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Abstract
We propose an exploration method that incorporates look-
ahead search over basic learnt skills and their dynamics, and
use it for reinforcement learning (RL) of manipulation poli-
cies . Our skills are multi-goal policies learned in isolation in
simpler environments using existing multigoal RL formula-
tions, analogous to options or macroactions. Coarse skill dy-
namics, i.e., the state transition caused by a (complete) skill
execution, are learnt and are unrolled forward during looka-
head search. Policy search benefits from temporal abstrac-
tion during exploration, though itself operates over low-level
primitive actions, and thus the resulting policies does not suf-
fer from suboptimality and inflexibility caused by coarse skill
chaining. We show that the proposed exploration strategy
results in effective learning of complex manipulation poli-
cies faster than current state-of-the-art RL methods, and con-
verges to better policies than methods that use options or
parametrized skills as building blocks of the policy itself, as
opposed to guiding exploration. We show that the proposed
exploration strategy results in effective learning of complex
manipulation policies faster than current state-of-the-art RL
methods, and converges to better policies than methods that
use options or parameterized skills as building blocks of the
policy itself, as opposed to guiding exploration.

Introduction
In animals, skill composition greatly increases the effi-
ciency to solve new problems (White 1959). The skills act
as the “building blocks” out of which an agent can form
solutions to new problem configurations as well as en-
tirely new problems (Chentanez, Barto, and Singh 2005).
Instead of creating a solution from low-level motor com-
mands for each new challenge, skill composition enables
the agent to focus on combining and adjusting higher-level
skills to achieve the goal. This principle of hierarchical skill
composition has been applied by researchers in Reinforce-
ment Learning (RL) in the hope to achieve a similar effi-
ciency for artificial agents (Sutton, Precup, and Singh 1999;
Kulkarni et al. 2015). In this context, skills are often referred
to as options or macro-actions (Sutton, Precup, and Singh
1999). Options realize the idea of temporally extended ac-
tions that can independently accomplish a sub-goal for a de-
fined set of scenarios. The higher-level policy is then tasked
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with obtaining the optimal sequence of options to accom-
plish the task. The performance of the policy therefore criti-
cally depends on the set of options available to the agent. If
the option set is poorly chosen, the resulting composed poli-
cies will be suboptimal (Dietterich 1999). Many researchers
have tried to find a “golden” set of options (Chentanez,
Barto, and Singh 2005) to compose hierarchical policies
from (Dietterich 1999). However, with a growing number of
options the efficiency of learning will suffer. This leads to a
trade-off between flexibility and learning speed: the fewer
options, the faster the learning, the less optimal the resulting
composed policy. In light of the above, this paper proposes
temporally abstracted look-ahead search for exploration, yet
fine-grained action composition for policy representations in
the manipulation domain. In other words, a small set of gen-
eralized basic manipulation policies, which we call skills or
options, are learnt and their coarse transition functions are
used to unroll forward a tree search during the exploration
loop. Yet, policy search still operates over low-level prim-
itive actions, and thus the resulting policies are not limited
to coarse skill compositions, as previous hierarchical rein-
forcement learning formulations (Sutton, Precup, and Singh
1999). This design choice accelerates learning while at the
same time permits flexibility in option (skill) selection: as
long as the set of skills and the states they visit sufficiently
covers the state space necessary for complex manipulation,
skills can be redundant, overlapping, or varying in duration,
without loss in performance of the final policy.

In a nutshell, our framework works as follows. We train a
set of simple manipulation skills, such as grasp, transfer, and
reach. Each of these skills represents a (generalized) policy
that can handle a set of related goals and is parametrized by
both the current state and the desired goal (see Figure 1).
Each skill may involve a different number of objects, thus
different skills may have different state representations. For
each skill we learn a coarse-grain transition function, that,
given a pair of initial and goal states, it predicts the resulting
state, after execution of the skill.

