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Abstract

This paper addresses two important issues in causality in-
ference. One is how to reduce redundant conditional inde-
pendence (CI) tests, which heavily impact the efficiency and
accuracy of existing constraint-based methods. Another is
how to construct the true causal graph from a set of Markov
equivalence classes returned by these methods.
For the first issue, we design a recursive decomposition ap-
proach where the original data (a set of variables) is first
decomposed into three small subsets, each of which is then
recursively decomposed into three smaller subsets until none
of subsets can be decomposed further. Consequently, redun-
dant CI tests can be reduced by inferring causality from these
subsets. Advantage of this decomposition scheme lies in two
aspects: 1) it requires only low-order CI tests, and 2) it does
not violate d-separation. Thus, the complete causality can be
reconstructed by merging all the partial results of the subsets.
For the second issue, we employ regression-based conditional
independence test to check CIs in linear non-Gaussian addi-
tive noise cases, which can identify more causal directions
by x−E(x|Z)⊥z (or y−E(y|Z)⊥z). Therefore, causal direction
learning is no longer limited by the number of returned V-
structures and the consistent propagation.
Extensive experiments show that the proposed method can not
only substantially reduce redundant CI tests but also effectively
distinguish the equivalence classes, thus is superior to the state
of the art constraint-based methods in causality inference.

Introduction
Inferring causal relationships between variables from ob-
served data is a challenging task if no controlled experi-
ment is available. From computational perspective, causal
discovery is usually formulated as a graphical probabilis-
tic model on the variables, such that directed edges be-
tween variables indicate causal relationships. When it is
difficult to manipulate the samples in experiments, condi-
tional independence (CI) tests (Fukumizu et al. 2007) are
commonly employed in constraint-based methods to de-
tect local causalities among the variables (Edwards 2012;
Gao and Ji 2015), under the faithfulness assumption (Koller
and Friedman 2009). To recover causal graphs, we often

∗Correspondence author.
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

check CIs between variables. For example, let X, Y and Z
denote sets of variables, if X and Y are independent given the
controlling set Z (i.e., X and Y are d-separated by Z), denoted
by X⊥Y |Z, then we can deduce that X and Y have no directed
causality. In practice, the CI relationship X⊥Y |Z allows us
to separate X − Y when constructing a probabilistic model
for P(X,Y,Z), which results in a parsimonious representa-
tion. Generally speaking, by using CI test, existing causal
discovery methods like the PC algorithm (Spirtes, Glymour,
and Scheines 2000) can determine a partially directed acyclic
graph (PDAG) representing the equivalence classes.

In the constraint-based methods, a tough problem for
causality discovery is the search for d-separators (Pearl 2009;
Cai, Zhang, and Hao 2013), which becomes exponentially
complicated with the number of variables (Bergsma 2004).
Specifically, we face two challenges: one is that the number
of candidate controlling sets grows exponentially with the
number of variables, and exhaustive search for d-separators
becomes prohibitively expensive; another challenge is that
CI tests tend to be unreliable when the size of condi-
tional set Z gets large, and easily fall into Type II er-
rors (Zhang et al. 2011; Doran et al. 2014; Zhang et al. 2017;
Strobl, Zhang, and Visweswaran 2017), i.e., the CI hypothesis
is accepted even though it is not true.

To overcome the difficulties mentioned above, researchers
resorted to recursive approaches (Geng, Wang, and Zhao
2005; Xie, Geng, and Zhao 2006; Xie and Geng 2008;
Cai, Zhang, and Hao 2017; Liu et al. 2017). These meth-
ods aim to split a variable set recursively into two or more
subsets, such that each subset corresponds to a subproblem
that can be solved efficiently by using existing methods, fi-
nally the original problem is solved by merging all the results
of the subproblems. For example, as shown in Fig. 1(a), given
a set of variables V , generally we can reconstruct the corre-
sponding causal graph by detecting the set CIV of all CIs
among V (here a CI indicates two variables that are condi-
tional independent, and we do not care the controlling set).
Alternatively, we can first decompose V into m small subsets
V1, ...,Vm by discovering a set of CIs (say CI0). The CIs of
each subset can be further discovered separately, denoted by
CI1 , ..., CIm, respectively. By combining the m + 1 sets of
CIs, we can also recover the causal graph if

⋃m
i=0CIi = CIV ,

i.e., the splitting process does not violate d-separation. In
contrast to learning causal graph by directly using constraint-
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based methods, such a split-and-merge strategy can avoid
some redundant CI tests, is therefore faster and more accu-
rate. However, designing such a decomposition scheme is
a nontrivial task, and the problems of inefficiency and vio-
lating d-separation are still tough challenges to the existing
recursive methods.

V

 

{V1,V2,...,Vm}

 

 by CIV Causal

 graph

by CI0
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CIm
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v4v3

v1

v2
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Figure 1: (a) An example applying the split-and-
merge strategy on V={V1,V2, ...,Vm}; (b) An exam-
ple of variable set splitting that violates d-separation:
{V1={v1, v3, v4},V2={v2, v3, v4}}.

