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Abstract

This paper explores how the logical difference between two
ontologies can be tracked using a forgetting-based or uniform
interpolation (UI)-based approach. The idea is that rather than
computing all entailments of one ontology not entailed by
the other ontology, which would be computationally infeasi-
ble, only the strongest entailments not entailed in the other
ontology are computed. To overcome drawbacks of exist-
ing forgetting/uniform interpolation tools we introduce a new
forgetting method designed for the task of computing the
logical difference between different versions of large-scale
ontologies. The method is sound and terminating, and can
compute uniform interpolants for ALC-ontologies as large
as SNOMED CT and NCIt. Our evaluation shows that the
method can achieve considerably better success rates (>90%)
and provides a feasible approach to computing the logical dif-
ference in large-scale ontologies, as a case study on different
versions of SNOMED CT and NCIt ontologies shows.

Introduction
Ontologies are widely deployed and used to give structured
representations of domain knowledge suitable for AI rea-
soning and have become increasingly popular across nu-
merous industry sectors, including medical, digital biology
and energy sectors. In this paper we are concerned with the
problem of tracking the changes between different versions
of an ontology, which can be done based on the notion of
logical difference. The logical difference between two on-
tologies are the axioms in one that are not entailed by the
other, reflecting the information gained and information lost
between the ontologies (Konev, Walther, and Wolter 2008;
Konev et al. 2012).

From the perspective of ontology engineers, tracking the
differences of large-scale ontologies is a critical task for the
purpose of maintaining them: to track what has changed in
a new version of an ontology, to ensure that the extension
is safe in the sense of being a conservative extension (Lutz,
Walther, and Wolter 2007), and to identify gained and lost
information (Klein et al. 2002). This provides a means of
discovering issues in the ontologies and enhance quality
control, which is important for ontology curators. Being able
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to compute logical difference between ontologies is also im-
portant when merging/aligning/integrating different ontolo-
gies (Jiménez-Ruiz et al. 2011; Solimando, Jiménez-Ruiz,
and Guerrini 2017; Stoilos et al. 2018).

At present most existing ontology difference tools and
ontology alignment/merging tools are only able to compute
the structural differences (Noy and Musen 2002; Gonçalves,
Parsia, and Sattler 2012) or to approximate the logical
difference (Konev et al. 2012; Jiménez-Ruiz et al. 2011;
Kremen, Smid, and Kouba 2011; Solimando, Jiménez-Ruiz,
and Guerrini 2017). A particular challenge is the size of
ontologies used in real-world applications. Our target are
SNOMED CT and NCIt ontologies. Being the most com-
prehensive, multi-lingual medical ontology in the world, the
core SNOMED CT ontology contains over 335K concepts
definitions (Spackman 2000). The NCIt ontologies define
terminologies in the biomedical domain and include more
than 60K concept definitions (Hartel et al. 2005).

In the present paper we explore how the logical difference
between two ontologies can be tracked using a forgetting-
or uniform interpolation (UI)-based approach, as proposed
in (Ludwig and Konev 2014). Forgetting is an ontology re-
engineering technique which preserves the semantics of def-
initions of concepts and relationships among them (Lin and
Reiter 1994; Konev, Walther, and Wolter 2009a; 2009b; Lutz
and Wolter 2011; Wang et al. 2014; Zhao and Schmidt 2017;
2018b). However, currently, there are no good forgetting
tools that allow us to track logical differences efficiently.
To address this shortcoming we introduce a new forgetting
method designed for the task of computing the logical differ-
ence of large-scale ontologies. The method is sound and ter-
minating, and can compute uniform interpolants for ALC-
ontologies as large as SNOMED CT and NCIt. Our evalua-
tion shows the method achieves considerably better success
rates (>90%). Based on this new forgetting method we have
developed a new logical difference analysis tool to analyze
the differences between the Australia and Canada country
extensions of the base SNOMED CT International ontol-
ogy and recent versions of the NCIt ontologies. While the
Canada extension was found to be a conservative extension
of SNOMED CT International, the diversion to the Australia
version is significant, which is reflected in large logical dif-
ference sets.
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Some Basics of Description Logic ALC
In this paper the focus is on the description logicALC. Con-
cepts in ALC have one of the following forms:

> | ⊥ | A | ¬C | C uD | C tD | ∃r.C | ∀r.C,

where A ∈ NC denote concept names, r ∈ NR denote role
names, and C and D denote arbitrary concepts. We assume
anALC-ontology contains only a TBox, i.e., a set of axioms
of the form C v D (concept inclusions), where C and D
are concepts. The semantics of ALC is defined as usual.

Let us fix some commonly used notation. By sigC(X)
and sigR(X) we denote respectively the sets of the concept
names and role names occurring in X , where X ranges over
concepts, clauses, axioms, sets of clauses and sets of axioms
(ontologies). We let sig(X) = sigC(X)∪sigR(X). A clause
is called an S-clause if it contains S , where S ∈ NC ∪ NR.

Logical Difference via Forgetting
The notion of logical difference used in this paper was in-
troduced by (Konev, Walther, and Wolter 2008) as a means
of capturing the difference in the meaning of terms that is
independent of the representation of ontologies.
Definition 1 (Logical Difference forALC). LetO1 andO2

be two ALC-ontologies. Let Σ = sig(O1) ∩ sig(O2) be
the common signature of O1 and O2. The logical difference
between O1 and O2 is the set Diff(O1,O2) of all ALC-
axioms α such that (i) sig(α) ⊆ Σ, (ii) O2 |= α, but
(iii) O1 6|= α. An axiom α satisfying these conditions is a
witness of a change in O2 with respect to O1. If α ∈ O2 we
call it an explicit witness, else it is an implicit witness.