During training of a new manipulation task represented
by a goal configuration, we perform look-ahead tree search
using the coarse-grain learned skill dynamics: at each time
step of an episode, we unfold a search tree by sampling skill-
goal combinations and using the learned neural skill dynam-
ics to predict resulting states (Figure 1). We choose the tree
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Figure 1: Overview. We use learned skill dynamics with
deep neural regressors and use them for look-ahead tree
search, to guide effective exploration in reinforcement learn-
ing of complex manipulation tasks.

path that leads closer to the desired goal configuration, and
the first skill-goal of the path is executed in the real environ-
ment. We execute the chosen skill with its goal parameter
until termination of that skill or episode. Then, planning is
repeated from the newly reached state, akin to model predic-
tive control (Mayne 2014).

Our skill-based look-ahead exploration outperforms
epsilon−greedy exploration, model-based RL (Sutton
1991) where the fitted dynamics model is used to sup-
ply (fake) experience tuples and not for exploration, as
well as policy learning over coarse parameterized skills
(Hausknecht and Stone 2016), as opposed to low-level ac-
tion primitives.

In summary, success of our framework depends on the
following design choices, that distinguish it from previous
works:

• Look-ahead with coarse-grain skill dynamics yet act with
fine-grain primitives. Coarse-grain transition dynamics do
not suffer from severe model error accumulation when un-
rolled in time (Oh et al. 2015), as few hops are sufficient to
look far into the future. Yet, policies over fine-grained ac-
tions — as opposed to pretrained skills — produce smooth
behaviour, being as fast and optimal as possible.

• Purposeful skill dynamics. Our dynamics model used for
look-ahead is built from basic manipulation skills, as op-
posed to random exploration and transitions therein (Ha
and Schmidhuber 2018). This ensures that learnt dynam-
ics cover important part of the state space. In contrast, dy-
namics learnt from random exploration alone often miss
useful states, and thus their temporal unrolling is less in-
formative.

Our code is available at https://github.com/arpit15/skill-
based-exploration-drl

Related work
Exploration - Intrinsic motivation Effective exploration
is a central challenge in learning good control policies (Mo-
hamed and Rezende 2015). Methods such as ε−greedy, that
either follow the current found policy or sample a random
action with a certain probability, are useful for local explo-
ration but fail to provide impetus for the agent to explore dif-
ferent areas of the state space. Exploring by maximizing the
agent’s curiosity as measured by the error of predictive dy-
namics (Pathak et al. 2017) expected improvement of predic-
tive dynamics (Schmidhuber 1990), information maximiza-
tion (Mohamed and Rezende 2015), state visitation density
(Bellemare et al. 2016), uncertainty of the value function es-
timates (Osband et al. 2016), all have been found to outper-
form ε−greedy, but are limited due to the underlying models
operating at the level of basic actions. In manipulation, often
times there are very few actions that would lead to effective
new outcomes and are hard to discover from uninformative
landscapes of the reward function.

Multigoal RL - Inverse dynamics The Horde architec-
ture (Sutton et al. 2011) proposed to represent procedu-
ral knowledge in terms of multiple Value Functions (VF)
learned in parallel by multiple RL agents, each with its own
reward and termination condition. VF would capture time
for specific events to happen, or, used for inducing a policy
for a specific goal. Work of (Schaul et al. 2015) proposed
to represent a large set of optimal VF by a single unified
function approximator, parametrized by both the state and
goal. This takes advantage of the fact that similar goals can
be achieved with similar policies, and thus allows general-
ization across goals, not only across states. Hindsight Ex-
perience Replay (HER) (Andrychowicz et al. 2017) intro-
duces the simple idea that failed executions -episodes that
do not achieve the desired goal- achieve some alternative
goal, and is useful to book-keep in the experience buffer
such “failed” experience as successful experience for that
alternative goal. Such state and goal parametrized experi-
ence is used to train a generalized policy, where actor and
critic networks take as input both the current state and goal
(as opposed to the state alone). Thanks to the smoothness of
actor and critic networks, achieved goals that are nearby the
desired one, implicitly guide learning, instead of being dis-
carded. Our approach builds upon HER, both for learning
the basic skills, as well as the final complex manipulation
policies, yet we propose novel exploration strategies, instead
of ε-greedy used in (Andrychowicz et al. 2017).