In this paper, we present a new recursive framework (called
CAPA, the abbreviation of CAusality PArtitioning) to sup-
port effective and scalable causality discovery. There are two
major contributions in our work: 1) We propose a novel de-
composition scheme that does not violate d-separation and
requires only low-order CI tests, which can therefore reduce
the redundant CI tests as many as possible; 2) We employ
regression-based conditional independence test to check CIs
in linear non-Gaussian additive noise cases, i.e., to test x⊥y|Z
by using x−E(x|Z)⊥y−E(y|Z). We show that more causal di-
rections can be identified by x−E(x|Z)⊥z (or y−E(y|Z)⊥z).
Therefore, the task of direction learning is no longer limited
by the number of returned V-structures and the corresponding
consistent propagation.

Related Work
In the previous works, a common solution of decomposing is
to find a decomposition V={A, B,C} where the CI of A and B
given C holds, then V is split into two subsets V1=A ∪C and
V2=B∪C. Such a decomposing process is recursively applied
to each subset. Following this idea, existing works, including
(Geng, Wang, and Zhao 2005), (Xie, Geng, and Zhao 2006),
(Xie and Geng 2008) and (Liu et al. 2017) proposed different
recursive decomposition algorithms for causality discovery.

The method proposed in (Xie and Geng 2008) first recon-
structs an undirected independence graph (UIG) by removing
the edge between every two variables x, y ∈ V if x⊥y|V\x,y.
Then, the original variable set V is split into two small subsets
by finding a decomposition V={A, B,C} in the UIG, where A
and B are d-separated by C. This procedure is applied recur-
sively to each subset till none of subsets can be decomposed
further. The subproblems are solved by using some specific
constraint-based method, and finally the original problem is
solved by merging all the results of the subproblems. This
method is more efficient than those proposed in (Geng, Wang,
and Zhao 2005) and (Xie, Geng, and Zhao 2006), because the
method proposed in (Geng, Wang, and Zhao 2005) requires
that each separator has a complete undirected graph, while
the method in (Xie, Geng, and Zhao 2006) removes this con-

dition, but it performs decomposition only based on the entire
UIG of V , and cannot decompose undirected independence
subgraphs. Recently, Liu et al. (Liu et al. 2017) proposed a
novel recursive method based on UIGs. Different from the
methods above, they innovatively combined the score and
search based methods to solve the problem and achieved the
state-of-the-art performance.

In practice, it is expensive to construct an accurate UIG,
due to requiring high-order CI tests. To circumvent this
problem, (Cai, Zhang, and Hao 2017) proposed a recursive
method called SADA, which is able to find a decomposition
V={A, B,C} by using only a high-order CI test and some
lower-order CI tests in each iteration. SADA consists of
two major steps: 1) Selects two variables x, y ∈ V such that
x⊥y|V\x,y, and finds a minimal d-separator C (Tian, Pearl,
and Paz 1998) of x and y; 2) Let V1=x, V2=y and V=V\x,y,C ,
consider ∀w ∈ V , add w into V2 if ∀u ∈ V1 and ∃C̃ ⊆ C such
that u ⊥ w|C̃; add w into V1 if ∀v ∈ V2 and ∃C̃ ⊆ C such that
v ⊥ w|C̃; otherwise, add w into C. Finally, we have a decom-
position V=V1∪V2 where V1=V1∪C and V2=V2∪C. However,
there are two drawbacks in SADA: 1) The d-separation is vi-
olated. An example is shown in Fig. 1(b), where the partition-
ing V={V1={v1, v3, v4},V2={v2, v3, v4}} is returned by SADA.
We can see that two non-adjacent variables v2 and v4 are d-
separable neither in V1 nor in V2, since the only d-separator
v1 ∪ v3 is divided into two different subsets V1 and V2; 2) The
separator C is generated randomly. The only way to downsize
C is using enumeration (Cai, Zhang, and Hao 2017), which
requires many CI tests.

Another tough issue with these methods is that they infer
causal direction by checking V-structures and doing consis-
tent propagation, so they cannot distinguish Markov equiva-
lence classes (Chickering 2002). That is, they cannot distin-
guish x → y → z, x ← y ← z and x ← y → z. In addition,
unreliable local structures returned by these methods nega-
tively impact the performance of consistent propagation.

Recently, regression and residual-based methods were
proposed for CI testing, which can distinguish equivalence
classes. (Grosse-Wentrup et al. 2016) proved that if there
exists a function f such that x− f (Z)⊥(y,Z), then x ⊥ y|Z.
(Zhang et al. 2017) showed that if there exists two functions
f and g such that x− f (Z)⊥(y − g(Z),Z), then x ⊥ y|Z. These
methods find the function f (or g) by regressing x (or y) on Z,
so are able to relax a CI test to a set of marginal independence
tests. Actually, these methods can determine causal directions
as x−E(x|Z)⊥(·,Z)⇒ Z causes x in many cases (Zhang and
Hyvärinen 2009). However, due to the high computational
complexity of measuring dependence between a variable and
a joint distribution, these methods are not suitable for high
dimensional cases.

