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Abstract

Many recent network embedding algorithms use negative sam-
pling (NS) to approximate a variant of the computationally
expensive Skip-Gram neural network architecture (SGA) ob-
jective. In this paper, we provide theoretical arguments that
reveal how NS can fail to properly estimate the SGA objective,
and why it is not a suitable candidate for the network embed-
ding problem as a distinct objective. We show NS can learn
undesirable embeddings, as the result of the “Popular Neigh-
bor Problem.” We use the theory to develop a new method
“R-NS” that alleviates the problems of NS by using a more
intelligent negative sampling scheme and careful penalization
of the embeddings. R-NS is scalable to large-scale networks,
and we empirically demonstrate the superiority of R-NS over
NS for multi-label classification on a variety of real-world
networks including social networks and language networks.

Introduction
Network embedding aims to reflect the semantic similarity of
network nodes by learning a low dimensional latent represen-
tation for each node which assigns similar nodes closer em-
beddings (Cui et al. 2018). Learning the embeddings can be
achieved in supervised fashion (Yang, Cohen, and Salakhut-
dinov 2016; Tu et al. 2016; Huang, Li, and Hu 2017b) or via
unsupervised methods (Cao, Lu, and Xu 2016; Lai et al. 2017;
Tu et al. 2018; Zhang et al. 2018). The embeddings can be
used to facilitate tasks such as structural discovery (Ribeiro,
Saverese, and Figueiredo 2017), node classification (Bhagat,
Cormode, and Muthukrishnan 2011), community detection
(Wang et al. 2017), link prediction (Liben-Nowell and Klein-
berg 2003), temporal prediction (Sadeghian et al. 2016), and
network visualization (Maaten and Hinton 2008; Shaw and
Jebara 2009). A common practice to embed similar nodes
close to each other is to define a set of neighbors for each
node. These neighborhoods capture similarity between nodes
and translate the problem to embedding neighbors close to
each other. Some proposed neighborhood definitions for a
node include the immediate neighbors as in LINE (Tang et al.
2015); the result of a random walk on the graph as in Deep-
Walk and Node2Vec (Perozzi, Al-Rfou, and Skiena 2014;
Grover and Leskovec 2016); and the result of a random walk
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on a multi-layer graph in Struc2Vec (Ribeiro, Saverese, and
Figueiredo 2017).

To assign neighbor nodes close embedding vectors, many
existing network embedding algorithms optimize a varia-
tion of the Skip-gram one hidden layer neural net objec-
tive (Mikolov et al. 2013a), which originated in the natu-
ral language processing (NLP) literature. Due to the com-
putational complexity of the objective these methods rely
on NS (Mikolov et al. 2013b) to approximate the objec-
tive. Hierarchical Softmax (Morin and Bengio 2005) and
Noise Contrastive Estimation (Gutmann and Hyvärinen 2012;
Mnih and Teh 2012) are two alternatives to NS, but NS is
preferred to its alternatives because of its better performance
in most cases (Mikolov et al. 2013b; Tang et al. 2015; Grover
and Leskovec 2016; Ribeiro, Saverese, and Figueiredo 2017).

The SGA objective consists of softmax terms and NS ap-
proximates each term individually. Each softmax term in the
SGA objective is related to a node and one of its neighbors,
which encourages the node and the neighbor be close to each
other and far from all other nodes. There can be many other
nodes, so in each iteration of stochastic gradient descent for
optimizing the objective NS instead takes a small random
sample of nodes, the negative sample, where high degree
nodes are more likely to be chosen. Then the node only needs
to be far from the members of the negative sample.

NS provides a reasonable estimate for each term in the
SGA objective, but we show the accumulative sum of errors
in the estimated terms can lead to embeddings which do not
satisfy the desired properties encouraged by the SGA ob-
jective. We also discuss why NS objective is not a proper
objective for network embedding as a separated objective.
Deriving a vertex-level formula for the whole NS objective
allows us to demonstrate theoretically why this problem hap-
pens. This phenomenon can cause poor embedding of high
degree nodes, which leads to low-quality embeddings over-
all. We refer to this as the ”Popular Neighbor Problem” and
explain and analyze its effect in more detail.

