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Abstract
We consider the task of training classifiers without labels.
We propose a weakly supervised method—adversarial label
learning—that trains classifiers to perform well against an
adversary that chooses labels for training data. The weak su-
pervision constrains what labels the adversary can choose. The
method therefore minimizes an upper bound of the classifier’s
error rate using projected primal-dual subgradient descent.
Minimizing this bound protects against bias and dependencies
in the weak supervision. Experiments on real datasets show
that our method can train without labels and outperforms other
approaches for weakly supervised learning.

1 Introduction
This paper introduces adversarial label learning (ALL), a
method for training classifiers without labels by making use
of weak supervision. ALL works by training classifiers to
perform well on adversarially labeled instances that are con-
sistent with the weak supervision. Many machine learning
models require large amounts of labeled training data, which
is usually hand labeled or observed and recorded. In real
applications, large amounts of training data are often not
easily accessible or are expensive to acquire, making labeled
training data a critical bottleneck for machine learning.

An alternative for training machine learning models with-
out labeled training data is weak supervision. Weak supervi-
sion uses domain knowledge about the specific problem, side
information, or heuristics to approximate the true labels. A
key challenge for weak supervision is the fact that there may
be bias in the errors made by the weak supervision signals.
Using multiple sources of weak supervision can somewhat
alleviate this concern, but dependencies among these weak
supervision functions can be misconstrued as independent
confirmation of erroneous labels. For example, in a classifi-
cation task to identify diabetic patients, physicians know that
obesity can indicate diabetes, and they also know the rate at
which this indicator is wrong. However, since the indicator
is biased, models trained with this information will learn to
detect obesity, not the original goal of diabetes. To correct
this problem, one may also consider high blood pressure as
a second weak indicator. Unfortunately, these indicators are
correlated and may make dependent errors.
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ALL trains using weak supervision and aims to mitigate
these problems by adversarially labeling the data. The adver-
sarial labeling can construct scenarios where dependencies
in the weak supervision are as confounding as possible while
preserving the partial correctness of the weak supervision.
The learner then trains a model that can perform well against
this adversarial labeling. ALL solves these two competing
optimizations using primal-dual subgradient descent. The
inner optimization finds a worst-case distribution of the la-
bels for the current weight parameter of the model, while
the outer optimization finds the best weights for the model
for the current label distribution. The inner optimization’s
maximized error rate can also be viewed as an upper bound
on the true error rate, which the outer optimization aims to
minimize. By training to perform well on the worst-case la-
beling, ALL is robust against dependent and biased errors in
weak supervision signals.

The inputs to ALL are a set of unlabeled data examples,
a set of weak supervision signals that approximately label
the data, and a corresponding set of estimated error bounds
on these weak supervision signals. Domain experts can de-
sign the weak supervision signals—e.g., by defining approxi-
mate labeling rules—and they can use their knowledge to set
bounds on the errors of these signals. When designing weak
supervision signals, experts often have mental estimates of
how noisy the signals are, so this error estimate is an inex-
pensive yet valuable input for the learning algorithm.

We consider a binary classification setting where a param-
eterized model is trained to classify the data. We make use of
multiple weak signals that represent different approximations
of the true model. These weak signals can be interpreted
as having different views of the data. The estimated error
rates of these weak signals are passed as constraints to our
optimization. Importantly, we show that ALL works in cases
where these weak signals make dependent errors. Our exper-
iments also show that ALL trains classifiers that are better
than the weak supervision signals, even when the error esti-
mates are incorrect. The performance of ALL in this setting
is significant because domain experts will often imperfectly
estimate the noisiness of the weak supervision signals.

2 Related Work
Weak supervision has become an important topic in the con-
text of data-hungry deep learning models. A new line of
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research on data programming has produced a paradigm
for weak supervision where data scientists write label-
ing functions that create noisy labels (Ratner et al. 2017;
2016). The approach then discovers relationships among the
noisy labeling functions and is able to combine them and
train data-hungry models. Other related approaches provide
weak supervision in the form of constraints on the output
space (Stewart and Ermon 2017), such as those that encode
physical laws. Another related effort is on meta-learning for
neural networks via weak supervision (Dehghani et al. 2017),
using semi-supervised data to train an algorithm to learn from
weak supervision.