In (Ramsey 2014), the authors suggested to use a simpler
form x−E(x|Z)⊥y−E(y|Z) to test x⊥y|Z under the faithful-
ness and additive noise assumptions. In (Zhang et al. 2017),
the authors conjectured that x− f (Z)⊥y−g(Z) can lead to
x⊥y|Z under the faithfulness condition, where f and g are
arbitrary nonlinear functions, x, y and Z are generated by
following the nonlinear additive noise model (ANM) (Zhang
and Hyvärinen 2009; Peters, Janzing, and Schölkopf 2011).
(Flaxman, Neill, and Smola 2016) showed that given the
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additive noise, faithfulness and Markov assumptions (Pearl
2009), whenever Z causes x or y, it follows that x⊥y|Z if and
only if x−E(x|Z)⊥y−E(y|Z). Note that a strong precondition
that Z causes x or y is assumed here. If these conditions are
given, then it is easy to derive the corresponding causalities.
(Zhang, Zhou, and Guan 2018) proved that regression-based
conditional independence test (ReCIT) in linear Gaussian
and non-Gaussian cases, x−E(x|Z)⊥y−E(y|Z) ⇒ x⊥y|Z un-
der the faithfulness and Markov assumptions. Although they
showed that x−E(x|Z)⊥y−E(y|Z) can lead to x−E(x|Z)⊥z
or y−E(y|Z)⊥z (∀z ∈ Z) in many cases, it is not true
in all situations. For example, consider a causal graph of
a→ b→ c→ d → e and a→ e, we can see that c ⊥ e|(b, d)
but c−E(c|b, d) 6⊥ b (d) and e−E(e|b, d) 6⊥ b (d). Therefore,
it is still a challenge to draw causal directions by ReCITs,
especially in high-dimensional cases.

The CAPA Method
The Framework
We first give a formal definition of the new decomposition
used in our method (called causal partitioning, CAPA in
short), and then present the framework of the CAPA method.

Definition 1 Let G=(V, E) denote a DAG on a variable set V,
we say a group of variable sets S ={V1, V2 ,...,Vm} constitute
a causal partitioning over V iff 1)

⋃m
i=1 Vi = V; 2) ∀u, v ∈ V,

if ∃Vi,V j ⊂ S such that u ∈ Vi, v < Vi, u < V j and v ∈ V j,
then u and v are non-adjacent in G; 3) if ∀u, v ∈ V are non-
adjacent in G, then ∃Vi,V j ⊂ S such that u ∈ Vi, v < Vi,
u < V j and v ∈ V j, or ∃Vk ⊂ S such that u and v are d-
separable in Vk.

The three conditions in Definition 1 imply that any adja-
cent variable cannot be separated in causal partitioning, and
any non-adjacent variable is either separated in the process
of causal partitioning or d-separable in at least one subset Vk.
This means that d-separation is not violated in the causal par-
titioning process. Therefore, the causality discovery problem
on V can be transformed into m smaller causality discovery
subproblems over the m variable sets V1, ...,Vm, respectively.
The details of finding causal partitionings will be discussed
in the next subsection, here we first present the framework of
the CAPA method, which is presented as Alg. 1.

The inputs of CAPA include the original variable set V
and an user specified constraint-based algorithm Ag (say the
PC algorithm) for discovering causality from the resulting
subsets. The major sub-procedure in Alg. 1 is to find a causal
partitioning (Line 3). We can see that if a subset cannot
be further partitioned, the structure of this subset will be
reconstructed by the algorithm Ag, otherwise it will be further
partitioned into three smaller subsets. In what follows, we
give the details of finding causal partitioning.

Finding Causal Partitioning
The search of causal partitionings is crucial to the CAPA
method. To identify potential causal partitionings, our algo-
rithm resorts to CI tests between input variables. The process
of finding causal partitioning includes the following 3 steps,
and the pseudo-code is outlined in Alg. 2.

Algorithm 1 CAPA
1: Input: The original variable set V , algorithm Ag.
2: Output: The causal graph G.
3: Find a causal partitioning {V1,V2,V3} on V .
4: if max{|V1|, |V2|, |V3|} = |V | then
5: Return G by running algorithm Ag on V .
6: else
7: G1=CAPA(V1, Ag, δ),
8: G2=CAPA(V2, Ag, δ),
9: G3=CAPA(V3, Ag, δ).