Generalized (multigoal) policies learn to transition for a
set of initial states to a set of related goals, and as such, they
are equivalent to multistep inverse dynamics models. Many
works in the literature attempt to learn inverse models with
random exploration (Agrawal et al. 2016) and chain them in
time for imitation (Nair et al. 2017). Our work learns skill
inverse models using multigoal RL and explicit rewards. We
are able to discover more useful and interesting temporally
extended inverse dynamics models, which is unclear how to
obtain with random exploration. For example, a robot would
potentially never learn to grasp guided solely by random
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controls or curiosity, or at least, this result has not been ob-
tained till today.

Hierarchical RL Learning and operating over different
levels of temporal abstraction is a key challenge in tasks in-
volving long-range planning. In the context of reinforcement
learning, Sutton, Precup, and Singh (1999) proposed the op-
tions framework, which involves abstractions over the space
of actions. At each step, the agent chooses either an one-
step primitive action or a multi-step action policy (option).
Each option defines a policy over actions (either primitive or
other options) and can be terminated according to a stochas-
tic function. The MAXQ framework (Dietterich 1999) de-
composes the value function of a Markov Desicion Pro-
cess (MDP) into combinations of value functions of smaller
constituent MDPs. Work of Kulkarni et al.(2016) learns a
policy for scheduling semantically meaningful goals using
deep Q networks. Work of Riedmiller et al. (2018) uses sim-
ple intrinsic perceptual rewards to learn subtasks and their
scheduling for helping learning of extrinsic motivated (non-
hierarchical) policies. Chentanez, Barto, and Singh (2005)
also explored agents with intrinsic reward structures in or-
der to learn generic options that can apply to a wide vari-
ety of tasks. Using a notion of salient events as sub-goals,
the agent learns options to get to such events. Other works
have proposed parametrized actions of discrete and con-
tinuous values as a form of macro-actions (temporally ex-
tended actions) to choose from (Hausknecht and Stone 2016;
Masson and Konidaris 2015). We compare with the model
from Hausknecht and Stone in the experimental section.
Other related work for hierarchical formulations include
Feudal RL (Dayan and Hinton 1993) which consists of
“managers” taking decisions at various levels of granular-
ity, percolating all the way down to atomic actions made by
the agent. Daniel et al.(2016) jointly learn options and hi-
erarchical policies over them. Such joint search makes the
problem more difficult to solve, moreover, options are not
shared across policies of different tasks. We instead capital-
ize over already known options (skills) to accelerate training
of more complex ones.

Hierarchical Planning Planning has been used with
known transition dynamic models of the environment to help
search over optimal actions to take. Incorporating macro-
actions to reduce the computational cost of long-horizon
plans has been explored in He, Brunskill, and Roy(2010). In
Vien and Toussaint(2015), the authors integrate a task hier-
archy into Monte Carlo Tree Search. These approaches work
for discrete state, action and observation spaces, and under
known dynamics. Our work instead considers continuous ac-
tions and states, and unknown dynamics.

Model-based RL To address the large sample complexity
of model-free RL methods, researchers learn models of the
domain, which they use to sample fake experience for pol-
icy learning (Sutton 1991), initialize a model-free method
(Nagabandi et al. 2017) which is further fine-tuned with real
experience to fight the biases of the model, or is combined

with a model-free estimation of the residual errors (Chebotar
et al. 2017). When the model of the domain is given, Monte
Carlo tree search has shown to be very effective for explo-
ration (Silver et al. 2017), and outperforms corresponding
model-free RL methods (Guo et al. 2014), even when the
latter are allowed to consume a great amount of (simulated)
experience.

Exploration using look-ahead search over skill
dynamics

We consider a multi-goal Markov Decision Process (MDP)
(Schaul et al. 2015), represented by states s ∈ S, goals
g ∈ G, actions a ∈ A. At the start of each episode, a
state-goal pair is sampled from the initial state-goal distri-
bution ρ(s0, g). Each goal g corresponds to a reward func-
tion rg : S × A → R. At each timestep, the agent gets as
input the current state st and goal g, and chooses an action
at according to a policy π : S ×G → A, and obtains reward
rt = rg(st, at). The objective of the agent is to maximize
the overall reward.