Our work is related to existing methods that use vari-
ants of a generalized expectation (GE) criteria (Druck,
Mann, and McCallum 2008; Mann and McCallum 2010;
2008) for semi- and weakly supervised learning. A GE cri-
terion (McCallum, Mann, and Druck 2007) is a term in a
parameter estimation objective function that prefers models
to match conditional probabilities provided as weak supervi-
sion. These conditional probabilities may take the form of the
probability of labels given a feature (Druck, Mann, and Mc-
Callum 2008), also allowing the weak supervision to include
information about the uncertainty of a weak signal. Poste-
rior regularization (PR) (Ganchev, Gillenwater, and Taskar
2010) is a similar approach that trains models to adhere to
constraints on their output posterior distributions. These con-
straints can also take the form of weak supervision signals
that specify the class of allowable posterior distributions for
the learned model. While GE and PR allow incorporation
of weak supervision and quantification of weak signal er-
rors, they do not explicitly consider that these weak signals
may make errors that conspire to confound the learner. Our
development of ALL aims to address this shortcoming.

Our work is also related to methods developed to estimate
the error of classifiers without labeled data (Jaffe et al. 2016;
Platanios, Blum, and Mitchell 2014; Steinhardt and Liang
2016) that rely on statistical relationships between the error
rates of different classifiers. Many of these approaches ex-
tend classical statistics methods (Dawid and Skene 1979) by
allowing the errors of the different classifiers to be depen-
dent variables. A key goal of these approaches is to infer the
error rate of these classifiers given only unlabeled data. In
contrast, our setting assumes that we have reasonably good
estimates of the error rates for the weak supervision provided
by experts.

A different form of adversarial learning has recently be-
come popular for deep learning (Goodfellow et al. 2014).
Generative adversarial networks (GANs) pit a data genera-
tor and a discriminator against each other to train genera-
tive models that imitate realistic data distributions. Though
our goal is not to train generative models, the stochas-
tic optimization techniques developed for GANs may help
our future work. Virtual adversarial training (Miyato et al.
2018) uses input perturbation to regularize a semi-supervised
learning method. The method adds a regularization term
to the objective function to make the learned model ro-
bust to input perturbations. Other approaches on adversar-
ial input perturbation include methods for adversarial train-
ing of structured predictors (Torkamani and Lowd 2013;

2014), which lead to the added benefit of generalization guar-
antees. Our approach focuses on adversarial output manipu-
lation, and opportunities to combine the benefits of both are
promising directions of future work.

Other research (Lowd and Meek 2005; Madry et al. 2017)
has considered variants of adversarial learning, training a clas-
sifier to learn sufficient information about another classifier
to construct adversarial attacks. These efforts primarily focus
on training models to be robust against malicious attacks,
which is of interest in cybersecurity.

3 Adversarial Label Learning
The principle behind adversarial label learning (ALL) is that
we train a model to perform well under the worst possible
conditions. The conditions being considered are the possi-
ble labels of the training data. We consider the setting in
which the learner has access to a training set of examples,
and weak supervision is given in the form of some approxi-
mate indicators of the target classification along with expert
estimates of the error rates of these indicators. Formally,
let the data be X = [x1, . . . , xn]. (We consider these ex-
amples to be ordered for notational convenience, but the
order does not matter.) These examples belong to classes
[y1, . . . , yn] ∈ {0, 1}n. The training labels y are unavail-
able to the learner. Instead, the learner has access to m weak
supervision signals {q1, . . . , qm}, where each weak signal
is a soft labeling of the data, i.e., qi ∈ [0, 1]n. These soft
labelings are estimated probabilities that the example is in
the positive class. In conjunction with the weak signals, the
learner also receives estimated expected error rate bounds of
the weak signals b = [b1, . . . , bm]. These values bound the
expected error of the weak signals, i.e.,

bi ≥ Eŷ∼qi

[
1
n

∑n
j=1 [ŷj 6= yj ]

]
, (1)

which can be equivalently expressed as

bi ≥ 1
n

(
q>i (1− y) + (1− qi)>y

)
. (2)