10: Return G by merging G1, G2 and G3.
11: end if

Step 1. We construct the 0-order CI table M (an adjacent
matrix) of the input set V={v1, ..., vn}where Mi, j = 1 indicates
vi and v j are marginal independent, i.e., vi ⊥ v j; and Mi, j = 0
means vi and v j are dependent, i.e., vi 6⊥ v j. The entries of M
are calculated by marginal independence tests (Line 3).
Step 2. We partition V into three non-overlapping subsets
{A, B,C=V\A,B} according to ∀vi ∈ A,∀v j ∈ B,Mi j = 1, and
simultaneously minimize the size of C (Line 4). Intuitively, C
blocks all the links between A and B, but note that C is not a d-
separator regarding A and B. Then, we remove V’s maximum
subset independent of C, and let V1=A ∪ C, V2=B ∪ C and
V3=V (Lines 5-8).
Step 3. If the partitioning operation in Step 2 fails, we con-
struct a higher-order CI table, and the procedure goes back
to Step 2. Follow this way, we finally obtain the causal parti-
tioning V={V1,V2,V3} (Lines 9-15).

Algorithm 2 Finding Causal Partitioning
1: Input:

V: The input variable set;
σ: The threshold to limit the maximum order of CI table;
M: The CI table w.r.t. V , initializes M=zeros(|V |, |V |).

2: Output:
The causal partitioning V=(V1,V2,V3).

3: ∀vi, v j ∈ V , set Mi j = 1 in case vi ⊥ v j.
4: Divide V into three non-overlapping parts V = {A, B,C =

V\A,B} by solving the optimization problem:
min |C|

s.t.
{
∀vi ∈ A,∀v j ∈ B,Mi j = 1
|A| > 0, |B| > 0

5: for ∀vi ∈ V1 ∪ V2 do
6: Remove vi from V if vi and ∀v j ∈ C satisfy Mi j = 1;
7: end for
8: Let V1=A ∪C , V2=B ∪C and V3=V .
9: if max{|V1|, |V2|, |V3|} = |V | and M’s order k ≤ σ then

10: for ∀vi, v j ∈ V (Mi, j = 0) do
11: Set Mi, j = 1 in case ∃Z ⊆ V\vi,v j (|Z| = k + 1) such

that vi ⊥ v j|Z.
12: end for
13: Goto line 4.
14: end if
15: Return V={V1,V2,V3}.

In practice, the maximum order of each CI table can be
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limited to a smaller number, likes 1 or 2, which is generally
enough to partition V into subsets of small enough size, and
can prevent CI tests from falling to Type II error. Further-
more, we have the following theorem, which ensures that the
process of Steps 1-3 can find an appropriate partitioning.

Theorem 1 The partitioning process in Alg. 2 returns a valid
causal partitioning that d-separation is not violated.

Proof: The input set V is first split into three non-overlapping
subsets {A, B,C=V\A,B} according to the adjacent matrix, A
is therefore non-adjacent to B. Let V1=A∪C, V2=B∪C, then
we can see that for any two variables in A (or B) must be
d-separable in V1 (or V2). On the other hand, we remove V’s
maximum subset independent of C, and let V3 = V . Then V3
contains all the neighbors of C, thus for any two variables in
C are d-separable in V3 (Tian, Pearl, and Paz 1998). There-
fore, u and v will not be separated in V1, V2 and V3 if u is
adjacent to v, and ∀u, v ∈ V are d-separable in V1 or V2 or
V3 if u is non-adjacent to v. Therefore, the partitioning re-
turned by Alg. 2 satisfies the definition of causal partitioning
in Def. 1 and does not violate d-separation.
Example 1. Fig. 2(a) is an example to illustrate the pro-
cess of Alg. 2. The input set V={v1, ..., v6} is partitioned
by 1-order CI table M (as 0-order CI table is not enough
to partition V , we therefore need to construct the 1-order
CI table), we have V={A={v1, v2}, B={v4, v6},C={v3, v5}}. As
M31=1 and M36=1, we further obtain V1={v1, v2, v3, v5},
V2={v3, v4, v5, v6} and V3={v2, v3, v4, v5}. We can see that
∀vi, v j ∈ V , if vi and v j are non-adjacent, then they are split
into different subsets, or they are d-separable in at least one
subset V1 or V2 or V3, i.e., the d-separation holds.
Example 2. On the other hand, as Alg. 2 is a subroutine
of CAPA (Alg. 1), here we give an example in Fig. 2(b) to
illustrate the whole process of finding causal partitionings by
CAPA. The original variable set V is partitioned into three
subsets {V1,V2,V3} based on the k1-order (k1 ≥ 0) CI table
regarding V . Suppose V1 and V2 cannot be further partitioned,
we terminate the recursive partitioning process on V1 and V2.
And V3 will be further partitioned into V4, V5 and V6 based on
the k2-order (k2 ≥ k1) CI table regarding V3. Such a process
continues till all subsets meet the termination condition.

v1

v2 v3 v5

v4v6

V ={v1,v2,v3,v4,v5,v6}

V1={v1,v2,v3,v5}

V2={v3,v4,v5,v6}

V3={v2,v3,v4,v5}
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V5 V6V4
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Figure 2: (a) An example of finding causal partitioning by
using Alg.2; (b) An example of finding causal partitionings
by CAPA.