We notice that Diff(O1,O2) computes information gain
from O1 to O2, or information loss from O2 to O1.

To compute all witnesses in Diff(O1,O2) it is necessary to
derive all entailments of the second ontology (satisfying the
signature restriction) which are not entailed by the first on-
tology. In general, this set is however infinite. Existing log-
ical difference tools compute therefore only approximations
of the difference set. Many methods compute only witnesses
that are simple inclusions of the form A v B (Jiménez-
Ruiz et al. 2011; Gonçalves, Parsia, and Sattler 2012;
Kremen, Smid, and Kouba 2011) or also inclusions of a
form A v ∃r.B (Stoilos et al. 2018), where A and B de-
note concept names and r is a role name in Σ. Tools like
ECCO (Gonçalves, Parsia, and Sattler 2012) can only find
explicit witnesses, i.e., witnesses α such that α ∈ O2 and
O1 6|= α, but not implicit ones.

A finite representation of Diff(O1,O2) can be computed
using a uniform interpolation-based approach.
Definition 2 (Uniform Interpolation for ALC). Let O be
an ALC-ontology and Σ ⊆ sig(O) be a set of concept and
role names. An ontology V is an ALC-uniform interpolant
of O for Σ iff the following conditions hold: (i) sig(V) ⊆ Σ
and (ii) for any ALC-axiom α with sig(α) ⊆ Σ, V |= α iff
O |= α. Σ is called the interpolation signature.

Uniform interpolants are strongest entailments. By defi-
nition, V is a strongest entailment of O, if O |= V and for
any ontology V ′ such that O |= V ′ and sig(V ′) ⊆ Σ then

V |= V ′. In general it can be shown that: V is a uniform
interpolant of an ontology O for Σ iff V is a strongest en-
tailment of O in Σ. Uniform interpolants are unique up to
logical equivalence.

Logical difference can therefore be related to uniform in-
terpolation as follows: Diff(O1,O2) = ∅ iff O1 |= V2,
where V2 is a uniform interpolant of O2 for Σ = sig(O1) ∩
sig(O2), the common signature of O1 and O2. If O1 6|= V2,
this means that Diff(O1,O2) is non-empty. Then every ax-
iom α ∈ V2 with O1 6|= α is a witness of Diff(O1,O2).

The idea of our method is to compute a uniform inter-
polant V2 of O2 for the common symbols in Σ and take the
witnesses from this (Ludwig and Konev 2014).

Definition 3 (UI Difference for ALC). Let O1 and O2 be
two ALC-ontologies. Let Σ = sig(O1) ∩ sig(O2) be the
common signature of O1 and O2. The UI difference be-
tween O1 and O2 is the set UI-Diff(O1,O2) of all ALC-
axiom α such that (i) sig(α) ⊆ Σ, (ii) α ∈ V2 and
(iii)O1 6|= α, where V2 is a uniform interpolant ofO2 for Σ.
α is referred to a UI-witness of a change in O2 with respect
to O1.

Since any α ∈ V2 is an entailment of O2, every UI-
witness is a witness and UI-Diff(O1,O2) ⊆ Diff(O1,O2).
Since all the witnesses can in principle be computed from
the deductive closure of a Σ-uniform interpolant V2 of O2,
we can think of UI-Diff(O1,O2) as a representation of the
set Diff(O1,O2). For ALC, UI-Diff(O1,O2) is in fact a fi-
nite representation of the witnesses, which is crucial (possi-
bly involving auxiliary symbols).

From these considerations it follows that the set of UI-
witnesses can be computed by this two step algorithm:

Step (1): compute the uniform interpolant V2 of O2 for
Σ = sig(O1) ∩ sig(O2), and then

Step (2): collect the axioms α ∈ V2 not entailed by O1.

The first step can be performed using an uniform interpo-
lation tool, the second step can be done using an external
DL reasoner. As a third step it may be useful to partition the
(UI-)witnesses into explicit and implicit (UI-)witnesses.

Interpolating an ontology O for a signature Σ amounts to
capturing the information in O that involves only the names
in Σ. This is realized by forgetting from O the names that
do not belong to Σ (Koopmann 2015; Ludwig and Konev
2014). Uniform interpolation is therefore also referred to as
(deductive) forgetting of the names in F = sig(O)\Σ. This
means the uniform interpolant does not contain names in F .
In the case of logical difference, the signature to be forgotten
is the set F = sig(O2)\ sig(O1).

The following very simple example illustrates the main
notions in our approach. Consider the ontologies

O1 = {A v B,C v E}, and
O2 = {A v B,C v E,B v C,F v C,A v F}

with common symbols Σ = {A,B,C,E}. The logical dif-
ference is the set

Diff(O1,O2) = {B v C,A v C,B v E,A v E}.
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To compute the UI difference we forget F = {F} from O2

to get the uniform interpolant V2 = {A v B,C v E,B v
C,A v C}. Eliminating the axioms inferred by O1 we get

UI-Diff(O1,O2) = {B v C,A v C}.
We can view these as the strongest witnesses gained fromO1

to O2. B v C is an explicit witness because it is an axiom
in O2, while A v C is an implicit (inferred) witness. Since
the problem is Boolean, the logical difference has a finite
representation, and other methods using a generate-and-test
approach can compute the difference set. Our method guar-
antees a finite UI-based logical difference is found for all
ALC-ontologies, thus presenting a general method to track
the difference of ALC-ontologies.