While the learned classifier does not have access to the
true labels y, it will use the assumption that this bound holds
to define the space of possible labelings. Let the current esti-
mates of learned label probabilities be p ∈ [0, 1]n. We relax
the space of discrete labelings to the space of independent
probabilistic labels, such that the value ŷj ∈ [0, 1] represents
the probability that the true label yj of example xj is positive.
The adversarial labeling then is the vector of class probabili-
ties ŷ that maximizes the expected error rate of the learned
probabilities subject to the constraints given by the weak su-
pervision signals and bounds, which can be found by solving
the following linear program:

arg max
ŷ∈[0,1]n

1
n

(
p>(1− ŷ) + (1− p)>ŷ

)
s.t. bi ≥ 1

n

(
q>i (1− ŷ) + (1− qi)>ŷ

)
,

∀i ∈ {1, . . . ,m} ,
(3)

which we present in this unsimplified form to convey the
intuition behind its objective and constraints; some algebra
simplifies this optimization into a more standard form.

3184



The adversarial labeling described so far is a key compo-
nent of the learning algorithm. ALL trains a parameterized
prediction function fθ that reads the data as input and outputs
estimated class probabilities, i.e., [fθ(xj)]

n
j=1 = p. We will

write p(θ) to mean [fθ(xj)]
n
j=1 when it is important to note

that these are generated from the parameterized function f .
For now, we assume a general form for this parameterized
function. For our optimization method described later in Sec-
tion 3.2, we assume that the function f is sub-differentiable
with respect to its parameters θ. The goal of learning is then
to minimize the expected error relative to the adversarial
labeling. This principle leads to the following saddle-point
optimization:

min
θ

max
ŷ∈[0,1]n

1
n

(
p(θ)>(1− ŷ) + (1− p(θ))>ŷ

)
s.t. bi ≥ 1

n

(
q>i (1− ŷ) + (1− qi)>ŷ

)
,

∀i ∈ {1, . . . ,m} .
(4)

We can view the outer optimization as optimizing a pri-
mal objective that is the maximum of the constrained inner
optimization. Define this primal function as g(θ), such that
Eq. (4) can be equivalently written as minθ g(θ). If the weak
supervision error bounds are true, this primal objective value
is an upper bound on the true error rate. This fact can be
proven by considering that the true labels y satisfy the con-
straints, and the inner optimization seeks a labeling ŷ that
maximizes the classifier’s expected error rate. In the next
section, we visualize this primal function and the behavior
of adversarial labeling before describing how we efficiently
solve this optimization in Section 3.2.

3.1 Visualizing Adversarial Label Learning
In this section, we investigate a simple case that illustrates the
behavior of the primal objective function g on a two-example
dataset (n = 2). For a small dataset, we can visualize in two
dimensions a variety of concepts.

In Fig. 1a, we illustrate the constraints set by the two
weak supervision signals. The first signal q1 estimates that
ŷ1 is positive with probability 0.3 and that ŷ2 is positive
with probability 0.2. The second signal q2 estimates that ŷ1
is positive with probability 0.6 and that ŷ2 is positive with
probability 0.1. The bounds for each weak signal error are
set to b1 = b2 = 0.4. Note that both weak signals agree that
ŷ2 is most likely negative, but they disagree on whether ŷ1 is
more likely to be positive or negative.
Constraints on ŷ The shaded regions represent the feasible
regions determined by the linear constraint corresponding to
each weak signal. The intersection of these feasible regions is
the search space for label vectors. Note how the pink region
determined by q2 allows ŷ1 to be either extreme of 0 or 1.
With more examples (n� 2), the possibility of ambiguous
labels increases significantly.
Primal Objective Function The contour lines illustrate
the objective value of the primal function g, which finds
the expected error for the adversarially set labels ŷ. Since
the adversarial inner optimization is a linear program, the
solution jumps between vertices of the constrained polytope,
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Figure 1: Illustrations of the primal objective function from
Eq. (4), the constraints set by the weak supervision, and
the optimal learned probabilities and adversarial labels for a
two-example problem.

