to be learned during
training. Therefore, theoretically, a gate can learn to adap-
tively and nonlinearly filter information based on the input
with fixed number of parameters. That is to say, we can
train a gate making the filtered vector sf related to various
x, y without extra parameters. In practice, this great abil-
ity of gate structure has been shown in many researches
(Józefowicz, Zaremba, and Sutskever 2015).

TransGate Architecture
The main insight in development of TransGate is that we as-
sume that relation-specific information of entity will reflect
the relevance between relations too. In other words, there
should exist some common features in different relation-
specific embedding vectors of related relations. Hence,
we develop a shared discriminate mechanism for all rela-
tions based on gate structure. Shared gate shares statistical
strength across different relations to optimize embedding.

3102

The framework of TransGate is shown as Figure 1 and the
detailed descriptions are as follow:

1. We embed every entity and relation into continues vector
with same dimension.

2. To handle “one-relation-circle” structures (Zhang 2017)
1, TransGate sets two shared gates for head and tail enti-
ties, respectively.

3. We input both entity embedding and relation embedding
into the sigmoid layer of gate, letting the discrimination
determined by entity and relation together. 2

4. Then we realize non-linear and adaptive relation-specific
discrimination through multiplying sigmoid layer output
and entity embedding element-wise.

5. Last, we build translation between discriminated infor-
mation of heads and tails. Based on the score, we can
determine whether the triplet is valid.

Next, we describe TransGate using standard gate with
fully connected layer, or TransGate(fc). Considering a
training set S of triplets (h, r, t), each triplet is composed
of two entities h, t ∈ E and relations r ∈ R, where E and
R are the set of entities and relations, respectively. Embed-
dings are set as h, t, r ∈ Rm. And the parameters of two
gates are denoted as Wh,Wt ∈ Rm×2m and bh,bt ∈ Rm.
We define the relation-specific entity embedding vectors as

hr = h� σ(Wh · [h, r] + bh), (3)

tr = t� σ(Wt · [t, r] + bt). (4)

The fully connected layer interacts different embedding di-
mensions and can make precise discrimination.

To develop a more effective and scalable model, we recon-
struct the standard gate in our method. Theoretically, every
dimension should be independent from each other in a well-
trained embedding model. Hence, we replace matrix in gate
with two weight vectors and propose TransGate(wv). Cor-
respondingly, the relation-specific entity embedding vectors
are define as

hr = h� σ(Vh � h + Vrh � r + bh), (5)

tr = t� σ(Vt � t + Vrt � r + bt), (6)

where weight vectors Vh,Vt,Vrh ,Vrt ∈ Rm. In this way,
we can reduce the calculation by avoiding matrix-vector
multiplication operations.

After discrimination, we build translation on relation-
specific information and the score function is correspond-
ingly defined as

fr(h, t) = ||hr + r− tr||L1/L2
, (7)

The score is expected to be lower for a golden triplet and
higher for an incorrect triplet.

1One-relation-circle means that some entities form a circle with
the same relation in a KG. One-relation-circle will make the corre-
sponding relation vector r approximate 0.

2The discriminate operation should be an interactive process
between an entity and a relation, because a relation may link to
different types entities (Ji et al. 2015).

In practice, we enforce constraints on the norms of the
embeddings and discriminated embeddings. That is to say,
∀h, t, r, we have ||h||2 = 1, ||r||2 = 1, ||t||2 = 1, ||hr||2 =
1 and ||tr|| = 1. We make no constraint on weight matrices,
weight vectors and biases of gates.

TransGates can discriminate relation-specific information
for different entities and relations with fixed and small num-
ber of parameters. We note that when head gate and tail
gate let all information through, TransGate will degenerate
to TransE. This suggests that TransGate embraces TransE
(Bordes et al. 2013), being a more general knowledge graph
embedding framework.