Drawbacks of Existing Forgetting Tools
Practical tools for forgetting include FAME 1.0 (Zhao and
Schmidt 2018a), LETHE (Koopmann 2015) and the tool de-
veloped by (Ludwig and Konev 2014). For several reasons
these tools, in their present form, have not been found suited
for the logical difference task.

FAME 1.0 is a Java-based implementation of a forgetting
method developed in the work of (Zhao and Schmidt 2015;
2016). The method computes semantic solutions of forget-
ting for the description logic ALCOIH. While the tool has
proved to be very fast and thus might have been a good op-
tion to realize Step (1) of the logical difference algorithm
— using FAME 1.0, forgetting solutions could be computed
within seconds in more than 70% of the test cases (Zhao
and Schmidt 2018a) — experimental results have shown that
there are at least two reasons why FAME 1.0 is not best
suited for the task. One reason is that extra expressivity may
be required to capture semantic solutions of forgetting; of-
ten the witnesses are expressed using operators not in the
language of the given ontologies, and were found to be syn-
tactically complex and intuitively unreadable.

In particular, our evaluation of FAME 1.0 on different ver-
sions of the SNOMED CT and NCIt ontologies showed that
the computed forgetting solutions contained a large number
of deeply nested axioms of the formC v ∀r−.∃s.D, involv-
ing the inverse role operator, which is not part of ALC.

A more critical reason is that semantic solutions of forget-
ting do not always exist for ALC-ontologies, even for only
acyclic cases or with extended expressivity (Konev et al.
2013). This is different from uniform interpolation, where
using fixpoints or auxiliary concept definers, uniform in-
terpolants can always be found for ALC (Koopmann and
Schmidt 2013), whereas semantic solutions do not always
exist forALC, even with extra expressivity in the target lan-
guage. This means that FAME 1.0 is incomplete, and there
are forgetting problems where FAME 1.0 is unable to find
a solution. For these cases, the ‘witnesses’ identified by an
external DL reasoner from the forgetting solution are not
those as desired, as they may contain newly introduced de-
finer names that do not belong to the common signature of
the given two ontologies.

LETHE and the tool developed by (Ludwig and Konev
2014) use resolution-based methods to compute uniform in-
terpolants for ALC TBoxes, and in the case of LETHE, also

several extensions ofALC TBoxes (Koopmann and Schmidt
2013; 2014; Koopmann 2015). Since ALC does not have
the uniform interpolation property (Lutz and Wolter 2011),
LETHE incorporates fixpoints in the target language to en-
sure that the uniform interpolants can always be finitely rep-
resented, and the tool developed by (Ludwig and Konev
2014) solves the problem by adapting a depth-bounded ver-
sion of its core algorithm. While these make the tools (uni-
form interpolation) complete for ALC-ontologies, it has
been found that neither of them can be used for the log-
ical difference problem. A current drawback of LETHE is
lack of speed and inability to handle very large ontologies.
A preliminary comparison of LETHE and a previous version
of FAME 1.0 showed that LETHE was considerably slower
than FAME 1.0 (Alassaf and Schmidt 2017). A casual test
showed that LETHE could not handle ontologies as large as
SNOMED CT and NCIt, getting stuck in the forgetting loop.
We conjecture that this is because LETHE introduces definer
names1 in a systematic and exhaustive manner, which often
leads to an exponential explosion of axioms in the forgetting
process; see (Koopmann 2015) for a comprehensive analysis
of this plus examples.

Problems with the tool of (Ludwig and Konev 2014), be-
sides not being as fast as FAME 1.0 either, include that the
tool can only eliminate concept names, but not role names,
and only depth-bounded uniform interpolants are computed
although this did not seem to have been a restriction in the
authors’ evaluation.

Our Method for Computing Uniform
Interpolants for ALC-Ontologies

In this section, we introduce a new method designed to com-
pute uniform interpolants for very large ALC-ontologies. It
contains two main ingredients: a calculus for concept name
elimination and a calculus for role name elimination. Both
operate on axioms in clausal normal form.2

Calculus for Concept Name Elimination
The calculus for eliminating a concept name A ∈ sigC(N )
from a set N of clauses includes three types of rules: a pair
of purify rules, a pair of Ackermann rules, and a combina-
tion rule. The purify rules state that, if N is positive (nega-
tive) w.r.t. A, then A is eliminated by replacing every occur-
rence ofA inN by> (⊥). This is referred to as purification.

Let the pivot be the name inF under current consideration
for forgetting. The Ackermann rules are:

N (A−), α1 tA, ..., αn tA (premises)

N (A−)
A
¬α1t...t¬αn

(conclusion)
(1)

N (A),¬A t α1, ...,¬A t αn (premises)

N (A)
A
α1u...uαn

(conclusion)
(2)

1Definer names are fresh concept names introduced to facilitate
the normalization of an ontology (Koopmann and Schmidt 2013).