We can see that the partitioning process in CAPA consti-
tutes a hierarchy, like a ternary tree. Child subsets are resulted
from their parent subset by using the same or a higher-order
CI table. Therefore, this partitioning scheme can reduce the

number of redundant CI tests as many as possible, and also
generates more reliable results than the existing recursive
methods such as SADA, as these methods use high-order CI
tests in each iteration.

Distinguishing Markov Equivalence Classes
As aforementioned in Alg. 1, a specified causal learning
algorithm Ag will be used to solve a subset if it cannot be
further partitioned by Alg. 2. In this subsection, we study
how to distinguish Markov equivalence classes via ReCIT.
Here, we first review the process of discovering V-structures,
which is the critical step for CI-based methods to determine
causal directions. Consider a local structure x − z − y, if x is
independent of y given a set of variables Z, x ⊥ y|Z, then we
can infer that x − z − y is x→z←y in case z < Z according
to the mechanism of d-separation. But, if z ∈ Z, we cannot
draw any conclusion about the causal directions of x − z − y
(before consistent propagation). Thus, the problem turns to
how to orient directions in the case of z ∈ Z. We have the
following theorem:

Theorem 2 Given a variable set V generated by linear non-
Gaussian additive noise model. For any subset of V and its
corresponding subgraph satisfying the faithfulness condition,
and containing two random variables x and y as well as a
set of other variables Z, if x (or y) is adjacent to z (z ∈ Z)
and x−E(x|Z)⊥z (or y−E(y|Z)⊥z) holds, then z causes x (or
z causes y).

Proof: Without loss of generality, we assume x−E(x|Z)⊥z.
Let ε denote the exogenous disturbance of z. If x−E(x|Z)6⊥ε,
then x−E(x|Z) 6⊥z according to Darmois-Skitovitch theo-
rem (Darmois 1953; Skitovich 1953). We therefore have
x−E(x|Z)⊥ε, which means x and ε can be d-separated by
Z under the faithfulness condition. If z is a child of x, then
x→z←ε forms a V-structure where z is a collider, then there
must be x − E(x|Z) 6⊥ ε or faithfulness is violated. This is
a contradiction. Therefore, z can only be the parent of x.
Similarly, we can prove the case w.r.t. y.

According to the process of causal partitioning, the (lo-
cal) structure similar to x→z→y, x←z←y and x←z→y will
be preserved in at least one subset. Therefore, the depen-
dence between x−E(x|Z) and z can be used for determining
directions (Line 3, Alg. 1).

Theoretical Analysis
In this section, we study the properties of CAPA, including
correctness, completeness and complexity.
Correctness and completeness. We have the following the-
orem:

Theorem 3 Given a variable set V={v1, ..., vn} following a
causal graph G. If all CI tests performed in CAPA are reliable,
then CAPA returns the actual graph G.

Proof: Let G′ denote the causal graph reconstructed by
CAPA. The correctness and completeness are equivalent to
the propositions:

1. Completeness: ∀(v1→v2) ∈ G ⇒ (v1→v2) ∈ G′;

2. Correctness: ∀(v1→v2) ∈ G′ ⇒ (v1→v2) ∈ G.
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As discussed in Theorem 1, the causal partitioning returned
by Alg. 2 in each iteration is theoretically valid. Assume that
V is first partitioned into (V1,V2,V3), and the three subsets
cannot be further partitioned. According to the Condition
2 in Def. 1, we know that any adjacent variables cannot be
separated during partitioning, the completeness is therefore
guaranteed. On the other hand, because of the Condition 3 in
Def. 1, any non-adjacent variable is either separated during
partitioning or d-separable in at least one subset, i.e., the
correctness is satisfied.

Therefore, the question turns to that if V1 (or V2, V3) can
be further partitioned, can CAPA still meet the complete-
ness and correctness? We present the following proposi-
tion: If two groups of variable sets S 1={V1,...,Vt,...,Vm} and
S 2={Vt1 ,...,Vtk } are two causal partitionings over V and Vt
respectively, then S 2∪S 1\Vt forms a causal partitioning over
V. The proof of this proposition is straightforward according
to Definition 1. It implies that no matter how many times a set
is partitioned by CAPA, if the returned causal partitioning in
each iteration is valid, then all the resulting partitionings con-
stitute an whole valid partitioning. Thus, as aforementioned,
CAPA meets the completeness and correctness.
Time complexity. We focus on the number of CI tests used
in CAPA since the other operations are computationally negli-
gible compared to CI tests. Suppose that the original variable
set V={v1, ..., vn} is recursively partitioned into m subsets
{V1, ...,Vm} where |Vm| ≤ n for all m. Suppose that we use the
PC algorithm as the basic algorithm. Then the time complex-
ity of solving subproblems is O(mk2