Training
To learn such embeddings, we minimize a common used
margin-based ranking criterion over the training set:

L =
∑

(h,r,t)∈S

∑
(h′,r,t′)∈S′

[γ + fr(h, t)− fr(h′, t′)]+, (8)

where [x]+ , max(0, x), γ > 0 is a margin hyper pa-
rameter, the corrupted triplet set S′ is composed of training
triplets with the entities or relations replaced randomly. That
is

S′ ={(h′, r, t)|h′ ∈ E} ∪ {(h, r, t′)|t′ ∈ E}
∪ {(h, r′, t)|r′ ∈ R}

(9)

The loss function 8 is used to encourage discrimination be-
tween training triplets and corrupted triplets by favoring
lower scores for training triplets than for corrupted ones.

We initialize the embeddings, weight matrices and weight
vectors of gates through sampling from a truncated standard
normal distribution. And we initialize the biases as vectors
that all elements are 1. The training process of TransGate
is carried out using Adam optimizer (Kingma and Ba 2015)
with constant learning rate. The training process is stopped
based on model’s performance on the validation set.

Complexity Analysis
In Table 1, we compare the embedding parameter number,
discriminate parameter number, hyper parameter number,
time complexity of each iteration and pre-training methods
of various baselines with our model. Ne, Nr represent the
number of entities, relations, respectively. Nc represents the
number of candidate entities. m is the dimension of entity
embedding space and n is the dimension of relation embed-
ding space. d denotes the number of clusters of a relation.
k is the hidden nodes’ number of a neural network and s is
the number of slice of a tensor. θ̂ denotes the average sparse
degree of all transfer matrices. τ is the number of convolu-
tional kernels.

From Table 1 we can see that:
1. The space complexity of TransGate is almost the same

as TransE on real-world KGs. The discriminate parame-
ters brought by the gates can be ignored compare to em-
bedding parameters. Because m � Nr � Ne among
existing KGs, so parameters of standard gate

parameters of Embedding parameters =
4m+2
Ne+Nr

≈ 0.

3103

Table 1: Complexities (the number of embedding parameters, discriminate parameters and hyper parameters, time complexity
in an epoch, and pre-training method) of several embedding models.

Model #Embedding Parameters #Discriminate Parameters #Hyper Parameters Time complexity Pre-training Method
SLM (Socher et al. 2013) O(Nem+Nrn)(m = n) O(Nr(2k + 2nk)) 2 O(mk) Word Embedding
NTN (Socher et al. 2013) O(Nem+Nrn)(m = n) O(Nr(n

2s+ 2nk + 2k)) 2 O(m2s+mk) Word Embedding
TransE (Bordes et al. 2013) O(Nem+Nrn)(m = n) None 2 O(m) None
TransH (Wang et al. 2014) O(Nem+Nrn)(m = n) O(Nrn) 4 O(m) TransE
DistMult (Yang et al. 2015) O(Nem+Nrn)(m = n) None 2 O(m) None

TransR (Lin et al. 2015) O(Nem+Nrn) O(Nrmn) 3 O(mn) TransE
CTransR (Lin et al. 2015) O(Nem+Nrdn) O(Nrmn) 4 O(mn) TransR

TransD (Ji et al. 2015) O(Nem+Nrn) O(Nem+Nrn) 3 O(m) TransE
TranSparse (Ji et al. 2016) O(Nem+Nrn) O(2Nr(1− θ̂)mn)(0 ≤ θ̂ ≤ 1) 5 O(2(1− θ̂)mn)(0 ≤ θ̂ ≤ 1) TransE

ComplEx (Trouillon et al. 2016) O(2Nem+ 2Nrn)(m = n) None 2 O(m) None
CombinE (Tan, Zhao, and Wang 2017) O(2Nem+ 2Nrn)(m=n) None 2 O(2m) None

ProjE (Shi and Weninger 2017) O(Nem+Nrn+ 5m)(m=n) None 2 O(Ncm+ 2m) None
ConvKB (Dai et al. 2018) O(Nem+Nrn+ (τ + 3)m)(m=n) None 3 O(τm) None
TransGate(fc) (this paper) O(Nem+Nrn)(m = n) O(4m2 + 2m) 2 O(m2) None
TransGate(wv) (this paper) O(Nem+Nrn)(m = n) O(4m+ 2n)(m = n) 2 O(m) None

2. TransGate(wv) introduces non-linear discrimination
with similar time complexity to TransE and TransD. Al-
though time complexity of TransGate(fc) is higher than
TransGate(wv), but it is still similar to TransR and Con-
vKB.