Learning multi-goal skill policies
We endow our agent with an initial set of manipulation
skills. We define a skill as a short-horizon generalized ac-
tion policy that achieves a set of related goals, as opposed to
a single goal. The goal sets of individual skills are not related
to the goals of our final manipulation tasks. Our framework
can handle any set of skills, independent of their length,
complexity, state and action spaces. Furthermore, skills can
be redundant within the set. We trained three skills:
• reach, in which the gripper reaches a desired location in

the workspace while not holding an object,
• grasp, in which the gripper picks up an object and holds

it at a particular height,
• transfer, in which the gripper reaches a desired location

in the workspace while holding an object.
The skills do not share the same state space: each involves
different number of objects or it is oblivious to some part of
the state space. Control is carried out in task space, by pre-
dicting directly dx, dy, dz of the motion of the end-effector
and the gripper opening. Task space control allows easier
transfer from simulation to a real robotic platform and is ag-
nostic to the exact details of the robot dynamics. The skills
do not share the same action space either, e.g., the reaching
skill does not control the gripper open/close motion. State
and action abstraction allows faster skill training. Details on
the particular skill environments and corresponding states,
actions and rewards functions are included in the supple-
mentary material.

Each skill is trained using Hindsight Experience Replay
(Andrychowicz et al. 2017) (HER) and off-policy deep de-
terministic policy gradients (DDPG) (Lillicrap et al. 2015)
with standard ε-greedy exploration (Andrychowicz et al.
2017). This allows us to decouple exploration and policy
learning. The agent maintains actor π : S × G → A and
action-value (critic) Q : S × G × A → R function ap-
proximators. The actor is learned by taking gradients with
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respect to the loss function La = −EsQ(s, g, π(s, g)) and
the critic minimizes TD-error using TD-target yt = rt +
γQ(st+1, g, π(st+1, g)), where γ is the reward discount fac-
tor. Similar to (Andrychowicz et al. 2017), we use a binary
reward function rg which is 1 if the resulting state is within
a specified radius from the goal configuration g, and 0 other-
wise. Exploration is carried out by adding ε normal stochas-
tic noise (Andrychowicz et al. 2017) to actions predicted by
the current policy.

HER, alongside the intended experience tuples of the
form (st, at, rgt, g, st+1), given the resulting state sT of an
episode of length T , it adds additional experience tuples in
the buffer, by considering sT to be the intended goal for the
experience collected during the episode, namely, adds tu-
ples of the form (st, at, r(sT )t, sT , st+1). All the tuples in
the experience buffer are use to train the actor and critic net-
works using the aforementioned reward functions. For more
details, please refer to (Andrychowicz et al. 2017).

Learning coarse-grain skill dynamics and success
probabilities

Multi-goal skill policies are used to obtain general and pur-
poseful forward dynamic models, that cover rich part of
the state space and which are not easy to learn from ran-
dom exploration. For the ith skill, we learn

• a coarse transition function of the form T i
coarse : (s, g)→

sfinal which maps an initial state s and goal g to a result-
ing final state sfinal, and

• a success probability function ui(s, g)→ [0, 1], that maps
the current state and goal to the probability that the skill
will actually achieve the goal.

We learn Tcoarse and u after each skill is trained. Data tu-
ples are collected by sampling initial states and goals and
running the corresponding skill policy. The collected data is
used to train deep neural regressors for each skill, a three
layer fully connected network that takes as input a state and
a goal configurations and predicts the final state reached af-
ter skill execution, and the probability of success. The de-
tailed architecture of the dynamics neural networks is in-
cluded in the supplementary. Each manipulation skill is rep-
resented by (generalized) policy π, action-value function Q,
transition dynamics and probability of success: K = {Ωi =
(πi,Qi, ui, T i

coarse), i = 1 · · ·N}, where N is the number
of skills and K the skill set. For us N = 3. Our coarse skill
dynamics model learns to predict the outcome of skill exe-
cution (on average 25 timesteps long) instead of predicting
the outcome of low-level actions. This allows to plan over
longer horizons without severe dynamics error accumula-
tion. Although HER with ε-greedy exploration successfully
learns generalized basic skills guided solely by binary re-
ward functions, it fails to learn more complex skills, such
as, put object A inside container B, that require longer tem-
poral horizon. Next, we describe how we use knowledge of
coarse skill dynamics Tcoarse and success probabilities u for
exploration during training of such complex manipulation
policies.