This shortcoming of NS motivated us to propose R-NS.
R-NS uses an adaptive negative sampler without changing the
complexity of the algorithm and has a careful design for norm
penalization of the embedding with predetermined penalty
coefficient. We prove R-NS avoids the Popular Neighbor
Problem and illustrate empirically the superiority of R-NS
over NS by comparing the effectiveness of the learned embed-
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dings for multi-label classification tasks on several large-scale
networks such as BlogCatalog, Flickr, and Wikipedia.

There have been some recent attempts to improve NS for
NLP applications (Chen et al. 2018; Mu, Yang, and Yan
2018). Chen et al. proposes a more complex way of sam-
pling negative and positive samples which can increase the
time complexity of the algorithm based on the precision of
the estimation. Their method needs to rank all the words in
the vocabulary every few iterations of stochastic gradient
descent, which is an expensive procedure. Mu, Yang, and
Yan does not change the sampling procedure of NS. They
add a penalty on the norm of the embedding to the objective
without changing the sampling procedure of NS. Therefore
their method still suffers from the Popular Neighbor Problem.
It also cannot be applied to unsupervised problems because
they lack guidelines for choosing the penalty coefficient.

We also consider some naive solutions to the Popular
Neighbor Problem, apply them to large-scale networks, and
explain their poor performance using Bayesian and regular-
ization arguments. Our contributions can be summarized as:
• Recognition and analysis of the problems of NS for estima-

tion of the SGA objective through theory and experiments
on real network data.

• Proposing R-NS and showing theoretically it alleviates the
problem of NS, with a scalable sampling procedure and
a careful design of norm penalization with deterministic
algorithm for setting the hyperparameters.

• Empirically demonstrating the superior performance of
R-NS compared to NS through experiments on a variety
of large-scale networks.

• Suggesting other possible alternatives to NS and provid-
ing intuition as to why R-NS outperforms them using a
Bayesian argument.

Preliminaries
Skip-Gram Architecture for Networks
The Skip-gram architecture (SGA) is a one hidden layer neu-
ral network originally introduced for the word embedding
problem, which has been successfully extended to the net-
work embedding problem.

In the network context, SGA learns for each node u two d
dimensional vectors, an embedding vector f(u) and a context
vector f ′(u), by maximizing the log probability of observed
network neighborhoods of the nodes:

max
f,f ′

∑
u∈V

∑
ni∈N(u)

logP (ni|u; f, f ′),

where N(u) is the neighborhood of u and V is the set of all
nodes. It models P (ni|u; f, f ′) by a softmax unit:

P (ni|u; f, f ′) =
exp(f ′(ni)

T · f(u))∑
v∈V exp(f ′(v)

T · f(u))
,

This leads to the objective:∑
u

∑
ni∈N(u)

log

(
exp(f ′(ni)

T · f(u))∑
v∈V exp(f ′(v)

T · f(u))

)
. (1)

We refer to (1) as the Type II objective, and we use the term
Type I objective for the case where f ′(u) is the same as f(u).

The network embedding algorithms that use SGA differ
only in their definition of the neighborhoodN(u) and in their
usage of Type I or type II objective. For instance LINE defines
N(u) as the immediate neighbors of u and uses both Type
I (LINE 1st) and Type II (LINE 2nd) objectives. DeepWalk
and Node2vec use the Type II objective and a random walk
on the graph to specify N(u) (the former employs a uniform
random walk while the latter uses a biased random walk).
Other methods like Struc2vec first calculate a measure of
structural similarity between the nodes and use that to define
the neighborhood.