3. Our methods introduce no more hyper parameter than
TransE. Besides, TransGates do not need any hyper pa-
rameter or pre-training to prevent overfitting. This makes
TransGates can be trained easier.

4. Due to the low time complexity and less parameters,
TransGates can easily be applied to real-world KGs, us-
ing less computing and memory resources.

Experiments
In this section, we empirically evaluate our proposed models
on two key tasks: link prediction (Bordes et al. 2013) and
triplets classification (Socher et al. 2013). We demonstrate
that TransGates outperform baselines and deliver significant
improvements on multiple benchmark data sets. We also in-
vestigate the parameter efficiency of our methods. Results
show that parameter sharing is a superior way to further op-
timize embedding and TransGates find a better trade-off be-
tween complexity and expressivity.

Data Sets
Link prediction and triplets classification are implemented
on two large-scale knowledge graphs: WordNet (Miller
1995) and Freebase (Bollacker et al. 2008). WordNet pro-
vides semantic knowledge of words. Entities in WordNet
are synonyms which express distinct concepts. Relations in
WordNet are conceptual-semantic and lexical relations. In
this paper, we employ two data sets from WordNet: WN11
(Socher et al. 2013) and WN18RR (Dettmers et al. 2018).
Freebase provides general facts of the world. For example,
the triplet (Anthony Asquith, location, London) builds a re-
lation of location between the name entity Anthony Asquith
and the city entity London. In this paper, we employ three
data sets from Freebase: FB15K (Bordes et al. 2013), FB13
(Socher et al. 2013) and FB15K-237 (Toutanova and Chen
2015). Table 3 lists statistics of the five data sets.

WN18RR and FB15K-237 are correspondingly subsets
of two common data sets WN18 (Bordes et al. 2013) and

FB15K. It is firstly discussed by (Toutanova and Chen 2015)
that WN18 and FB15K suffer from test leakage through in-
verse relations, i.e.many test triplets can be obtained simply
by inverting triplets in the training set. To address this issue,
(Toutanova and Chen 2015) generated FB15K-237 by re-
moving redundant relations in FB15K and greatly reducing
the number of relations. Likewise, (Dettmers et al. 2018) re-
moved reversing relations in WN18. As a consequence, the
difficulty of reasoning on these two data sets is increased
dramatically. Since FB15K is still widely used, we also in-
clude results on this data set.

Link Prediction
Link prediction aims to predict the missing h or t for a triplet
(h, r, t). In this task, the model is asked to rank a set of can-
didate entities from the KG, instead of giving one best result.
For each test triplet (h, r, t), we replace the head/tail entity
by all possible candidates in the KG, and rank these entities
in ascending order of scores calculated by score function fr.

We follow the evaluation protocol in (Bordes et al. 2013)
to report filtered results. Because a corrupted triplet, gener-
ated in the aforementioned process of removal and replace-
ment, may also exist in KG, and it should be considered as
correct. In other words, we filtered out the correct triplets
from corrupted triplets which exist in the training set.

We report three common measures as our evaluation met-
rics: the average rank of all correct entities (Mean Rank), the
mean reciprocal rank of all correct entities (MRR), and the
proportion of correct entities ranked in top K (Hits@K). A
good link predictor should achieve lower Mean Rank, higher
MRR, and higher Hits@K.