Exploration with look-ahead search
We will use again DDPG with HER to train manipulation
policies over low-level actions, but with a better exploration
method. DDPG, being an off-policy algorithm, allows use
to decouple learning and exploration. We exploit this de-
coupling and place our look-ahead search at the exploration
step. With ε probability we use the proposed look-ahead
search to select the next action to try at, otherwise we follow
the current policy learned thus far π(st, g), where st denotes
the current state. We vary ε to be close to 1 in the beginning
of training, and linearly decay it to 0.001.

Figure 2: Look-ahead Search: From the current environ-
ment state, we sample skill identities and skill sub-goals and
(mentally) unfold a look-ahead tree using learned skill dy-
namics. We select the first skill and sub-goal of the path with
maximum utility and execute it in the “real world”.

Our look-ahead search works as follows: At each episode
step, we unfold a search tree by sampling (with replace-
ment) at each tree level, for each branch, a set of K skill
identities (in our case one of reach, grasp or transfer), and
corresponding K skill sub-goals, where K is the branch-
ing factor of the search. For each sampled skill identity and
sub-goal, we use the learned success probabilities of each
sampled skill and sub-goal combination and prune improb-
able transitions (line 13 in Algorithm 2). For the remain-
ing skill/subgoal combinations we (mentally) transition to
the resulting final state following the learned skill dynamics
function. After unfolding the tree for a prespecified number
of steps, we choose the path with the maximum total reward
defined as the sum of the transition rewards(reward for go-
ing from one node to other connnected node) of the skill
executions as measured by the skill critic networks Qi and
proximity of the final state to the desired goal configuration:
R =

∑
(s,k∈K,gk)∈path to leaf node Q

k(s, gk)+rfinal, where rfinal

is the negative of the Euclidean distance between the final
state and the desired goal configuration g. We execute the
first (skill, sub-goal) tuple on the chosen maximum utility
path in the current (“real”) environment until the skill termi-
nates, i.e., until the skill sub-goal is achieved or maximum
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Algorithm 1 HER with look-ahead search explo-
ration(HERLASE)

1: Input:
2: skill set K
3: reward function r : −1[fg(s) = 0]
4: ε← 1, skill terminated← true
5: Initialize π,Q, Replay buffer B
6: for episode = 1, M do
7: Sample a goal g and starting state s0
8: while episode not done do
9: if random(0,1) < ε then

10: if skill terminated then
11: Ωi, gi ← TreeSearch(st, g)
12: (πi, Qi, ui, T i

coarse)← Ωi

13: end if
14: at = πi(st, g

i)
15: else
16: at = π(st, g) + Gaussian noise
17: end if
18: st+1, rt, terminal = execution(at)
19: skill terminated← checkSkillTermination(st+1)
20: end while
21: Create hindsight experience with g′ = sT
22: end for

skill episode length is reached or goal is reached. The ex-
perience in terms of tuples (st, g, at, rt, st+1) populate the
experience replay buffer.

Note that the learned skill dynamics Tcoarse and u may
not match the dynamics in the current environment. The rea-
son could be both due to approximation error of the neural
network regressors and the difference in the environment
dynamics, e.g., task environments may contain additional
objects on which the gripper can collide, which were not
present during skill learning. Our look-ahead exploration is
described in Algorithm 2 and visualized in Figure 2. The
complete exploration and reinforcement learning method is
described in Algorithm 1.

Experiments
We test the proposed method in the MuJoCo simulation en-
vironment (Todorov, Erez, and Tassa 2012) using a seven
degree of freedom Baxter robot arm with parallel jaw grip-
pers in the following suite of manipulation tasks:

• Pick and Move (Figure 3a) The robot needs to reach to-
wards the object, grasp it and move to a target 3D location.

• Put A inside B (Figure 3b) The robot needs to reach to-
wards the object, grasp it and put it inside the container.

• Stack A on top of B (Figure 3c) The robot needs to reach
towards the red object, grasp it and put it on top of the
purple object.