Negative Sampling
The SGA objective is computationally infeasible for large-
scale networks because each of the softmax terms requires
summation over all vertices. Negative sampling (NS) pro-
vides a computationally feasible approximation to the objec-
tive by replacing each logP (ni|u; f, f ′) term with

log(σ(f ′(ni)
T · f(u)))

+

k∑
j=1

Evj∼P (v) log(σ(−f ′(vj)
T · f(u))), (2)

where σ(x) = 1
1+e−x and P (v) is a distribution proportional

to dβv , where dv is the degree of the node v. The degree power
β is a hyper-parameter, conventionally set to 3/4 because of
good empirical performance(Mikolov et al. 2013b). The ob-
jective can be efficiently optimized with mini-batch gradient
descent or stochastic gradient descent (SGD) because the
objective is a summation of terms like (2) and each term
(for example term related to (u, ni), for ni ∈ N(u)) can be
estimated by:

log(σ(f ′(ni)
T · f(u)))

+

k∑
j=1

log(σ(−f ′(vj)
T · f(u))), (3)

The expectation of (3) is equal to (2). The vj are the negative
neighbor sample for u and are drawn from the distribution
P (v). In the Type I objective case f ′ = f in (3) and (2). In
subsequent sections we present theorems or claims for the
type II objective setting, but in most cases they apply for the
type I objective setting without modification.

Robust Negative Sampling
Here we show NS is hampered by a problem that we call the
“Popular Neighbor Problem.” We explain how the problem
arises in NS, and how it affects the learned embeddings. We
propose R-NS to alleviate the problem. It uses a scalable
adaptive negative sampler and penalization of the norm of the
embedding with a carefully designed equation for the penalty
coefficient based on the properties of the network.
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The Popular Neighbor Problem
A good embedding method, or equivalently a good objective,
is one which encourages neighboring nodes to have similar
embedding vectors. We will show that the NS objective does
not completely promote this behavior. Therefore it is not
an ideal candidate for an embedding method, neither as an
approximation to the SGA objective nor on its own merits as
an objective. This deviation of NS from that ideal behaviour
is mainly caused by allowing a node to choose its neighbor
as a negative sample. This problem is more severe when
high-degree nodes are present. We refer to this as the Popular
Neighbor Problem to emphasize that the situation is worse
for a node with high degree neighbors.

To be more specific, the Popular Neighbor Problem can
cause over-shrinkage of embeddings of high degree nodes and
large angular distance between embeddings of neighboring
nodes under the Type I objective, and large angular distance
between the embedding of a node and context vector of its
neighbor under the Type II objective, which are contradictory
to what we ideally expect from an embedding method.

In the following, we support the above claim theoreti-
cally. We also show that the SGA objective supports the
behaviour of embedding neighbors close to each other. We
start by deriving the objective of SGA and NS at the vertex-
level. The vertex-level objective is the summation of all the
logP (ni|u; f, f ′) terms for all ni ∈ N(u), therefore it con-
tains the contribution of all the neighbor nodes. The vertex-
level objective is more desirable and meaningful to look at
compared to the edge-level objective because it contains the
effect of all other nodes on a specific node.

Theorem 1. Let Z(vj ,u) = f ′(vj)
T · f(u) The vertex level

type II objective for SGA is:

−du log

( ∑
vi∈V

eZ(vi,u)

)
+

∑
v∈N(u)

Z(v,u), (4)

while for NS it is:

∑
vi∈V

−
(
dβvikdu

C
+ 1vi∈N(u)

)
log(1 + eZ(vi,u))

+
∑

v∈N(u)

Z(v,u), (5)

where C =
∑
vj∈V d

β
vj . In the type I case f ′ = f .

Proof. Proof provided in the supplementary material.

To have a better intuition about the objectives, note that
Z(v,u) is a measure of the similarity between f ′(v) and f(u)
and the right terms in both (4) and (5) are increasing func-
tions of Z(v,u). Therefore the right terms of the objectives
encourages a node to be similar to its neighbors. However,
the left terms in both objectives encourage u to be dissim-
ilar to all other nodes because those terms have the form
−a log(eZ(v,u) + T ) where a, T > 0 and that function is de-
creasing with respect to Z(v,u). For convenience we refer to
the left terms in (4) and (5) as LSGAu and LNSu , respectively.