In this task, we use three data sets: WN18RR, FB15K and
FB15K-237. Since the data sets are same, we directly copy
experimental results of several baselines from (Dettmers et
al. 2018; Cai and Wang 2018; Dai et al. 2018). We select
the hyper parameters of TransGate via grid search accord-
ing to the Hits@10 on the validation set. In training, we use
the same configurations for both TransGate(fc) and Trans-
Gate(wv). For three data sets, we traverse all the training
triplets for at most 1000 rounds. We search the learning rate
α for Adam among {0.01, 0.1, 0.5}, the margin γ among {1,
2, 3, 4, 5, 6}, the embedding dimension m among {32, 50,
100, 200}, and the batch size B among {120, 480, 1440}.

3104

Table 2: Experimental Results of Link Prediction.
Model WN18RR FB15K FB15K-237

MRR Mean Rank Hits@10(%) Hits@1(%) MRR Mean Rank Hits@10(%) Hits@1(%) MRR Mean Rank Hits@10(%) Hits@1(%)
TransE (Bordes et al. 2013) 0.226 3384 50.1 - 0.220 125 47.1 23.1 0.294 347 46.5 14.7
DistMult (Yang et al. 2015) 0.43 5110 49.0 39.0 0.654 97 82.4 54.6 0.241 254 41.9 15.5

TransD (Ji et al. 2015) - - 42.8 - 0.252 67 77.3 23.4 - - 45.3 -
CombinE (Tan, Zhao, and Wang 2017) - - - - 0.283 - 85.2 55.4 - - - -

ComplEX (Trouillon et al. 2016) 0.44 5261 51.0 41.0 0.692 - 84.0 59.9 0.247 339 42.8 15.8
ANALOGY (Liu, Wu, and Yang 2017) - - - - 0.725 - 85.4 64.6 - - - -

KB-LRN (Garciaduran and Niepert 2017) - - - - 0.794 44 87.5 74.8 0.309 209 49.3 21.9
NLFeat (Toutanova and Chen 2015) - - - - 0.822 - 87.0 - 0.249 - 41.7 -

RUGE (Guo et al. 2018) - - - - 0.768 - 86.5 70.3 - - - -
KBGAN (Cai and Wang 2018) 0.213 - 48.1 - - - - - 0.278 - 45.8 -

R-GCN (Michael Sejr et al. 2018) - - - - 0.696 - 0.842 60.1 0.248 - 41.7 15.3
ConvE (Dettmers et al. 2018) 0.43 4187 52.0 40.0 0.657 51 83.1 55.8 0.325 244 50.1 23.7

ConvKB (Dai et al. 2018) 0.248 2554 52.5 - - - - - 0.396 257 51.7 -
TransGate(fc) 0.409 3420 51.0 39.1 0.832 33 91.4 75.5 0.404 177 58.1 25.1

TransGare(wv) 0.396 3227 51.4 38.7 0.831 32 91.4 75.6 0.396 144 54.2 24.2

Table 3: Statistics of data sets
Dataset #Rel #Ent #Train #Valid #Test
WN11 11 38,696 112,581 2,609 10,544

WN18RR 11 40,943 86,835 3,034 3,134
FB13 13 75,043 316,232 5,908 2,3733

FB15K 1,345 14,951 483,142 50,000 59,071
FB15K-237 237 14,541 272,115 17,535 20,466

The best configurations are as follow: on WN18RR, γ =
5, α = 0.1, m = 200, B = 120 and taking L1 dissimilarity;
on FB15K, γ = 1, α = 0.1, m = 200, B = 480 and taking
L1 dissimilarity; on FB15K-237, γ = 4, α = 0.5, m = 200,
B = 480 and taking L1 dissimilarity.

From Table 2, we observe that: (1) TransGate(fc) and
TransGate(wv) outperform all baselines on FB15K and
FB15K-237 at every metric. (2) The performance of our
methods on WN18RR are similar to TransE and near to the
best model. (3) In terms of Hits10, TransGate(fc) achieves
the best result with 58.1% on FB15K-237, while Trans-
Gate(wv) achieves the second best result with 54.2%. On
FB15K our methods both achieve the best accuracy at
91.4%. (4) In terms of Mean Rank, TransGate(wv) reduces
the metric greatly by 31.1% on FB15K-237 and 27.3% on
FB15K. TransGate(fc) also reduces the metric by 15.3%
on FB15K-237 and 25% on FB15K. (5) In terms of Hits1,
TransGate(fc) and TransGate(wv) outperform all baselines
on FB15K and FB15K-237. This indicates the great ability
of TransGates on precise link prediction.