max2kmax−2), where kmax =
max(|V1|, ..., |Vm|). On the other hand, we need to calculate
a CI table in each iteration. In the worst case, we have to
calculate a σ-order CI table w.r.t. the original variable set
V . Therefore, the upper bound of time complexity of CAPA
is O(mk2

max2kmax−2 + nσ+2). In practice, the step of dividing
a set into three non-overlapping subsets (Line 4 in Alg. 2)
may consume considerable time if the causal structure is
very large or complex. We have three strategies to accelerate
CAPA: 1) using a σ-order CI table in the first time instead of
using ones from 0 to σ-order, 2) terminating the causal par-
titioning process when the current subset is sufficient small,
and 3) employing a faster CI testing method such as partial
correlation with Fisher transformation (Cai, Zhang, and Hao
2017) to check CI. If CI holds, we further use ReCIT to orient
causal directions.

Performance Evaluation
We first compare CAPA with one of the latest recursive learn-
ing methods SADA (Cai, Zhang, and Hao 2017) by extensive
simulated experiments for evaluating their abilities of find-
ing causal partitioning and learning causal directions. To
further illustrate the advantage of CAPA in causal structure
learning, we also compare CAPA with four other existing
causal learning methods, including LiNGAM (Shimizu et
al. 2006), DLiNGAM (Shimizu et al. 2011), Sparse-ICA
LiNGAM (Zhang et al. 2009) and SADA-LiNGAM (Cai,
Zhang, and Hao 2017), over various real-world causal struc-
tures. Note that all these four methods can distinguish Markov
equivalence classes, in which SADA-LiNGAM stands for the
state of the art in high-dimensional cases.

Performance on simulated structures. In this group of ex-
periments, we evaluate our method on datasets generated by
simulated causal network structures, under the linear non-
Gaussian model. Because there are not large-scale causal
inference problems with ground truth, simulated data on
synthetic and real-world structures are used in most causal
structure learning methods (Kalisch and Bühlmann 2007).
The structures and data generating processes are similar to
those presented in (Cai, Zhang, and Hao 2017). Concretely,
we first randomly generate a set of root nodes, then itera-
tively generate descendants in two steps: 1) Randomly select
a subset of nodes from the generated nodes; 2) Using the
selected nodes as parent nodes to generate a descendant with
the average in-degree being 1.5. We then generate the data ac-
cording to the corresponding structures with a linear function
as vi=

∑
v j∈Pavi

wi jv j + εi, where Pavi denotes the parents of vi

and εi is the non-Gaussian noise term. When generating these
linear functions, we let

∑
Pavi

wi j=1 and the variance Varεi =1
for every variable vi. To save time, we terminate the causal
partitioning process when the regarding subset is smaller than
|V |/10 and limit the maximum size of controlling set at 3.

We first compare CAPA with SADA over the above sim-
ulated models with different sample sizes {25, 50, 100, 200,
400} and 100 nodes. Both CAPA and SADA use PC algo-
rithm (Spirtes, Glymour, and Scheines 2000) as their basic
algorithm for causality discovery from the partitioned subsets.
The results are shown in Fig. 3(a) and (b).
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(b) Structure learning
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(c) Skeleton learning
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(d) Structure learning

Figure 3: Performance comparison between CAPA and
SADA on simulated causal networks. (a) and (b) are the
results of causal skeleton and structure learning over different
sample sizes {25, 50, 100, 200, 400} with 100 nodes; (c) and
(d) are the results of different dimensional networks {25, 50,
100, 200, 400} with 400 samples.
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From Fig. 3(a), we can see that CAPA performs better
than SADA in terms of precision and F1 on causal skele-
ton learning for different sample sizes. The reason is that
d-separation is violated in SADA, thus many non-adjacent
variables cannot be separated by the base solver. However,
the recall score of SADA is slightly better than that of CAPA.
This is the result of two counteracting factors: 1) d-separation
is preserved in CAPA, thus there are some subsets that can no
longer be partitioned by CAPA, but can be still partitioned by
SADA. That is, the CI tests regarding some adjacent variables
in these ‘larger’ subsets are easier to fall into Type II error. 2)
In SADA, the variable set is divided by using normal order
CI tests, while in CAPA, the variable set is partitioned the
σ-order CI table. Moreover, CAPA uses much fewer CI tests
than SADA. Therefore, as the size of variable set increases,
CI testing between two variables in SADA becomes easier
and easier to fall into Type II error.

We also evaluate our method on causal structure learn-
ing (with direction orientation), and the results are shown in
Fig. 3(b). CAPA performs much better than SADA in terms
of Recall, Precision and F1. This is because CAPA can learn
more causal directions by x−E(x|Z) ⊥ z (or y−E(y|Z) ⊥ z) ac-
cording to Theorem 2, while SADA orients directions based
on only V-structure learning and consistent propagation.