The following theorem shows that NS does not promote
similarity between a node and its neighbors. In fact it puts an
upper limit for the similarity while SGA objective does not
have such an upper bound. That property of NS is in conflict
with both the aim of embedding methods in general, and the
SGA objective in particular. Therefore NS is neither a good
candidate for approximation of SGA nor for an embedding
algorithm in general.

Theorem 2. If we consider objectives (4) and (5) as func-
tions of Z(v,u) without the constraint that Z(v,u) is inner
product of f ′(v), f(u), then the optimal solutions have closed
forms. In SGA:

Z(ni,u) = +∞ for ni ∈ N(u)

Z(r,u) = −∞, for r /∈ N(u).

In NS:

Z(ni,u) = − log

(
dβnikdu

C

)
, for ni ∈ N(u)

Z(r,u) = −∞, for r /∈ N(u).

Proof. The proof for the SGA objective is based on the fact
that optimization for Z values can be seen as minimization
of the KL-divergence between a uniform distribution on the
neighbors of the node and the probability distribution on all
nodes induced by the softmax unit in the SGA. For NS the
optimal values have been calculated by setting the derivative
of the vertex-level objective of theorem 1 equal to zero. For
the complete argument please see the supplementary material.

The above theorem shows NS does not allow the similarity

of a node and its neighbor to be larger than − log
(dβnikdu

C

)
(which can be considered upper-bound). In contrast SGA
tries to have as much similarity as possible between a node
and its neighbor. Note that the upper-bound of the similarity
can be very small when either the degree of the neighbor
or β is large, which supports our claim that the presence of
high-degree neighbors can make the situation worse in NS.
This is a serious problem because scale-free networks, which
are an important class of interesting networks, include at least
a few nodes with high degree nodes.

Notice that even for the case where β = 0, or for the
case where the network does not have high degree nodes,
the upper-bound is still not +∞. This means NS still does
not encourage similarity between neighbor nodes, only to
a lesser degree. The other point is that in Theorem 2 we
considered Zni,u as an independent variable so it is not valid
to try to compare the ideal similarity of two neighbors of
node u together for ni, nj .

Positive but non-infinite optimal similarity can still lead to
over-shrinkage because the embedding vector of high degree
nodes needs to become very small to make the inner product
of its vector and its neighbors’ vectors small but positive. This
over-shrinkage causes low-quality embedding and difficulty
distinguishing among high-degree nodes.

To empirically illustrate the effect of the Popular Neighbor
Problem we embedded the Zachary’s karate club network
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(Zachary 1977) in R2 in order to visualize the embeddings
directly, without any dimension reduction. The results sup-
port the above claims and demonstrate over-shrinkage of high
degree nodes’ embedding vectors. The results are provided
in the supplementary material. The neighborhood definition
is given in the first part of the experiment section.

Distant Sampling and Explicit Norm Penalization
To provide insight about our proposed solution we analyze
both the SGA and NS objectives in more detail, and show how
they implicitly penalize the norm of the embedding vectors.
We discuss the necessity of norm penalization and explain
R-NS precisely. We conclude by proving theoretically that
R-NS does not suffer from the Popular Neighbor Problem.

The terms LSGAu , and LNSu , defined in the previous subsec-
tion, implicitly penalize the norm of node u’s embedding vec-
tor. The presence of terms like exp(Z(ni,u)) for ni ∈ N(u)

in LSGAu and LNSu cause the norm penalization because of
the small angular distance between f(u) and f(ni) (f ′(ni))
in the type I (type II) objective setting, which is a desirable
property for an embedding procedure.

To make this argument more rigorous we consider the ex-
clusive effect of the term exp(Z(v,u)) in LSGAu and LNSu on
the embedding and context vectors in the following theorem.
To isolate the effect of the exp(Z(v,u)) we treat the other
terms inside LSGAu as a constant M , where M is equal to
one for LNSu , and we compare the norm of the embedding
and context vectors before and after the updating procedure
of SGD.