making the primal expected error a piecewise linear convex
function of p.
Adversarial Labeling In Fig. 1a, the blue square is the
minimum of the primal function, i.e., the solution to the ALL
objective. This solution shows that the ideal learned model
should predict ŷ1 to be positive with probability 0.18 and ŷ2
to be positive with probability 0. In the optimal state, the ad-
versarial labeling of the examples is illustrated as the orange
triangle at (0.41, 0.23), i.e., the label probability vector that
induces the most error for the current predicted probabilities
p that still satisfies the constraints set by q1 and q2.
Robustness to Redundant and Dependent Errors A key
feature of ALL is that it is robust to redundant and dependent
errors in the weak supervision. In Fig. 1b, we plot a variation
of the setup from Fig. 1a, except we include two noisy copies
of weak signal q2. Since our optimal solution disagreed with
weak signal q2 on the most likely label for ŷ1, one might
expect that adding more weak signals that agree with q2
would “outvote” the solution and pull it to a higher probability
of ŷ1 being positive. But if weak signal q2 is highly correlated
with weak signals q3 and q4, they may suffer from the same
errors. Instead of these extra signals inducing a majority vote
behavior on the solution, their effect on ALL is that they
slightly change the feasible region of the adversarial labels,
which leaves the optimum unchanged.

These two-dimensional visualizations illustrate the behav-
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ior of ALL on a simple input. In higher dimensions, i.e.,
when there are more examples in the training set, there is
more freedom in the constraints set by each weak signal, so
there will be more facets to the piecewise linear objective.

3.2 Optimization Approach
We use projected primal-dual updates for an augmented La-
grangian relaxation to efficiently optimize the learning ob-
jective. The advantage of this approach is that it allows inex-
pensive updates for all variables being optimized over, and it
allows learning to occur without waiting for the solution of
the inner optimization. The augmented Lagrangian form of
the objective is

L(θ, ŷ,γ) =
1

n

(
p(θ)>(1− ŷ) + (1− p(θ))>ŷ

)
−

m∑
i=1

γi
(
q>i (1− ŷ) + (1− qi)>ŷ − nbi

)
− ρ

2

m∑
i=1

∥∥∥[q>i (1− ŷ) + (1− qi)>ŷ − nbi
]
+

∥∥∥2
2
,

(5)
where [ · ]+ is the hinge function that returns its input if
positive and zero otherwise. This form uses Karush-Kuhn-
Tucker (KKT) multipliers to relax the linear constraints on
ŷ and a squared augmented penalty term on the constraint
violation.

We then take projected gradient steps to update the vari-
ables θ, ŷ, and γ. The update step for the parameters is

θ ← θ − αt
n

(
∂p

∂θ

)>
(1− 2ŷ) , (6)

where
(
∂p
∂θ

)
is the Jacobian matrix for the classifier f over

the full dataset and αt is a gradient step size that can decrease
over time. This Jacobian can be computed for a variety of
models by back-propagating through the classification com-
putation. The update for the adversarial labels is

ŷ ←
[
ŷ+αt

(
1

n
(1−2p(θ))+

m∑
i=1

(γi(1− 2qi)− zi )
)]1

0

,

(7)
where zi = ρ(1− 2qi)

[
q>i (1− ŷ) + (1− qi)>ŷ − nbi

]
+

,
and [ · ]10 clips the label vector to the space [0, 1]n, projecting
it into its domain. The update for each KKT multiplier is

γi ←
[
γi − ρ

(
q>i (1− ŷ) + (1− qi)>ŷ − nbi

)]
+
, (8)

which is clipped to be non-negative and uses a fixed step size
ρ as dictated by the augmented Lagrangian method (Hestenes
1969). These primal-dual updates for the optimization con-
verge in our experiments. Though L is not convex with re-
spect to θ, it does satisfy some of the necessary conditions
for convergence derived by Du and Hu (2018): The objective
L is strongly convex in p and γ and concave in ŷ, while the
penalty term for the augmented Lagrangian is strongly con-
vex. These properties may explain its convergence in practice.
The full algorithm is summarized in Algorithm 1.

Algorithm 1 Adversarial Label Learning
Require: Dataset X = [x1, . . . , xn], learning rate sched-

uleα, weak signals and bounds [(q1, b1), . . . , (qm, bm)],
augmented Lagrangian parameter ρ.

1: Initialize θ (e.g., random, zeros, etc.)
2: Initialize ŷ ∈ [0, 1]n (e.g., average of q1, . . . , qm)
3: Initialize γ ∈ Rm≥0 (e.g., zeros)
4: while not converged do
5: Update θ with Equation (6)
6: Update p with model and θ
7: Update ŷ with Equation (7)
8: Update γ with Equation (8)
9: end while

10: return model parameters θ

q1

q2

q3

q1

q2

q3

Figure 2: Features used to generate weak supervision signals
on Fashion-MNIST data.