WN18RR (Dettmers et al. 2018) has been removed re-
versing relations and destroyed the inherent structure of
WordNet, resulting in low relevance between relations.
Thus, TransGates perform similar to TransE on WN18RR.
However, our methods still achieve state-of-art results on
FB15K and FB15K-237. It should be noted that parame-
ter amount of gate structure is fixed and small, only 40.2K
in TransGate(fc) and 0.6K in TransGate(wv). These results
show the appropriateness of sharing discriminate parameters
and the great ability of gate structure.

Triplets Classification
Triplets classification is a binary classification task, aiming
to judge whether a given triplet (h, r, t) is correct or not. In
this paper, we use three data sets WN11, FB13 and FB15K

to evaluate our models. The test sets of WN11 and FB13
provided by (Socher et al. 2013) contain positive and nega-
tive triplets. As to FB15K, its test set only contains correct
triplets. We construct negative triplets for FB15K following
the same setting used for FB13 (Socher et al. 2013).

For triplets classification, we set a relation-specific thresh-
old δr. δr is optimized by maximizing classification accura-
cies on the validation set. For a triplet (h, r, t), if the score
obtained by fr is below δr, the triplet will be classified as
positive, otherwise negative.

For WN11 and FB13, we compare TransGate with base-
lines reported in (Ji et al. 2016) and (Zhou et al. 2017). Since
FB15K is generated by ourselves, we use the codes provided
by (Lin et al. 2015) to re-evaluate the data set instead of re-
porting the results of (Zhou et al. 2017) directly.

In training, we use the same configurations for both Trans-
Gate(fc) and TransGate(wv). We use learning rate α for
Adam among {0.001, 0.01, 0.1}, the margin γ among {2, 4,
6, 10}, the embedding dimension m among {20, 50, 100},
and the batch size B among {120, 480, 1440}. The opti-
mal configurations are determined by the validation set. On
WN111, the best configurations are: γ = 10, α = 0.01,
m = 100, B = 120 and taking L1 dissimilarity. On FB13,
the best configurations are: γ = 6, α = 0.001, m = 100,
B = 1440 and taking L1 dissimilarity. On FB15K, the best
configurations are: γ = 6, α = 0.1, m = 100, B = 480
and taking L1 dissimilarity. For three data sets, we traverse
training triplets for 400 rounds at most.

Table 4 shows the detailed evaluation results of triplets
classification. From Table 4, we observe that: (1) On WN11,
our methods outperform all baseline models, which obtains
the accuracy of 87.3%. (2) On FB13, the accuracy of our
methods are near to the best accuracy of TransD and higher
than the other baselines. (3) On FB15K, TransGate(fc)
achieves best result by 89.5%, while TransGate(wv) also
achieves 89.3%. (4) TransGate(fc) performs better than
TransGate(wv) on this task.

The results of TransGates indicate the appropriate design
of the model. TransGates are able to better handle not only
the sparse graph FB15K, but also the dense graph WN11.
This indicates the good generalization of our methods. Ad-
ditionally, we implemented our methods and TransE in Ten-
sorFlow (Abadi et al. 2016). Note that all models were run
on a standard hardware of Inter(R) Core(TM) i7 2.6GHz +
GeForce GTX 960M, with the same mini-batch size. The

3105

training time of TransE is 4.97min, while TransGate(wv) is
5.11min and TransGate(fc) is 9.69min. In contrast, as shown
in (Lin et al. 2015), the training time of TransH and TransR
are about 6 and 60 times more than TransE, respectively.
These results provide evidence toward that time complexity
of TransGate(wv) is similar to TransE in another aspect.