• Take A out of B (Figure 3d) The robot needs to reach
towards the object inside the container, grasp it and take
it out of the container. The objective of this environment
to grasp the objective in cluster container, then move

Algorithm 2 TreeSearch

1: Input:
2: maxHeight H, branchingFactor B
3: goal g, initial state sreal

t , skill set K
4: Initialize
5: root← (sreal

t ,0, 0)
6: openlist← addRoot
7: leafNodelist← {}
8: while all path explored do
9: s, currHeight = getTopLeafNode(openlist)

10: sampled Set = sample skills and goal parameters(B)
11: for Ωi, gi ∈ sampled Set do
12: (πi, Qi, ui, T i

coarse)← Ωi

13: if ui(s, gi) > 0.5 then
14: nextState← T i

coarse(s, gi)
15: ai ← πi(s, gi)
16: transitionReward← Qi(s, gi, ai)
17: if currHeight+1 < H then
18: AddToLeafNodelist(nextState,

transitionReward, currHeight+1)
19: else
20: AddNodeToOpenlist(nextState,

transitionReward, currHeight+1)
21: end if
22: end if
23: end for
24: end while
25: bestPath = getBestPath(leafNodeList)
26: Return first skill and goal parameter of bestPath

(a) Pick and and Move (b) Put A inside B

(c) Stack A on top of B (d) Take A out of B

Figure 3: Suite of robot manipulation tasks with baxter robot
with end-effector control and parallel jaw gripper.
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out of container and move it to any 3D location in the
workspace.

All the tasks in our benchmark suite require long temporal
horizon policies, which is a challenge when learning from
sparse rewards.

1. How well the proposed exploration strategy performs
over ε-greedy?

2. How out learnt policies compare with policies assembled
directly over macro-actions or options?

3. What is the impact of the chosen skill set to the proposed
method?

4. What happens when the dynamics are quite different in
the new environment?

We evaluate our method against the following baselines:
1. Hindsight Experience Replay (HER), described in

(Andrychowicz et al. 2017). In this method, exploration
is carried out by sampling noise from an ε-normal distri-
bution and adding it to the predicted actions of the policy
learned so far. This is a state-of-the-art model-free RL
method for control.

2. Parameterized action space (PAS), described in
(Hausknecht and Stone 2016). This approach uses
the learned skills as macro-actions by learning a meta-
controller which predicts probability over those skills, as
well as the goal of each skill.

3. Parameterized action space + Hierarchical HER (HER-
PAS), as described in (Levy, Platt, and Saenko 2017). We
extend the model of (Hausknecht and Stone 2016) by
creating additional hindsight experience at macro-level,
i.e., in the parameterized action level (skill and sub-goal).
Specifically, we replace the goal state in the macro-action
transitions collected during the episode which failed to
achieve goal g with the g′ = sT and evaluate all the low
level actions, chosen using the skill and sub-goal, with
the new reward function rt = rgnew(st, at).

4. Parameter Space Noise + HER(HER+ParamNoise), de-
scribed in (Plappert et al. 2017), exploration is carried
out in parameter space similar to evolutionary strategies.
Success plots for the different tasks for our method and

baselines are shown in Figures 4. Our method significantly
outperforms the baselines in terms of final performance and
sample complexity of environment interactions. In “put A
inside B” task 3b HER is not able to succeed at all. PAS
show success early in training but converges to sub-optimal
performance. This is expected due to the restriction imposed
on the policy space by to the hierarchical structure.

Sensitivity to skill set selection We use skills (macro-
actions) for exploration, and not for assembling a hierarchi-
cal policy, as done in the option framework (Sutton, Precup,
and Singh 1999). Therefore, we expect our method to be
less sensitive to the skill selection, in comparison to previ-
ous methods (Sutton, Precup, and Singh 1999). To quantify
such flexibility we conducted experiments using three differ-
ent skill sets: faster convergence. To test this hypothesis, we

(a) Pick and Move (b) Put A inside B

(c) Stack A on top of B (d) Take A out of B

Figure 4: The success plot for each manipulation task in our
suite. For evaluation, we freeze the current policy and sam-
ple 20 random initial states and goals at each epoch (1 epoch
= 16 episodes of environment interaction).