2A clause inALC is a disjunction of literals, which are concepts
of the form A, ¬A, ∃r.C and ∀r.C. Clauses are obtained from
axioms using the standard clausal form transformations.
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where A ∈ NC is the pivot, the αi (1 ≤ i ≤ n) are con-
cepts that do not contain A, N (A+) (N (A−)) denotes the
clause set N being positive (negative) w.r.t. A, and NA

α de-
notes the clause set obtained from N by substituting α for
every occurrence of A in N . The Ackermann rules replace
the axioms above the line, namely the premises, by those un-
der the line, namely the conclusion. The rules are applicable
(to N to eliminate A) iff N has the form as above, which,
however, is not always the case.

The purify rules and the Ackermann rules preserve se-
mantic equivalence up to the remaining names; details and
a proof of this can be found in (Zhao 2018). This means the
conclusions of these rules are uniform interpolants of O for
sig(O)\{A}.

LETHE and the tool of (Ludwig and Konev 2014) do not
use the Ackermann rules for concept name elimination, but
it has been found in many cases that, in order to eliminate
a concept name, LETHE needs to introduce many auxiliary
definer names, whereas our method can apply directly the
Ackermann rules.

If A is not purifiable (i.e., cannot be eliminated by purifi-
cation) or cannot be eliminated using the Ackermann rules,
it is attempted to be eliminated using the combination rule,
shown in Figure 1. The combination rule is applicable (toN
to eliminate A) iff N is in A-reduced form.

Definition 4 (A-Reduced Form). Let A ∈ NC be the pivot.
A clause is in A-reduced form if it is of the form C t A,
C t ¬A, C t ∃r.A, C t ∃r.¬A, C t ∀r.A or C t ∀r.¬A,
where r ∈ NR is any role name and C is a clause that does
not contain A. A set N of clauses is in A-reduced form if
every A-clause in N is in A-reduced form.

The A-reduced form generalizes all basic forms in which
a concept name A ∈ NC could occur; A could occur (either
positively or negatively) at the top level of a clause, or under
a ∃-restriction or a ∀-restriction. Given a set N of clauses,
not every A-clause in N is in A-reduced form; an A-clause
not in A-reduced form has the form C t ∃r.D or C t ∀r.D,
where r ∈ NR is a role name, (i) C is a clause that contains
A, or (ii) D 6= A is a concept that contains A. An A-clause
(not in A-reduced form) can be transformed into A-reduced
form using definer names: Let ND ⊂ NC be a set of definer
names disjoint from sigC(N ). Definer names are introduced
as substitutes, incrementally replacing ‘C’ and ‘D’ in every
A-clause not inA-reduced form until (i) and (ii) do not hold.
A new clause ¬Dd t C (¬Dd t D) is added to N for each
replaced C (D), where Dd ∈ ND is a fresh definer.

Let N be a set of clauses in A-reduced form. We use the
notation P+

F(A) and P−F(A) to denote the sets of the clauses
of the form C t A and C t ¬A, respectively. We use the
notation P+

∃ (A) and P−∃ (A) to denote the sets of the clauses
of the form C t ∃r.A and C t ∃r.¬A, respectively. We use
the notation P+

∀ (A) and P−∀ (A) to denote the sets of the
clauses of the form C t ∀r.A and C t ∀r.¬A, respectively.
ByN−A(−r) we denote the set of clauses that do not contain
A (r). By P+(A) we denote the union of P+

F(A), P+
∃ (A)

and P+
∀ (A) (positive premises), and by P−(A) the union of

P−F(A), P−∃ (A) and P−∀ (A) (negative premises).

As with the Ackermann rules, the combination rule is a
replacement rule that replaces the premises by its conclu-
sion. The idea is to combine all positive premises P+(A)
with every negative premise α ∈ P−(A) (or to combine all
negative premises P−(A) with every positive premise α ∈
P+(A)). The result of each combination is a set of clauses
that does not contain A, denoted by BLOCK(P+(A), α) (or
BLOCK(P−(A), α)). The conclusion of the rule, which is
also the solution of forgetting {A} from N , is the union of
the results obtained from each combination.

Lemma 1. The combination rule in Figure 1 preserves all
logical consequences up to the names in sig(N )\{A}.

Proof. The idea of the combination in Cases 1, 2, 3, 4 and 5
is basically that of Rules (1) and (2). The result in Case 6
follows directly from the premises. We prove Case 7 (Case 8
can be proved similarly). Assume a domain element d has a
t-successor not satisfying A and a domain element d′ has all
its s-successors satisfying A, if t = s, then d and d′ must
be different elements. We prove Case 9. Assume a domain
element d has all its s-successors satisfying A and has all
its q-successors not satisfying A, if s = q, then it has all its
s-successors satisfying ⊥.

Theorem 1. The calculus for concept elimination is sound.

This follows from soundness of the purify and the Acker-
mann rules, Lemma 1 and Lemma 2 stated below.

Calculus for Role Name Elimination
The calculus used by our method for eliminating a role name
r ∈ sigR(N ) from a clause setN includes one combination
rule, shown in Figure 2. The combination rule is applicable
(to N to eliminate r) iff N is in r-reduced form.

Definition 5 (r-Reduced Form). Let r ∈ NR be the pivot.
A clause is in r-reduced form if it is of the form C t∃r.D or
C t ∀r.D, where C (D) is a clause (concept) that does not
contain r. A set N of clauses is in r-reduced form if every
r-clause in N is in r-reduced form.