Table 4: Experimental Results of Triplets Classification(%)
Models WN11 FB13 FB15K

SE (Bordes et al. 2011) 53.0 75.2 -
SME(bilinear) (Bordes, Glorot, and Weston 2012) 70.0 63.7 -

LFM (Jenatton et al. 2012) 73.8 84.4 -
SLM (Socher et al. 2013) 69.9 85.3 -
NTN (Socher et al. 2013) 70.4 87.1 68.3

TransE (Bordes et al. 2013) 75.9 70.9 78.0
TransH (Wang et al. 2014) 77.7 76.5 74.9
TransR (Lin et al. 2015) 85.5 74.7 81.7

CTransR (Lin et al. 2015) 85.7 - 83.9
TransD (Ji et al. 2015) 85.6 89.1 85.3

TranSparse (Ji et al. 2016) 86.8 86.5 87.2
TransE-RS (Zhou et al. 2017) 85.2 82.8 82.0
TransH-RS (Zhou et al. 2017) 86.3 82.1 83.0

TransGate(fc) 87.3 88.8 89.5
TransGate(wv) 87.3 88.1 89.3

Parameter efficiency of TransGate
For in-depth investigation on expressivity, we look into the
performance on link prediction of our methods with various
parameter size on FB15K-237. Table 5 shows the detailed
results along with several baselines. γ is set to 4 during all
TransGate training over different embedding size. From Ta-
ble 5, we observe that

1. TransGates learn more expressive features than com-
pared models, including deep models. TransGate(fc)
with only 0.74M parameters and TransGate(wv) with
only 1.48M parameters still surpass the best result
at Hits@10. By contrast, multi-layer model R-GCN
(Michael Sejr et al. 2018) achieves only 41.7%, and an-
other deep model ConvE (Dettmers et al. 2018) yields
49.0%.

2. Our methods are highly parameter efficient and will
grow much slower than all baselines. Since TransGates
can outperform all baselines with smaller embedding
size and fixed number of additional parameters. Trans-
Gate(fc) achieves better performance at Hits@10 than
ConvKB, ConvE, R-GCN with 1.5x, 6x and 17x fewer
parameters. In other words, TransGate(fc) can outper-
form all baselines with only 7.9GB parameters for the
entirety of Freebase, while R-GCN will be more than
82GB and ConvE will be more than 56GB.

3. Moreover, the time complexity of TransGate(fc) is sim-
ilar to ConvE and ConvKB, i.e. O(m2). TransGate(wv)
improves the Hits@10 from TransE by near 10% with
same time complexity and half parameters of TransE.
These results indicate that TransGate(wv) is more effec-
tive and scalable than TransE on large-scale KGs.

In general, experimental results indicate that parameter
sharing is a superior way to further improve embedding
and TransGates find a better trade-off between complexity

and expressivity. Because TransGates not only reduce pa-
rameters greatly, but also deliver a significant improvement.
TransGate(fc) and TransGate(wv) have their own advan-
tages: TransGate(fc) is more parameter efficient and Trans-
Gate(wv) has lower time complexity. Researchers can use
their advantages to tackle various problems.

Table 5: Prameter Scaling of Several Models
Model Parameter size Embedding size MRR Hits@10(%)
TransE 1.48M 100 0.22 39.8

DistMult 1.89M 128 0.23 41.0
DistMult 0.95M 64 0.22 39.0
R-GCN 8.28M 200 0.249 41.7
ConvE 5.05M 200 0.32 49.0
ConvE 1.89M 96 0.32 49.0
ConvE 0.95M 54 0.30 46.0

ConvKB 1.97M 100 0.396 51.7
TransGate(fc) 3.03M 200 0.404 58.1
TransGate(fc) 1.49M 100 0.363 53.0
TransGate(fc) 0.74M 50 0.328 51.7
TransGate(fc) 0.47M 32 0.263 41.5
TransGate(wv) 2.95M 200 0.396 54.2
TransGate(wv) 1.48M 100 0.347 52.9
TransGate(wv) 0.74M 50 0.297 49.5
TransGate(wv) 0.47M 32 0.246 39.6