4 Experiments
We test adversarial label learning on a variety of datasets,
comparing it with other approaches for weak supervision. In
this section, we describe how we simulate domain expertise
to generate weak supervision signals. We then describe the
datasets we evaluated with and the compared weak supervi-
sion approaches, and we analyze the results of the experi-
ments.

4.1 Simulating Weak Supervision
In practice, domain experts provide weak supervision in the
form of noisy indicators or simple labeling functions. This
weak supervision generates probabilities that the examples
in a sample of the data belong to the positive class. Since
we do not have explicit domain knowledge for the datasets
used in our experiments, we generate the weak signals by
training simple, one-dimensional classifiers on subsets of the
data. The subset of the data used to train the weak supervi-
sion models is referred to as weak supervision data. We train
each one-dimensional weak supervision model by selecting
a feature and training a one-dimensional logistic regression
model using only that feature. We select the weak supervision
features based on our non-expert understanding of which fea-
tures could reasonably serve as indicators of the target class.
For datasets whose feature descriptions are not provided, we
train the weak supervision models using the first feature, mid-
dle feature, and last feature. For the Fashion-MNIST, dataset
we used the pixel value at the one-quarter, center, and three-
quarter locations along the vertical center line (see Fig. 2) to
build the respective weak supervision models.

We evaluate one-dimensional classifiers on the training
subset, generating the weak signals {q1, . . . , qm}. In our first
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set of experiments, we measure the true error rate of each
weak signal on the training subset and use that as the error
bounds {b1, . . . , bm}. In later experiments, we set all bounds
to 0.3 as an arbitrary guess. We train weak signals from one-
dimensional inputs to create realistically noisy weak signals.
Training on more features could increase the predictive ac-
curacy of the weak signals and by extension ALL, but such
high-fidelity weak signals may be rare in practice. Alterna-
tively, we chose not to hand-design weak supervision signals
and bounds, because doing so could inject our own bias into
this evaluation. Simulating domain expertise with a small
training set provides a neutral evaluation.

4.2 Baselines

We compare ALL against two baseline models: a modified
generalized expectation (GE) method and averaging of weak
signals (AVG).
Modified GE GE assigns a score to the value of a model
expectation. Given a conditional model distribution and a
reference distribution, GE uses a score function to measure
the distance between the model expectation and reference
expectation. We define a modified GE method to use the label
distribution conditioned on each weak signal, i.e.,

p̂θ (y|qk ≥ 0.5) = Eŷ

[
1
Ck
I(ŷ)I (qk ≥ 0.5)

]
, (9)

and the reference expectation is

p̃ (y|qk ≥ 0.5) = Ey

[
1
Ck
I(y)I (qk ≥ 0.5)

]
, (10)

where ŷ is the predicted labels and Ck =
∑

qk
I (qk ≥ 0.5)

is a normalizing constant. We compute these reference distri-
butions on the training subset of the data. Our modified GE
objective is then

m∑
k=1

KL [p̃ (y|qk ≥ 0.5) ‖p̂θ (y|qk ≥ 0.5)]+

KL [p̃ (y|qk < 0.5) ‖p̂θ (y|qk < 0.5)] .

(11)

We regularize this objective with an L2 penalty. This modified
GE method is able to exploit the same information ALL is
provided: the weak signals q1, . . . , qm and the reference
distributions in Eq. 10 are analogous to (though richer than)
the error bounds provided to ALL.
Averaging Baseline The input to our weakly supervised
learning task includes the weak supervision signals q, bounds
b, and the training set without labels. A straightforward ap-
proach that a reasonable data scientist could take to this
training task is to compute pseudo-labels using the weak sig-
nals. Then one can train many classifiers using a standard
supervised learning approach. For the averaging method, we
generate baseline models by treating the rounded average of
weak signals as a label. The averaging baseline tries to mimic
the aggregated weak supervision. The averaging model trains
a logistic regression classifier using the average of the weak
signals’ predictions as labels.