The r-reduced form generalizes all basic forms in which
a role name r ∈ NR could occur; r could occur under a ∃-
restriction or a ∀-restriction. An r-clause is not in r-reduced
form if ‘C’ or ‘D’ contains r. It can be transformed into r-
reduced form using definer names as well: definer names are
used as substitutes, incrementally replacing ‘C’ and ‘D’ in
every r-clause not in r-reduced form neither of them con-
tains r. A new clause ¬Dd tC (¬Dd tD) is added toN for
each replaced C (D), where Dd ∈ ND is a fresh definer.

Lemma 2. Using the definer name introduction, any set N
of ALC-clauses can be transformed into A- or r-reduced
form. The transformation is polynomial and preserves all
logical consequences up to sig(N )\{A} or sig(N )\{r}.

Proof. Definer name introduction is basically the standard
structural transformation, which is polynomial.

The idea of the combination rule for role elimination is
analogous to that of the rule for concept elimination.
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N−A,

P+
F(A)︷ ︸︸ ︷

C1 t A, . . . , Cl t A,

P+
∃ (A)︷ ︸︸ ︷

D1 t ∃r1.A, . . . , Dm t ∃rm.A,

P+
∀ (A)︷ ︸︸ ︷

E1 t ∀s1.A, . . . , En t ∀sn.A (positive premises)
P−F (A)︷ ︸︸ ︷

F1 t ¬A, . . . , Fl′ t ¬A,

P−∃ (A)︷ ︸︸ ︷
G1 t ∃t1.¬A, . . . , Gm′ t ∃tm′ .¬A,

P−∀ (A)︷ ︸︸ ︷
H1 t ∀q1.¬A, . . . , Hn′ t ∀qn′ .¬A (negative premises)

N−A,BLOCK(P+
F(A),P−F (A)),BLOCK(P+

F(A), G1 t ∃t1.¬A), ...,BLOCK(P+
F(A), Gm′ t ∃tm′ .¬A),

BLOCK(P+
F(A), H1 t ∀q1.¬A), ...,BLOCK(P+

F(A), Hn′ t ∀qn′ .¬A),BLOCK(P−(A), D1 t ∃r1.A), . . . , (conclusion)
BLOCK(P−(A), Dm t ∃rm.A),BLOCK(P−(A), E1 t ∀s1.A), ...,BLOCK(P−(A), En t ∀sn.A)

Notation in the combination rule (1 ≤ j ≤ m, 1 ≤ k ≤ n, 1 ≤ j′ ≤ m′, 1 ≤ k′ ≤ n′):
BLOCK(P−(A), α) = BLOCK(P−F (A), α) ∪ BLOCK(P−≥ (A), α) ∪ BLOCK(P−≤ (A), α), where α ∈ P+

≥(A) ∪ P
+
≤(A)

CASE 1: BLOCK(P+
F(A),P−F (A)) denotes the set {C1 t (F1 u . . . u Fl′), . . . , Cl t (F1 u . . . u Fl′)}.

CASE 2: BLOCK(P+
F(A), Gj′ t ∃tj′ .¬A) denotes the set {Gj′ t ∃tj′ .(C1 u . . . u Cl)}.

CASE 3: BLOCK(P+
F(A), Hk′ t ∀qk′ .¬A} denotes the set {Hk′ t ∀qk′ .(C1 u . . . u Cl)}.

CASE 4: BLOCK(P−F (A), Dj t ∃rj .A) denotes the set {Dj t ∃rj .(F1 u . . . u Fl′)}.

CASE 5: BLOCK(P−F (A), Ek t ∀sk.A) denotes the set {Ek t ∀sk.(F1 u . . . u Fl′)}.

CASE 6: BLOCK(P−∃ (A), Dj t ∃rj .A) denotes the sets {Dj t ∃rj .>} and {G1 t ∃t1.>, . . . , Gm′ t ∃tm′ .>}.

CASE 7: BLOCK(P−∃ (A), Ek t ∀sk.¬A) denotes the sets
⋃

1≤j′≤m′

{Gj′ t ∃tj′ .>} and
⋃

1≤j′≤m′

{Gj′ t Ek} for any tj′ = sk.

CASE 8: BLOCK(P−∀ (A), Dj t ∃rj .A) denotes the sets {Dj t ∃rj .>} and
⋃

1≤k′≤n′

{Dj tHk′} for any qk′ = rj .

CASE 9: BLOCK(P−∀ (A), Ek t ∀sk.A) denotes the sets
⋃

1≤k′≤n′

{Ek tHk′ t ∀sk.⊥} for any qk′ = sk.

Figure 1: The combination rule for eliminating A ∈ sigC(N ) from a set N of clauses in A-reduced form

Lemma 3. The combination rule in Figure 2 preserves all
logical consequences up to the names in sig(N )\{r}.

Proof. Same proof as for Cases 7 and 8 in Lemma 1.

Theorem 2. The calculus for role elimination is sound.

Proof. This follows from Lemmas 2 and 3.

The Forgetting Process
The input to the forgetting method are a setFR of role names
to be forgotten, a set FC of concept names to be forgotten,
and a set cls of ALC-clauses from which the names in FR
and FC are to be eliminated. If a concept (role) name is
successfully eliminated from cls, immediately it is removed
from FC (FR); otherwise it remains in FC (FR).