We then compare CAPA with SADA over different dimen-
sional networks {25, 50, 100, 200, 400} with 400 samples.
The results are presented in Fig. 3(c) and (d), which show that
the performance of CAPA and SADA for different variable
sizes is relatively stable on both skeleton and structure learn-
ing. We can conclude that the two methods are able to solve
relatively higher dimensional problems over these simulated
networks. However, real-world causal structures are more
complex, and the dimensionality will impact the performance
of the two methods, which will be further discussed later.
Performance of distinguishing equivalence classes. To fur-
ther illustrate the advantage of CAPA in inferring causal di-
rections, here we apply CAPA to a causal graph presented
in (Shimizu et al. 2006), which was generated by following
linear non-Gaussian structure equation model w.r.t. a DAG
consisting of six variables as shown in Fig. 4(a). The graphs
reconstructed by CAPA and SADA are shown in Fig. 4(b)
and (c), respectively. We can see that all the causal direc-
tions discovered by CAPA are correct, because CAPA can
infer (v1, v3)→v4 according to v4−E(v4|v1, v3)⊥(v1, v3). Simi-
larly, (v1, v2)→(v3, v5) and (v2, v3)→v6 can also be obtained
by CAPA. There is only one edge v1−v2 that is not oriented.
On the other hand, as shown in Fig. 4(c), though the skele-
ton is correct, the corresponding directions are not inferred
by any propagation. Because there is no V-structure in this
graph, theoretically SADA cannot find any causal direction.

Performance on real-world structures
In this subsection, we compare CAPA with four other
existing causal structure learning methods, including
LiNGAM (Shimizu et al. 2006), DLiNGAM (Shimizu et
al. 2011), Sparse-ICA LiNGAM (Zhang et al. 2009) and
SADA-LiNGAM (Cai, Zhang, and Hao 2017). As all these
methods can break Markov equivalence classes, we there-
fore can further evaluate the performance of our method in
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Figure 4: Performance comparison in causal direction in-
ference. (a) The ground truth causal model; (b) The DAG
reconstructed by CAPA; (c) The PDAG reconstructed by
SADA.

.

causal structure learning. The implementations of LiNGAM,
DLiNGAM and SADA-LiNGAM strictly follow the cor-
responding original papers (Shimizu et al. 2006; 2011;
Cai, Zhang, and Hao 2017). The implementation of Sparse-
ICA LiNGAM is based on the sparse-ICA of (Zhang et al.
2009) and the pruning algorithm of (Shimizu et al. 2006).
Among these existing methods, SADA-LiNGAM is the
most effective approach for learning causal structures of
high dimensional cases, where LiNGAM is selected as the
base solver by default. All methods are evaluated on eight
real-world causal network structures 1 that cover a variety
of applications, including insurance evaluation (Insurance),
medicine (Alarm and Pathfinder), agricultural industry (Bar-
ley), weather forecasting (Hailfinder), system troubleshoot-
ing (Win95pts and Andes) and the pedigree of breeding pigs
(Pigs). Table 1 gives the structural statistics of these causal
networks.

Note that the performance of the four counterparts is highly
influenced by the ratio of the sample size to the number of
nodes (Cai, Zhang, and Hao 2017), and the baseline approach
LiNGAM is usually unreliable when the number of samples
is less than 2|V |. We therefore compare CAPA against the
four existing methods by fixing the sample size to 2|V | in the
following experiments.

Table 1: Statistics of the eight causal network structures.
Dataset Nodes# Avg. degree Max degree

Insurance 27 3.95 9
Alarm 37 2.49 6
Barley 48 3.50 8

Hail f inder 56 2.36 17
Win95pts 76 1.84 9

Path f inder 109 3.58 106
Andes 223 3.03 12
Pigs 441 2.68 41

The results are shown in Table 2, where for compress-
ing the space in the table, SADA-LiNGAM, LiNGAM,
DLiNGAM and Sparse-ICA LiNGAM are simply denoted
as SL, LG, DLG and SICA, respectively. It can be seen that
CAPA achieves significantly better precision and F1 score on
all structures. Only in the case of Insurance LiNGAM works

1http://www.bnlearn.com/bnrepository/.
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Table 2: Performance of five causal learning methods on real-world causal structures.

Dataset Recall Precision
CAPA SL LG DLG SICA CAPA SL LG DLG SICA

Insurance 0.28 0.24 0.47 0.39 0.23 0.78 0.45 0.11 0.09 0.06
Alarm 0.39 0.38 0.38 0.27 0.39 0.81 0.44 0.24 0.16 0.22
Barley 0.37 0.26 0.33 0.23 0.36 0.73 0.43 0.21 0.15 0.22

Hail f inder 0.55 0.50 0.25 0.20 0.31 0.80 0.50 0.22 0.17 0.28
Win95pts 0.51 0.49 0.28 0.20 0.36 0.82 0.45 0.37 0.25 0.35

Path f inder 0.59 0.81 0.35 0.35 0.32 0.68 0.09 0.22 0.22 0.20
Andes 0.72 0.55 0.21 0.12 0.26 0.61 0.18 0.46 0.26 0.51
Pigs 0.88 0.53 0.15 N.A. N.A. 0.75 0.22 0.59 N.A. N.A.