The following theorem shows that if the angular distance
between two vectors related to the nodes u and v is smaller
than π

2 which is a desirable property to have if v and u are
neighbors of each other–then the Lu term in the objective
encourages shrinkage of the vectors by making the vectors
smaller after each update of the SGD algorithm.

Theorem 3. Suppose f ′u
(t)
, fv

(t) are two vectors in Rd at
step t, and define:

F (x, y) := − log(M + ex
T .y),

f ′v
(t+1)

:= f ′v
(t)

+ η∇1F (f ′v
(t)
, fu

(t)),

fu
(t+1) := fu

(t) + η∇2F (f ′v
(t)
, fu

(t)),

where ∇1, ∇2 are gradients with respect to the first and
second arguments of F respectively. Then there exists a η0
where for any step size η satisfying 0 < η < η0:

if |αt| < π

2
:

||f (t+1)
u ||2 < ||f (t)u ||2, ||f ′v

(t+1)||2 < ||f ′v
(t)||2,

if |αt| ≥ π

2
:

||f (t+1)
u ||2 ≥ ||f (t)u ||2, ||f ′v

(t+1)||2 ≥ ||f ′v
(t)||2,

where α(r) is the angle between the vectors f (r)u , f ′v
(r) and

ranges from [−π, π].

Proof. Proof provided in the supplementary material.

The above theorem also reveals that if the angular distance
between u and v is larger than π

2 –which is a sensible property
for a node and its non-neighbor–then the Lu term encourages
larger norms for the embeddings. We take advantage of this
observation in the design of R-NS.

In fact the norm penalization is an advantage of the NS
and SGA objectives because it can decrease the degrees of
freedom of the model and provide a more stable solution.
Since in the network embedding problem we need to estimate
a huge number of parameters, equal to the number of nodes
in the network multiplied by the dimension of the embedding,
implicit or explicit norm penalization can be helpful, acting
as a soft way of reducing the degrees of freedom of the whole
model and prevents over-fitting. The concept of effective
degrees of freedom and the effect of penalization on the
degrees of freedom has been discussed in more detail in
(Friedman, Hastie, and Tibshirani 2001).

Now we are ready to explain R-NS and how it can amelio-
rate the popular neighbor problem. Like NS, R-NS estimates
each softmax term in the SGA objective by taking negative
samples, but differs in two ways:
• Distance negative sampler: It chooses the negative neigh-

bor sample for each node u from the set V − {N(u) ∪ u}
rather than all possible nodes V . To be more specific, R-
NS draws a node independently from Pu(v) ∝ dβv for
v ∈ V − {N(u) ∪ u} but the probability of choosing
v ∈ {N(u) ∪ u} is set to be zero. The sub-index u in
Pu emphasizes that the probability distribution depends
on the node. We propose two methods in the following
which enable us to draw negative samples from Pu without
changing the scalability of the algorithm.

• Penalty on the norm: It puts an l2 penalty on the norm
of the embedding vectors for the Type I objective and the
embedding and context vectors for the Type II objective.
The novelty here is we present a formula for the penalty
coefficient λ and it enables R-NS still be applicable to
a wide class of unsupervised embedding problems. The
formula for λ is calculated based on the careful estimation
of the derivative of the whole objective of R-NS and it
involves the number of edges, the average weight of edges,
the number of nodes, and the dimension of the embedding
space. The formula is presented in the following but the
exact derivation is presented in the supplementary material.
Based on these two characteristics of R-NS we approxi-

mate each logP (ni|u; f, f ′) term in the SGA objective as:
k∑
j=1

Evj∼Pu(v)[log(σ(−f ′(vj)
T · f(u)))−

λ

k + 1
||f ′(vj)||2] + log(σ(f ′(ni)

T · f(u)))− λ||f(u)||2
If we want to use SGD to optimize the objective we just need
to differentiate the following expression at each step:

k∑
j=1

[log(σ(−f ′(vj)
T · f(u)))− λ

k + 1
||f ′(vj)||2]+

log(σ(f ′(ni)
T · f(u)))− λ||f(u)||2 (6)
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where vj is drawn from Pu.
Notice that nodes with higher degree have been penalized

more in the R-NS objective because they appear more of-
ten in the logarithm terms. Therefore, each vector penalized
proportional to the number of times it appeared.