The forgetting process in the method consists of the con-
cept forgetting process and the role forgetting process. Our
method defaults to performing role forgetting first, because
then the definer names introduced during the role forgetting
process can be eliminated as part of subsequent concept for-
getting; otherwise the method may need to perform concept
forgetting again (to eliminate the definer names possibly in-
troduced in the previous role forgetting). The role forgetting
process is an iteration of several elimination rounds in each

of which a role name in FR is eliminated using the calculus
for role name elimination, as described above.

The concept forgetting process consists of two iterations
which are executed in sequence. The first iteration contains
several elimination rounds in each of which a concept name
in FC is attempted to be eliminated using purely the purify
or the Ackermann rules. This iteration is intended to elim-
inate those concept names that currently can be eliminated
without the help of definer names. In contrast to LETHE, our
method introduces definer names in a conservative manner
(introduces as few definer names as is possible). This makes
our method considerably faster than LETHE, and allows our
method to use less memory than LETHE does during the for-
getting process. The second iteration contains several elimi-
nation rounds in which all remaining names in FC are elimi-
nated using not only the purify and the Ackermann rules, but
also the combination rule for concept elimination that may
involve the introduction of definer names. It has been found
that a name that could not be eliminated by the method may
become eliminable once another name has been eliminated;
see (Zhao 2018) for examples. We therefore impose a do-
while loop on the iterations with the break condition check-
ing if there were concept names eliminated in the previous
loop. If so, the method repeats the iteration until there were
no concept names eliminated in the previous loop or FC has
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N−r,

P+(r)︷ ︸︸ ︷
C1 t ∃r.D1, . . . , Cm t ∃r.Dm,

P−(r)︷ ︸︸ ︷
E1 t ∀r.F1, . . . , En t ∀r.Fn

N−r,BLOCK(P−(r), C1 t ∃r.D1), . . . ,
BLOCK(P−(r), Cm t ∃r.Dm)

BLOCK(P−(r), Ci t ∃r.Di) denotes the union of the following sets (1 ≤ i ≤ m):

1st-tier:
⋃

1≤j≤n

{Ci t Ej}, for any Fj s.t. Di u Fj v ⊥.

2nd-tier:
⋃

1≤j1≤j2≤m

{Ci t Ej1 t Ej2}, for any Fj1 , Fj2 s.t. Di u Fj1 u Fj2 v ⊥.

. . .

nth-tier: {Ci t E1 t · · · t En}, if Di u F1 u · · · u Fn v ⊥.

Figure 2: The combination rule for eliminating r ∈ sigR(N ) from a set N of clauses in r-reduced form

become empty, i.e., all concept names inFC have been elim-
inated from cls.

Definer names, if introduced, are eliminated in exactly the
same way as concept names in FC except that definer elimi-
nation is not always successful; it may fail when the original
ontology contains cyclic dependencies over the forgetting
signature; see (Zhao 2018) for an example. Cyclic cases can
however be solved using fixpoints, but since fixpoints are
not compatible with the OWL API and are at present not
supported by mainstream tools, we do not include them in
the target language for practicality of our method. Without
fixpoints, definer names would be infinitely introduced. Our
method guarantees termination of cyclic cases by examining
whether the axioms in the intermediary resulting set have
identical syntactic patterns as those in the given one. If so,
the method terminates immediately. The following theorem
states termination and soundness of the method (as a conse-
quence of Theorems 1 and 2).
Theorem 3. Given anyALC-ontologyO and any forgetting
signature F ⊆ sig(O), our method always terminates and
returns a finite set O′ of axioms. If O′ does not contain any
introduced definer names, then our method is successful and
O′ is an ALC-uniform interpolant of O for sig(O)\F .

Crucial to the method are a set of equivalence-preserving
simplification rules. These rules are applied throughout the
forgetting process, ensuring that the clauses are always sim-
pler representations, and no redundant clauses would be
present in the forgetting solutions.

Evaluation of the Method
In order to investigate the practicality of our method, we
implemented a prototype in Java using the OWL API Ver-
sion 3.5.63 and evaluated it on a snapshot of the NCBO Bio-
Portal repository4 taken in March 2017 (Matentzoglu and
Parsia 2017), containing 396 OWL API compatible ontolo-
gies. The corpus was previously used for the evaluation of
FAME 1.0 in the work of (Zhao and Schmidt 2018a) where
statistical information about these ontologies can be found.

The prototype was evaluated for three settings: forget-
ting 10% (199), 30% (597) and 50% (995) of concept and
role names in the signature of each ontology. We compared

3https://github.com/owlcs/owlapi
4https://bioportal.bioontology.org/

the obtained results with those computed by LETHE and
FAME 1.0. The names to be forgotten were randomly se-
lected. The experiments were run on a desktop computer
with an Intel Core i7-4790 processor, four cores running at
up to 3.60 GHz, and 8 GB of DDR3-1600 MHz RAM. The
experiments were run 10 times on each ontology and we av-
eraged the results in order to verify the accuracy of our find-
ings. A timeout of 1000 seconds was imposed on each run.