4.3 Experimental Setup
We run experiments on nine different datasets to measure
the predictive power of adversarial label learning (ALL).
For each dataset, we generate weak supervision signals and
estimate their error rates. We then compare the accuracy
of the model trained by ALL against (1) the modified GE
baseline, (2) the different weak supervision signals and, (3)
baseline models trained by treating the average of the weak
supervision signals as labels. We randomly split each dataset
such that 30% is used as weak supervision data, 40% is
used as training data, and 30% is used as test data. For our
experiments, we use 10 such random splits and report the
mean of the results.

In each of our experiments, we consider three different
weak signals. We run ALL on the first weak signal (ALL-
1), the first and second weak signals (ALL-2), or all three
weak signals (ALL-3). We use the sigmoid function as our
parameterized function fθ for estimating class probabilities of
ALL and GE, i.e., [fθ(xj)]

n
j=1 = 1/(1 + exp(−θTx)) = pθ.

We compare against the accuracy of GE trained using the
first weak signal (GE-1), the first and second weak signals
(GE-2), or all three weak signals (GE-3). We also compare
directly using the individual weak signals as the classifier
(WS-1, WS-2, and WS-3). And finally, we train models to
mimic the average of the first weak signal (AVG-1), the first
and second weak signals (AVG-2), and all three weak signals
(AVG-3). Table 1 shows the mean accuracies obtained by
running ALL on the different datasets.

4.4 Datasets
We describe the datasets used in the experiments below.
Fashion-MNIST The Fashion-MNIST dataset (Xiao, Ra-
sul, and Vollgraf 2017) represents an image-classification
task where each example is a 28× 28 grayscale image. The
images are categorized into 10 classes of clothing types. Each
class contains 6,000 training examples and 1,000 test exam-
ples. We consider the binary classification between three
pairs of classes: dresses/sneakers (DvK), sandals/ankle boots
(SvA), and coats/bags (CvB).
Breast Cancer The task in this dataset is to diagnose
if the breast cell nuclei are from a malignant (positive) or
benign (negative) case of breast cancer (Blake and Merz 1998;
Street, Wolberg, and Mangasarian 1993). We use the mean
radius of the nucleus (WS-1), the radius standard error (WS-
2), and worst radius (WS-3) of the cell nucleus as features to
train the three different weak supervision models. The dataset
contains 569 samples.
OBS Network The classification task for the Burst Header
Packet Flooding Attack Detection dataset is to detect net-
work nodes based on their behavior, identifying whether they
should be blocked for potentially malicious behavior (Rajab
et al. 2016). We use the percentage of flood per node (WS-
1), average packet drop rate (WS-2), and utilized bandwidth
(WS-3) as features to train the weak signals. The original
dataset contains four classes, so we select the two classes
with the most examples, resulting in a total of 795 examples.
Cardiotocography The task for this dataset is to clas-
sify fetal heart rate using uterine contraction features on
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Dataset ALL-1 ALL-2 ALL-3 GE-1 GE-2 GE-3 AVG-1 AVG-2 AVG-3 WS-1 WS-2 WS-3

Fashion MNIST (DvK) 0.998 0.995 0.996 0.975 0.972 0.977 0.506 0.743 0.834 0.508 0.750 0.644
Fashion MNIST (SvA) 0.923 0.922 0.924 0.501 0.500 0.500 0.561 0.568 0.719 0.562 0.535 0.688
Fashion MNIST (CvB) 0.795 0.831 0.840 0.497 0.499 0.500 0.577 0.697 0.740 0.587 0.684 0.643
Breast Cancer 0.942 0.944 0.945 0.936 0.936 0.935 0.889 0.885 0.896 0.871 0.804 0.915
OBS Network 0.717 0.718 0.719 0.708 0.701 0.698 0.724 0.723 0.698 0.721 0.715 0.692
Cardiotocography 0.803 0.803 0.803 0.824 0.675 0.633 0.942 0.947 0.942 0.946 0.602 0.604
Clave Direction 0.646 0.837 0.746 0.646 0.796 0.772 0.646 0.645 0.707 0.646 0.648 0.625
Credit Card 0.697 0.696 0.697 0.695 0.460 0.424 0.660 0.662 0.607 0.659 0.572 0.557
Statlog Satellite 0.470 0.933 0.936 0.521 0.987 0.992 0.669 0.926 0.916 0.660 0.775 0.880
Phishing Websites 0.896 0.895 0.895 0.898 0.894 0.870 0.846 0.807 0.846 0.846 0.700 0.585
Wine Quality 0.572 0.662 0.623 0.455 0.427 0.454 0.570 0.573 0.555 0.571 0.596 0.570