In the following we present the formula for λ and provide
a brief explanation of its terms. For the type I case:

λtypeI :=

m
1+el2m

+ k
√
1−m2

1+el2
√

1−m2

(k+2
k+1 + k

k+1
n−2
n−d−1 )

, (7)

where m =
ln(1+ d

2w̄ )

ln(1+n) , d = 2E
n , l = log2(dim)

6 + 2, E is the
number of neighborhood edges, w̄ is the mean of the non-zero
weights of the edges, dim is the dimension of the embedding
space, and n is number of nodes in the graph. The term m
acts like the cosine similarity of a node and its neighbor and
consequently the term l2m acts like the inner product of an
embedding of a node and its neighbor. Also notice that for
denser networks the term d is larger, and consequently m is
larger. For more detail and exact derivation please look at the
supplementary file.

For the type II objective case we provide the following
approximation for the λ:

λtypeII :=

m
1+el2m

+ k
√
1−m2

1+el2
√

1−m2

2
, (8)

where l for the type II objective is log2(dim)
6 + 1.9 but all the

other notation is same as in the type I case. The only part in
the formulation of λ that is calculated experimentally is the
functionality of l based on the dimension of the embedding
space, however since we fixed the l across all the experiments,
the problem still has been solved in unsupervised fashion.
Note that although we fixed the l for different networks the
λs are different because of the presented formula.

To provide intuition about the two parts of R-NS, the dis-
tance negative sampler alleviates the Popular Neighbor Prob-
lem and makes R-NS satisfy the desirable properties encour-
aged by the SGA objective (this fact is shown in the following
Theorem 4). However by forcing the negative samples to be
from the non-neighbors we lose the implicit norm penaliza-
tion of the vectors based on the Theorem 3. The explicit norm
penalization is designed to compensate for the missing norm
penalization and provides a robust solution.
Theorem 4. The optimal solution for the R-NS objective (6)
under the same assumptions as Theorem 2 is:

Z(v,u) =∞, for v ∈ N(u), Z(v,u) = −∞, for v /∈ N(u).

Proof. Proof provided in the supplementary material.

Theorem (4) shows that R-NS does not suffer from the Pop-
ular Neighbor Problem because the optimal Z(v,u) is +∞,
which means R-NS does not put an upper bound on the simi-
larity of a node and its neighbor. Moreover by having optimal
similarity of −∞ for non-neighbors it promotes dissimilar-
ity between a node and its non-neighbors, which is exactly
aligned with the goals of network embedding algorithms. No-
tice that the penalization of the vectors acts like the logarithm

Table 1: Data sets for experiments

Data Set |V | |E| # Labels

BlogCatalog 10312 333983 39
Flickr 7564 239365 9

Wikipedia 4777 184812 40

of a normal prior over the embedding vector while the part of
(6) related to sampling can be viewed as the log likelihood
of the model. Therefore the whole objective of R-NS can be
regarded as the logarithm of the posterior distribution of the
embedding vectors given the network. The inclusion of the
prior allows the method to borrow information from other
nodes to estimate the embedding vector for a particular node.
The experiment section also shows the importance of norm
penalization. Regarding the choice of `2 norm over `1 norm,
we tried both norms in the process of coming up with R-NS.
In many cases `2 performed better and we did not have a mo-
tivation for the sparsity of the embedding vectors. Therefore
we used `2 norm penalization.

Scalability The R-NS objective has a different negative
sampling distribution for different nodes, so we need a
method to draw negative samples from the desired distri-
bution without changing the time complexity. We suggest
two methods for adaptive sampling, depending on whether
the network is densely connected or not. The details of the
two suggested methods are presented in the supplementary
material.