Tool %F Time T.O. S. Rate Extra
10% 0.7s 1.8% 96.4% 1.8%PROTOTYPE 30% 1.5s 2.5% 93.7% 3.8%
50% 2.4s 4.8% 90.1% 5.1%
10% 25.6s 8.8% 81.4% 9.8%LETHE 30% 75.3s 19.0% 65.0% 16.0%
50% 127.1s 29.3% 50.5% 20.2%
10% 0.6s 1.8% 87.2% 11.0%FAME 1.0 30% 1.3s 2.5% 73.5% 24.0%
50% 2.0s 4.8% 66.7% 28.5%

Table 1: Results computed by our prototype, LETHE and
FAME 1.0. (T.O.: Timeout, S. Rate: Success Rate)

The results obtained from the experiments are shown in
Table 1. What is striking about the numbers in the table
is that our prototype had considerably better success rates
(>90%) over LETHE and FAME 1.0, whose success rates
stayed between 50.5%–81.4% and 66.7%–87.2%, respec-
tively.5 As for speed, it can be seen that our prototype was
comparable to FAME 1.0. LETHE was however struggling
with speed; it was on average 50 times slower than other
tools. LETHE’s success rates were significantly affected by
its speed; a large portion of its failures was due to the time-
out. The column headed ‘Extra’ shows the percentages of
cases where forgetting solutions contained undesired names
or extra expressivity, i.e., FAME 1.0 introduced nominals
to express semantic solutions, LETHE used fixpoint opera-
tors and our prototype used definer names to capture cyclic
dependencies. What was unexpected is that forgetting so-
lutions containing undesired names occurred rarely for our

5It was defined in (Zhao and Schmidt 2018a) that FAME 1.0 is
successful if it has eliminated all names in F . We slightly adjust
this in this paper: FAME 1.0 is successful if it has eliminated all
names in F , while not introducing extra expressivity.
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prototype, yet it occurred fairly frequently for LETHE, but
these tools are supposed to show similar behaviour in this
respect. This remains to be further investigated.

Logical Difference Case Study
In this section, we study how our prototype performs in prac-
tice for the forgetting task in the logical difference problem.
Specifically, we used the prototype to compute the uniform
interpolant V2 of O2 for the common signature of two given
ontologiesO1 andO2 that are being compared, and we used
the DL reasoner Hermit (Glimm et al. 2014) to check if an
axiom α ∈ V is a witness of UI-Diff(O1,O2). To simplify
the entire process, we implemented a tailor-made tool that
integrated both our prototype for forgetting and HermiT for
entailment checking. The input of the tool are two ontolo-
gies to be compared which must be specified as OWL/XML
files, or as URLs pointing to OWL/XML files, and a file path
specifying the location where the output returned by the tool
is going to be saved. The output are a setW of UI-witnesses,
a set EW of explicit UI-witnesses, and a set IW of implicit
UI-witnesses, whereW = EW ∪ IW . The witness sets are
saved as standard ontologies (OWL/XML files) that can be
used for in depth analysis or further processing.

We evaluated our difference tool on four versions of the
SNOMED CT ontology and eight versions of the NCIt ontol-
ogy. Hardware configurations remained unchanged.

The tool, along with the prototype for forgetting and the
test data sets, can be downloaded via http://www.cs.man.ac.
uk/∼schmidt/publications/aaai19/.

Tracking Logical Difference between Different
Versions of SNOMED CT Ontology
The four versions of the SNOMED CT ontology used in the
evaluation were the following:
• SNOMED CT January 2017 International edition
• SNOMED CT July 2017 International edition
• SNOMED CT Australia edition
• SNOMED CT Canada edition

The SNOMED CT July 2017 International edition is an up-
date of the January 2017 edition. The Australia and Canada
editions are local extensions of the SNOMED CT July 2017
International edition.

Case UI-Diff(O1, O2) #FC #FR #cls
1 UI-Diff(January, July) 10696 17 648080
2 UI-Diff(July, January) 614 0 630483
3 UI-Diff(July, Australia) 102880 15 1435778
4 UI-Diff(Australia, July) 6 0 648080
5 UI-Diff(July, Canada) 1700 0 650341
6 UI-Diff(Canada, July) 0 0 648080

Table 2: Logical difference and forgetting tasks for
SNOMED CT

We consider the cases of computing the logical difference
between six pairs of different versions of SNOMED CT; see
Table 2. The first step is to compute a uniform interpolant
from which the set of UI-witnesses is obtained. This requires

to eliminate #FC number of concept names and #FR num-
ber of role names from #cls number of clauses.

Case 1 2 3 4 5 6
Succ Yes Yes Yes Yes Yes N/A
FD 68.8 7.6 3994 5.0 7.8 N/A
#V 636K 630K 928K 648K 648K 648K
#ND 5991 1182 65 0 0 N/A
#PRF 8594 928 63158 3 1482 N/A
#ACK 3326 580 35329 3 215 N/A
#CR 1219 154 37 0 0 N/A
#AE 3548 134 4421 0 3 N/A