Table 1: Test accuracy of ALL and baseline models on different datasets. The best performing methods that are not statistically
distinguishable using a two-tailed paired t-test (p = 0.05) are boldfaced.

cardiotocograms classified by expert obstetricians (Ayres-de
Campos et al. 2000). The original dataset contains 10 classes,
we select the most common two classes, resulting in a total
of 963 examples. We use accelerations per second (WS-1),
mean value of long-term variability (WS-2), and histogram
median (WS-3) as features to train the weak signals.
Clave Direction The task for the Firm Teacher Clave Di-
rection dataset is to classify the clave direction from rhythmic
patterns (Vurkaç 2011). The original dataset contains four
classes, so we select the two most common classes, resulting
in a total of 8,606 examples. We use the first (WS-1), middle
(WS-2), and last (WS-3) features to train the weak signals.
Credit Card The Statlog German Credit Card dataset
task is to classify people described by a set of attributes as
good or bad credit risks (Blake and Merz 1998). We use the
status of an existing checking account (WS-1), installment
rate in percentage of disposable income (WS-2), and amount
of existing credit at the bank (WS-3) as features to train the
weak signals. The dataset contains 1,000 samples.
Statlog Satellite The task of the Statlog dataset is to predict
soil class given the multi-spectral values of pixels in 3x3
neighborhoods of satellite images (Blake and Merz 1998).
The original dataset contains seven classes of soil samples, so
we select the two most common classes, resulting in a total
of 3,041 examples. We use the first (WS-1), middle (WS-2),
and last (WS-3) features to train the weak signals.
Phishing Websites The task is to identify phishing websites
using different web attributes (Mohammad, Thabtah, and
McCluskey 2012). The dataset contains 11,055 samples. We
use the URL of the anchor (WS-1), web traffic (WS-2), and
Google index (WS-3) as features to train the weak signals.
Wine Quality The task is to classify the quality of wine
using physiochemical attributes of the wine (Cortez et al.
2009). The original dataset contains seven classes, so we
select the two classes with the most examples, resulting in a
total of 4974 examples. We use fixed acidity (WS-1), density
(WS-2), and pH (WS-3) as features to train the weak signals.

4.5 Learning with True Bounds
Our first experiments allow ALL to use the error bounds
computed on the training set. Table 1 shows the accuracies
of the models evaluated on the held-out test sets of each task.

0 2 4 6 8
Number of copies of WS-bad

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Test accuracy
ALL
GE
AVG

Figure 3: Performance of the methods using one good weak
signal and repeated erroneous weak signals.

ALL trains models that perform significantly better than the
weak signals and the baselines on the test data. The AVG
baselines perform better with an increasing number of weak
signals, but their best accuracy score on most datasets is sig-
nificantly worse than that of ALL. ALL trains a robust model
and is able to learn using noisy weak signals. Despite the
fact that the weak signals on the Fashion MNIST dataset
have rather low accuracy, ALL trained with these signals
is able to achieve high accuracy. The GE method only sig-
nificantly outperforms ALL on the Statlog Satellite dataset,
and nevertheless ALL still achieves a high accuracy score.
The main failure case is the cardiotocography task, in which
the AVG baseline outperforms both GE and ALL. However,
in this task and others, we observe that ALL performs well
even when the weak signals make dependent errors, while
the baseline methods suffer as more signals with dependent
errors are introduced. We study this concept further in the
next experiment.