(a) Pick and Move task (b) Put A inside B

Figure 5: Sensitivity of our method to skill set selection.
We show the success plots for “Pick and move” and “Put
A inside B” tasks. Look-ahead exploration leads to slower
learning when essential skills are missing. However, it is still
better than random exploration.(1 epoch = 16 episodes of
environment interaction).

used 3 skill set K1 = {transit, grasp, transfer}, K2 = {grasp,
transfer} and K3 = {transit, transfer}. We tested our method
withK2 on the “Pick and Move”, and “Put A inside B” tasks
and show results in Figure 5a. Exploring with all the skills
(K1) leads to faster convergence of policy learning than us-
ing K2. This is easily explained as the agent needs to learn
the transit skill via interactions generated by other skills and
the current policy. We did not observe any slower learning
for “Put A inside B” task using K2, as shown in Figure 5b.
The reason for this is that the transit skill is similar to the
transfer skill, which is present. Learning of “Put A inside B”
task using K3 is slower (Figure 5b). This is due to the fact
that grasping is a critical skill in completing this task. How-
ever our method is still able to learn the task from scratch,
while HER fails to do so.

Sensitivity to model errors We quantify sensitivity of
our method to model errors, i.e., the accuracy of dynamics
skill models. We created a perturbation in our “Put A in-
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side B” task by making a wall insurmountable by the robot
arm, shown in Figure 6a. The skill dynamics that concern
end-effector states near the large wall would be completely
wrong, since this wall was absent during learning of our
bacis skills and therefore their dynamics. However, the pro-
posed look-ahead exploration is still beneficial, as seen in
Figure 6b. Our method succeed to learn task, while HER
with random exploration fails to do so. We used our full skill
set in this experiment, namely, transit, transfer and grasp
skills.

(a) Put A inside B
with 1 insurmount-
able wall (b) Success Curve

Figure 6: Sensitivity of our method to model errors. In
(A) we show the perturbed version of “Put A inside B” task
in which a wall is very high and cannot be crossed by the
agent. In (B) we show that even with wrong coarse dynamics
model our approach works better than random exploration.
(1 epoch = 16 episodes of environment interaction).

Scalability Our method trades time of interacting with the
environment with time to “think” the next move by mentally
unfolding a learned model of dynamics. The “thinking” time
depends on the speed of the look-ahead search. We experi-
mented with different branching factors for the tree search.

With ε-greedy the agent takes 0.4 seconds per episode (50
steps), with branching factor (bf) equal to 5 the agent takes
17 seconds, with bf=10 it takes 71 seconds, and with bf=15 it
takes 286 seconds. However, for complex tasks in our bench-
mark suite, we did not observe empirical advantages from
larger branching factors, so all the reported results use bf=5.
The sampling process and pruning could be implemented in
parallel on GPU, which will render our tree search much
more efficient. We are currently exploring learning-based
ways to guide the tree unfolding.

Conclusion - Future work
We proposed an exploration method that uses coarse-time
dynamics of basic manipulation skills for effective look-
ahead exploration during learning of manipulation policies.
Our empirical findings suggest that the proposed look-ahead
exploration guided by learned dynamics of already mastered
skills, can effectively reduce sample complexity when mas-
tering a new task, to the extent that skills that are impossi-
ble with naive exploration, are possible with the proposed
dynamics-based look-ahead exploration, suggesting an av-
enue for curriculum learning of manipulation policies, by
continually expanding the skill set. The resulting policies
are still in the space of primitive low-level actions, which

allows flexibility on choosing skills, and on the resulting re-
active policy learner.

If the proposed exploration strategies are used in environ-
ments that have different dynamics than the environments
used to train the basic skills (e.g., there is a wall present, or
the object sizes are very different), learning is slower, and
our exploration scheme offers less advantages due to model
errors. The fact that our dynamics are not updated online is
a limitation of our method, and an avenue for future work.
All the experiments performed in our paper are based on
the centroid estimates of the objects of interest. It would be
interesting to explore policies and models learned directly
from visual features in future work.
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