Experiments

In this section we show the superiority of R-NS to NS for
multi-label classification tasks on several large-scale net-
works. We also illustrate in the appendix the undesirable
effects of the popular neighbor problem on the embedding
vectors through the analysis of a small real network and we
show how R-NS alleviates the problem.

As we discussed earlier there are many embedding al-
gorithms which use NS to approximate the SGA objective.
Therefore to compare R-NS, NS, and several other possible
alternative for NS, we need to pick one of those embedding
algorithms and make a comparison among R-NS and its alter-
natives. We chose LINE because it outperforms methods like
Node2vec and DeepWalk on some network datasets, accord-
ing to the evaluation results of (Wang et al. 2017). Moreover,
LINE is specifically designed for network data, while many
of the other methods change the network information to a
sequence representation and use natural language processing
methods. As a side note, the way LINE defines neighbor-
hoods (the set of immediate neighbors of the the nodes in the
network) allows it to emulate other embedding algorithms
like Struc2vec, Node2vec, DeepWalk. The reason is provided
in the supplementary file.

3195



Table 2: Algorithm comparison for 50% data labeled, Type I and II objectives. The maximum standard deviation of the presented
numbers for type I and type II are respectively 0.005 and 0.0072. The exact standard deviation of the methods and ROC curves
can be found in the supplementary file.

Type I / Type II Micro-F1 Macro-F1

Algorithm Blog Catalog Flickr Wikipedia Blog Catalog Flickr Wikipedia

NS 0.36 / 0.12 0.54 / 0.46 0.47 / 0.49 0.25 / 0.07 0.43 / 0.35 0.15 / 0.15
NN-NS 0.32 / 0.15 0.58 / 0.41 0.46 / 0.45 0.22 / 0.09 0.46 / 0.31 0.14 / 0.11
R-NS (λ = 0) 0.34 / 0.15 0.55 / 0.40 0.42 / 0.44 0.23 / 0.09 0.43 / 0.28 0.11 / 0.11
R-NS 0.38 / 0.25 0.60 / 0.57 0.48 / 0.54 0.27 / 0.17 0.49 / 0.47 0.15 / 0.20
R-NS λ 0.046 / 0.059 0.043 / 0.056 0.053 / 0.067 0.046 / 0.059 0.043 / 0.056 0.053 / 0.067
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Blog Catalog Flickr Wikipedia

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.40

0.45

0.50

0.3

0.4

0.5

0.6

0.15

0.20

0.25

0.30

0.35

0.40

Micro−F1
Blog Catalog Flickr Wikipedia

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.35

0.40

0.45

0.50

0.55

0.2

0.4

0.6

0.1

0.2

Micro−F1

Blog Catalog Flickr Wikipedia

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.075

0.100

0.125

0.150

0.2

0.3

0.4

0.5

0.10

0.15

0.20

0.25

Macro−F1
Blog Catalog Flickr Wikipedia

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.
2

0.
4

0.
6

0.
8

0.10

0.15

0.20

0.1

0.2

0.3

0.4

0.5

0.00

0.05

0.10

0.15

0.20

Macro−F1

Method NN−NS NS RNS RNS No Penalty

Figure 1: Multi-label classification performance comparison on the datasets with varying amounts of labeled training data,
averaged over 5 iterations. The x axis is the fraction of data with labels, the y axis is the F1 score. For both types of objective
RNS leads to improved performance.

Multi-label classification
The multi-label classification task entails predicting the pos-
sibly multiple labels associated with each node in the given
network. A fraction of nodes and their labels are observed.
This training set information is used to predict the labels
of the nodes in the test set, the remaining nodes. This is a
common task for evaluating network embeddings (Huang et
al. 2018).