4.6 Robustness against Dependent Errors
We observed from our test results that unlike the baselines,
ALL learns a robust model that performs well even in the
presence of low-quality weak signals. We isolate this concept
using two weak signals from the cardiotocography task, a
high-quality weak signal (WS-good) and a low-quality weak
signal (WS-bad). We consider the scenario where the low-
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Dataset ALL-1 ALL-2 ALL-3 GE-1 GE-2 GE-3 AVG-1 AVG-2 AVG-3 WS-1 WS-2 WS-3

Fashion MNIST (DvK) 0.998 0.995 0.996 0.975 0.972 0.977 0.506 0.743 0.834 0.508 0.750 0.644
Fashion MNIST (SvA) 0.895 0.825 0.901 0.501 0.500 0.500 0.561 0.568 0.719 0.562 0.535 0.688
Fashion MNIST (CvB) 0.810 0.805 0.802 0.497 0.499 0.500 0.577 0.697 0.740 0.587 0.684 0.643
Breast Cancer 0.940 0.941 0.944 0.936 0.936 0.935 0.889 0.885 0.896 0.871 0.804 0.915
OBS Network 0.719 0.719 0.722 0.708 0.701 0.698 0.724 0.723 0.698 0.721 0.715 0.692
Cardiotocography 0.805 0.794 0.657 0.824 0.675 0.633 0.942 0.947 0.942 0.946 0.602 0.604
Clave Direction 0.646 0.854 0.727 0.646 0.796 0.772 0.646 0.645 0.707 0.646 0.648 0.625
Credit Card 0.696 0.671 0.610 0.695 0.460 0.424 0.660 0.662 0.607 0.659 0.572 0.557
Statlog Satellite 0.493 0.983 0.982 0.521 0.987 0.992 0.669 0.926 0.916 0.660 0.775 0.880
Phishing Websites 0.899 0.835 0.853 0.898 0.894 0.870 0.846 0.807 0.846 0.846 0.700 0.585
Wine Quality 0.566 0.603 0.694 0.455 0.427 0.454 0.570 0.573 0.555 0.571 0.596 0.570

Table 2: Test accuracy of ALL and baseline models on different datasets using fixed bounds. The best performing methods that
are not statistically distinguishable using a two-tailed paired t-test (p = 0.05) are boldfaced. We replicate the baseline results from
the previous experiments for convenience; they are unaffected by the change in error bound.
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Figure 4: Illustrations showing the error of the model (ALL-3) when run with different fixed bounds between 0 and 1. Small
bound values make infeasible constraints that prevent convergence, and are not plotted here.

quality signal (WS-bad) is copied multiple times in the weak
supervision. We train the models with WS-good and a varying
number of copies of WS-bad. We evaluate the performance of
the models on each experiment using the test data. Figure 3
plots the accuracy of the models under these settings. In
the presence of multiple dependent erroneous weak signals,
ALL’s performance is relatively stable while the baseline
accuracies get worse as the poor performing weak signal is
repeated. The accuracy of AVG steadily degrades, while GE
declines steeply to random performance.

4.7 Learning with Fixed, Incorrect Bounds
Instead of using the true training error as the bounds, we
consider a more realistic scenario in which the experts are
less precise about their error estimates. In practice, the true
error rate may be difficult to estimate, so these experiments
will validate whether our approach continues to work well
when these bounds are inaccurate. We use a fixed upper
bound of b1 = b2 = b3 = 0.3 and report the performance of
the ALL model and baselines in this setting.

Table 2 shows the accuracies obtained by the methods us-
ing the fixed bounds. The accuracy scores from the Statlog
Satellite datasets are marginally higher than the results from
the previous experiments, which used the true error rate (see

Table 1), making it’s performance statistically indistinguish-
able compared to GE.

While we arbitrarily chose a fixed bound of 0.3, we also
tried various values of the bound, finding that ALL is not
too sensitive to variations of this parameter. The only real
challenge in setting this parameter is that when the bound is
small enough, the problem becomes infeasible. See Fig. 4.

5 Conclusion
We introduced adversarial label learning (ALL), a method
to train robust classifiers when access to labeled training
data is limited. ALL trains a model without labeled data by
making use of weak supervision to minimize the error rate for
adversarial labels, which are subject to constraints defined by
the weak supervision. We demonstrated that our method is
robust against weak supervision signals that make dependent
errors. Our experiments confirm that ALL is able to learn
models that outperform the weak supervision and baseline
models. ALL is also capable of directly training classifiers to
mimic the weak supervision.

While our contribution is a significant methodological
advance, there are several directions we hope to explore in
our future work. We focused on training binary classifiers, but
the principles underlying our method should extend to multi-
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class, regression, and even structured-output settings. Our
algorithm requires reasoning over the entire training dataset,
so we will explore ideas for scalability such as stochastic
variations of our optimization procedure.
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