Conclusion and Future Work
In this paper, we focus on embedding knowledge graphs into
continuous vector spaces for knowledge graph completion.
We find that previous methods ignore inherent relevance be-
tween relations and potentially suffer from huge parame-
ters, preventing them from applying on real-world KGs effi-
ciently. We follow parameter sharing to optimize embedding
and reduce parameters simultaneously. We develop shared
discriminate mechanism based on gate structure and pro-
pose TransGate. To avoid matrix-vector multiplication oper-
ations, we reconstruct standard gate by using the weight vec-
tors and propose TransGate(wv). In this way, we decrease
the time complexity to the same order as TransE. Exten-
sive experiments on the tasks of link prediction and triplets
classification show that parameter sharing is a superior way
to further improve embedding and the great ability of gate
structure in knowledge graph embedding. Because Trans-
Gates not only reduce parameters greatly, but also deliver
a significant improvement compared to state-of-art models.
These results also show that our methods are better trade-off
between complexity and expressivity.

In the future, we will explore following three research
directions: (1) We will explore the better parameter shar-
ing mechanism and try to solve more problems in knowl-
edge graph embedding. (2) We will adopt more sophisti-
cated techniques to enhance TranGate, such as incorporat-
ing additional information, different loss functions and self-
attention, etc. (3) Gate is a parameter efficient and fast op-
erator, which can be composed into deep networks. We will
extend TransGate to multi-layer model in the future.

Acknowledgement
This work is supported by the National Key Research and
Development Program of China, and National Natural Sci-
ence Foundation of China (No. U163620068).

3106

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; Kudlur,
M.; Levenberg, J.; Monga, R.; Moore, S.; Murray, D. G.;
Steiner, B.; Tucker, P. A.; Vasudevan, V.; Warden, P.; Wicke,
M.; Yu, Y.; and Zheng, X. 2016. Tensorflow: A system for
large-scale machine learning. In Proceedings of USENIX,
265–283.
Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; and Taylor,
J. 2008. Freebase:a collaboratively created graph database
for structuring human knowledge. In Proceddings of SIG-
MOD, 1247–1250.
Bordes, A.; Weston, J.; Collobert, R.; and Bengio, Y. 2011.
Learning structured embeddings of knowledge bases. In
Proceedings of AAAI.
Bordes, A.; Usunier, N.; Weston, J.; and Yakhnenko, O.
2013. Translating embeddings for modeling multi-relational
data. In Proceedings of NIPS, 2787–2795.
Bordes, A.; Glorot, X.; and Weston, J. 2012. Joint learning
of words and meaning representations for open-text seman-
tic parsing. In Proceedings of AISTATS.
Cai, L., and Wang, W. Y. 2018. Kbgan: Adversarial learn-
ing for knowledge graph embeddings. In Proceedings of
NAACL.
Dai, Q. N.; Tu, D. N.; Nguyen, D. Q.; and Phung, D. 2018.
A novel embedding model for knowledge base completion
based on convolutional neural network. In Proceedings of
NAACL.
Dettmers, T.; Pasquale, M.; Pontus, S.; and Riedel, S. 2018.
Convolutional 2d knowledge graph embeddings. In Pro-
ceedings of AAAI, 1811–1818.
Dong, X.; Gabrilovich, E.; Heitz, G.; Horn, W.; Lao, N.;
Murphy, K.; Strohmann, T.; Sun, S.; and Zhang, W. 2014.
Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In Proceedings of SIGKDD, 601–610.
Garciaduran, A., and Niepert, M. 2017. Kblrn : End-to-
end learning of knowledge base representations with latent,
relational, and numerical features. In Proceedings of UAI.
Guo, S.; Wang, Q.; Wang, L.; Wang, B.; and Guo, L. 2018.
Knowledge graph embedding with iterative guidance from
soft rules. In Proceedings of AAAI.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8):1735–1780.
Jenatton, R.; Roux, N. L.; Bordes, A.; and Obozinski, G.
2012. A latent factor model for highly multi-relational data.
In Proceedings of NIPS, 3167–3175.
Ji, G.; He, S.; Xu, L.; Liu, K.; and Zhao, J. 2015. Knowledge
graph embedding via dynamic mapping matrix. In Proceed-
ings of ACL, 687–696.
Ji, G.; Liu, K.; He, S.; and Zhao, J. 2016. Knowledge graph
completion with adaptive sparse transfer matrix. In Proceed-
ings of AAAI, 985–991.
Józefowicz, R.; Zaremba, W.; and Sutskever, I. 2015. An
empirical exploration of recurrent network architectures. In
Proceedings of ICML, volume 37, 2342–2350.