Table 3: Statistics of forgetting process and forgetting solu-
tions

The results obtained from the forgetting are shown in Ta-
ble 3, where Succ indicates whether or not the forgetting
was successful (i.e., eliminated all names in F , and the in-
troduced definer names), FD denotes the forgetting duration
(in seconds), #V denotes the number of axioms in the com-
puted uniform interpolant, #ND denotes the number of de-
finer names introduced during the forgetting process, #PRF
denotes the number of cases where a concept or definer
name was eliminated by purification, #ACK denotes the
number of cases where a concept or definer name was elimi-
nated using the Ackermann rules, #CR denotes the number
of cases where a concept or definer name was eliminated
using the combination rule in Figure 1. An interesting case
is that a concept or definer name had been eliminated when
the prototype proceeded to its elimination round (it had been
eliminated in the round of eliminating other names); #AE
denotes the number of such cases. Observe that only in a
small number of cases definer names were introduced; in
more than 98.8% of the elimination rounds, a concept or
definer name could be eliminated by purification or using
the Ackermann rules, and without introducing any definer
names. This explains why our prototype, introducing definer
names in a conservative manner, is much faster than LETHE,
which introduces definer names in a systematic and exhaus-
tive manner.
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Figure 3: Logical difference between versions of SNOMED
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The next step is to find from each computed uniform inter-
polant all witnesses of UI-Diff(O1,O2) using HermiT. Since
the main focus of this paper is forgetting, we do not describe
the entailment checking process. The logical difference be-
tween the four versions of the SNOMED CT ontology com-
puted by the tool is shown in Figure 3. UI-Diff(July, Can-
nadian) and UI-Diff(Canada, July) disappear from the figure
because there were no witnesses found in them, though the
Canada edition had introduced 1700 new terms over the In-
ternational July 2017 edition. Since the introduction of new
terms does not interfere with the meanings of existing terms,
the Canada edition can be seen as a safe extension of the
base edition. The Australia edition in contrast has had many
term definitions of the base edition changed in the exten-
sion; there were 42920 witnesses found in UI-Diff(July, Aus-
tralia). In this case, the involvement of a domain expert may
be useful to validate the changes.

Tracking Logical Difference between Different
Versions of NCIt Ontology
In order to make our findings and claims more convincing,
we conducted another evaluation, where we used our logical
difference tool to compute the logical difference between six
pairs of different versions of the NCIt ontology. We used the
most recent eight versions, consecutively released in 2018,
as our test data. It was noticed from the SNOMED CT case
that computing information gain was more challenging than
computing information loss, as there were more names to be
forgotten. Hence, in this test, we only considered the ‘for-
ward direction’, computing the logical difference between
an NCIt version and its most recent new release. The logi-
cal difference tasks performed in this test, together with the
corresponding forgetting tasks, are shown in Figure 4. We
omitted the case of Diff(18.05d, 18.06d) because these two
versions were identical.

Case UI-Diff(O1, O2) #FC #FR #cls
1 UI-Diff(18.01e, 18.02d) 3719 0 283326
2 UI-Diff(18.02d, 18.03d) 963 0 284806
3 UI-Diff(18.03d, 18.04e) 1294 0 286861
4 UI-Diff(18.04e, 18.05d) 2404 0 291462
5 UI-Diff(18.06d, 18.07e) 299 0 292091
6 UI-Diff(18.07e, 18.08e) 778 0 293426

Table 4: Logical difference and forgetting tasks for NCIt

Case 1 2 3 4 5 6
Succ Yes Yes Yes Yes Yes Yes
FD 3.7 2.0 2.6 11.0 2.0 2.3
#V 280K 284K 286K 290K 295K 293K
#ND 253 28 23 111 2 13
#PRF 3002 872 1153 2106 224 668
#ACK 799 77 130 277 72 110
#CR 117 38 32 111 5 11
#AE 54 4 2 21 0 2

Table 5: Statistics of forgetting process and forgetting solu-
tions

The results obtained from the forgetting are shown in Ta-
ble 5. The most encouraging result is that our prototype was
successful in all cases and uniform interpolants were com-
puted within a few seconds. In more than 97% of the cases, a
concept or definer name could be eliminated by purification
or using the Ackermann rules, and without introducing de-
finer names. This shows once again our method is practical.
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Figure 4: Logical difference between versions of NCIt

The logical difference between versions of the NCIt on-
tology computed by our tool is shown in Figure 4. It can be
observed that the numbers of witnesses in the NCIt cases
were notably smaller than those of the witnesses in the
SNOMED CT cases (i.e., NCIt is evolving more gradually).
This is probably because SNOMED CT is updated on a half-
yearly basis, whereas NCIt is updated on a monthly basis
(more frequent changes implies fewer changes), and also
because SNOMED CT contains country specific extensions
where significant adjustments can be expected.

Conclusion and Future Work
In this paper we have introduced a logical difference analysis
tool able to track the changes in very large ontologies. As the
forgetting step in the algorithm was a bottleneck with exist-
ing tools, we have developed a highly optimized deductive
forgetting method and tool. For the first time it is possible
to compute the logical difference between two ontologies of
the size of SNOMED CT and NCIt in feasible time. This
provides ontology engineers with a practical tool to analyze
and maintain changes in their ontologies.

As the external reasoners have performance issues for en-
tailment checking, a new approach to computing logical dif-
ference that obviates the need for a reasoner will be investi-
gated in future work.

Although there is no restriction on the method, the
tool handles only ontologies with TBoxes. To handle also
ABoxes, the forgetting solutions may contain disjunctive
concept assertions, e.g., axioms of the form C(a) t D(b),
where a, b are nominals (Koopmann and Schmidt 2015).
Such assertions cannot be encoded using the OWL API and
thus cannot be saved as OWL/XML files. This also means
subsequent entailment checking can only be performed with
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DL reasoners allowing disjunctive concept assertions. In
these cases, a feasible solution would be to approximate the
uniform interpolants and witness sets.
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