F1 score Elapsed time (s)
CAPA SL LG DLG SICA CAPA SL LG DLG SICA

Insurance 0.42 0.30 0.18 0.14 0.10 1.33 6.40 0.33 1.68 1.12
Alarm 0.49 0.41 0.29 0.20 0.28 3.36 2.65 0.40 6.04 3.00
Barley 0.53 0.31 0.26 0.18 0.27 14.9 19.3 0.45 10.8 7.10

Hail f inder 0.65 0.50 0.23 0.18 0.29 16.9 21.3 0.13 22.1 12.0
Win95pts 0.63 0.47 0.32 0.22 0.35 22.3 17.8 1.22 66.2 34.5

Path f inder 0.64 0.16 0.27 0.27 0.25 440 4 · 105 2.67 490 212
Andes 0.66 0.26 0.28 0.16 0.34 2 · 103 6 · 104 34.5 4 · 103 2 · 103

Pigs 0.81 0.34 0.24 N.A. N.A. 1 · 104 1 · 106 641 N.A. N.A.

better than CAPA and in the case of Path f inder SADA-
LiNGAM works better than CAPA, all in terms of Recall
score. In most cases, especially in larger causal networks
(with |V | > 100), CAPA works much better than SADA-
LiNGAM. The other three methods, LiNGAM, DLiNGAM
and Sparse-ICA LiNGAM are not competitive in all these
cases in terms of learning accuracy. As DLiNGAM and
Sparse-ICA LiNGAM are of high time-complexity, here we
do not present their results on the Pigs network.

In summary, we have the following observations:

1. The performance (Recall, Precision and F1 score) of
CAPA turns better with the increase of the sample size,
rather than the ratio of the sample size to the number of
nodes (2|V |), while the performance of the four existing
methods work more stable with a fixed ratio of the sample
size to the number of nodes (2|V |). We can also see that
on larger networks, Path f inder, Andes and Pigs, the F1
score of CAPA is from 2 to 3 times higher than that of the
four existing methods. Therefore, CAPA is more effective
in causal discovery in high-dimensional cases in terms of
inference accuracy when limited samples are given.

2. As the dimensionality of causal networks increases, the
ratio of Recall to Precision of CAPA remains relatively
stable, therefore the F1 score of CAPA maintains at an
acceptable level. On the contrary, we can see that on
small causal networks, Precision of SADA-LiNGAM is
slightly higher than Recall, while in the cases of larger
causal networks, like Path f inder and Andes, Precision
of SADA-LiNGAM is much lower than Recall. Note that
Recall is the fraction of actual causality found by the
algorithm, and Precision is the actual fraction of inferred
causality with respect to the true graph. We can say that
SADA-LiNGAM cannot remove many incorrect causal
relationships in these networks. On the other hand, CAPA

does particularly well in all these networks in terms of
precision.

3. By comparing the time costs of CAPA and SADA-
LiNGAM, we notice that the time cost of CAPA increases
with the size of variables, while the efficiency of SADA-
LiNGAM is not stable. The reason is that in the step of
finding causal partitioning, CAPA determines a smaller C
set by solving an optimization problem (Line 4 in Alg. 2),
while SADA-LiNGAM chooses a C set randomly. Gen-
erally, the smaller C, the higher accuracy and the less
running time (Cai, Zhang, and Hao 2017). So we can con-
clude that CAPA is more applicable to causal discovery
in high-dimensional cases than these existing methods.

Conclusion
In this paper, we propose a recursively causal structure learn-
ing method called CAPA to support effective and efficient
causality discovery over large variable sets. We first design a
new variables partitioning scheme and show that this parti-
tioning scheme does not violate d-separation criterion. That is
to say, the complete causality of the original variable set can
be recovered from the resulting partitions. Then, we develop
an effective and efficient algorithm that is recursively applied
to searching for such partitionings from the input variable set,
by using only low-order CI tests. Moreover, regression-based
conditional independence test (ReCIT) is used for checking
CIs, and we prove that more causal directions can be detected
by ReCIT, thus CAPA can return a more accurate causal
graph instead of a set of Markov equivalence classes. Our the-
oretical analysis proves the correctness and completeness of
the proposed method, and extensive experiments on various
real-world causal networks verify the advantage of CAPA
over five benchmarks, including SADA, SADA-LiNGAM,
LiNGAM, DLiNGAM and Sparse-ICA LiNGAM.
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