Kingma, D., and Ba, J. 2015. Adam: A method for stochastic
optimization. In Proceedings of ICLR.
Lin, Y.; Liu, Z.; Zhu, X.; Zhu, X.; and Zhu, X. 2015. Learn-
ing entity and relation embeddings for knowledge graph
completion. In Proceedings of AAAI, 2181–2187.
Liu, H.; Wu, Y.; and Yang, Y. 2017. Analogical inference
for multi-relational embeddings. In Proceedings of ICML.
Michael Sejr, S.; Thomas N, K.; Peter, B.; Rianne, v. d. B.;
Ivan, T.; and Max, W. 2018. Modeling relational data with
graph convolutional networks. In ESWC.
Miller, G. A. 1995. Wordnet: a lexical database for english.
COMMUNICATIONS OF THE ACM 38(11):39–41.
Nickel, M.; Tresp, V.; and Kriegel, H. P. 2011. A three-
way model for collective learning on multi-relational data.
In Proceedings of ICML, 809–816.
Shi, B., and Weninger, T. 2017. Proje: Embedding pro-
jection for knowledge graph completion. In Proceedings of
AAAI.
Socher, R.; Chen, D.; Manning, C. D.; and Ng, A. Y. 2013.
Reasoning with neural tensor networks for knowledge base
completion. In Proceedings of NIPS, 926–934.
Tan, Z.; Zhao, X.; and Wang, W. 2017. Representation learn-
ing of large-scale knowledge graphs via entity feature com-
binations. In Proceedings of CIKM, 1777–1786.
Toutanova, K., and Chen, D. 2015. Observed versus latent
features for knowledge base and text inference. In Proceed-
ings of CVCS.
Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, E.; and
Bouchard, G. 2016. Complex embeddings for simple link
prediction. In Proceedings of ICML, volume 48, 2071–2080.
Wang, Z.; Zhang, J.; Feng, J.; and Chen, Z. 2014. Knowl-
edge graph embedding by translating on hyperplanes. In
Proceedings of AAAI, 1112–1119.
Xiao, H.; Huang, M.; and Zhu, X. 2016. From one point
to a manifold: Knowledge graph embedding for precise link
prediction. In Proceedings of IJCAI.
Xu, H.; Yankai, L.; Ruobing, X.; Zhiyuan, L.; and Maosong,
S. 2017a. Openke: An open-source framework for knowl-
edge embedding. http://openke.thunlp.org/home.
Xu, J.; Qiu, X.; Chen, K.; and Huang, X. 2017b. Knowl-
edge graph representation with jointly structural and textual
encoding. In Proceedings of IJCAI, 1318–1324.
Yang, B.; Yih, W.; He, X.; Gao, J.; and Deng, L. 2015. Em-
bedding entities and relations for learning and inference in
knowledge bases. In Proceedings of ICLR.
Zhang, W. 2017. Knowledge graph embedding with diver-
sity of structures. In Proceedings of WWW, 747–753.
Zhou, X.; Zhu, Q.; Liu, P.; and Guo, L. 2017. Learning
knowledge embeddings by combining limit-based scoring
loss. In Proceedings of CIKM, 1009–1018.

3107