Data Sets We use the following datasets. The BlogCatalog
dataset (Zafarani and Liu 2009) is a friendship network of
bloggers on the BlogCatalog website. The labels are cate-
gories which the bloggers use to tag their posts. The Flickr
dataset (Huang, Li, and Hu 2017a) is a network of interactions
between Flickr users. The labels represent the interest groups
of the users such as “black and white photos”. The Wikipedia
dataset (Mahoney 2011) is the word co-occurrence network
of the Wikipedia dataset, which used a 2-word window to
determine co-occurrence edges. They used the Stanford POS-

Tagger to infer parts of speech for words in the network, and
treat these as the labels.

Compared Algorithms. To validate the performance of
our approach we compare R-NS with NS and several alterna-
tives to R-NS that also can scale up to large networks.

• Non-neighbor Negative Sampling (NN-NS). This algo-
rithm differs from the R-NS procedure explained in the
previous section in the negative sampling distribution Pu,
where a node also can chose itself as a negative sample. To
be more specific, P self sample

u (v) ∝ dβv for v ∈ V − N(u)
but the probability of choosing v ∈ N(u) is zero. One can
show that self negative sampling in the type I objective
case is equivalent to having a penalty on the norm.

• R-NS (no penalty). This algorithm is different form R-NS
in that it does not penalize the norms of the embedding
vectors which is equivalent to λ = 0.
• R-NS. This is the R-NS algorithm introduced in the pre-
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vious section which optimizes the objective that is the
summation of terms like (6) for all pairs of a node and its
neighbor.

Given the empirical results in both natural language pro-
cessing and network embedding demonstrating the superior-
ity of NS versus competing methods (Mikolov et al. 2013b),
we did not include direct optimization of SGA objective,
noise contrastive estimation, nor hierarchical softmax in the
baseline methods.

Parameter settings mostly follow previous literature. The
penalty coefficient λ is calculated based on the formula given
in the paper. The degree power β is chosen to be 3/4, which
is a widespread default in the literature. Exact settings are
presented in the supplementary file.

Experimental Results The network embeddings are used
in a one-vs-all logistic regression with L2 penalty, imple-
mented through the LibLinear library. From Table 2, we see
that simply excluding neighbors from negative sampling is
insufficient, as R-NS(no penalty) underperforms even the
standard negative sampling scheme. This also demonstrates
the importance of the norm penalization. NN-NS is presented
to show the importance of deriving a formula for the penalty
coefficient. NN-NS can be perceived as R-NS with a penalty
coefficient on the norm where the penalty depends on the
degree of the node. This is the case because NN-NS, like
R-NS, does not let negative samples be from the neighbors.
And since it lets a node choose itself as a negative sample
with probability related to the degree, it can be considered to
do degree-related norm penalization. NN-NS does not have
enough freedom on the form of the penalty, unlike R-NS, and
that can be seen as the main reason that it does not perform as
well as R-NS. See Table 2 for a comparison of the algorithms.

To provide further intuition about the performance of the
methods, we conduct experiments where we randomly divide
the data into train and test splits and increase the proportion of
training examples from 10% to 90% of the data in increments
of 10%. The results for each dataset, averaged over multiple
iterations, are summarized in Figure 1. We see that R-NS
leads to a significant improvement over NS in both multi-
label Micro-F1 and Macro-F1 scores for embeddings using
both the Type I and Type II objectives for most train-test
splits. It also improves on NN-NS and R-NS (no penalty).
For most of the experimental set ups NN-NS and R-NS with
no penalty do not provide much improvement over NS and
in fact underperform NS for Type I and Type II embeddings
on the Blog Catalog and Wikipedia datasets. In particular
for the Blog Catalog network with Type II embeddings, R-
NS outperforms NS in terms of Micro-F1 score by about
94% for 50% of the training data labeled. Meanwhile for the
Flickr data with Type II embeddings R-NS outperforms NS
in terms of Micro-F1 score by about 126% for only 10% of
the training data labeled.

To see the importance of choosing a proper λ, and to gain
a general intuition for how λ effects the quality of the em-
beddings, we also vary the λ in R-NS and compare the result
with NS. We clarify again that the result of the experiments
in Table 2 and Figure 1 are based on the formula which is

Type I Objective Type II Objective
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Figure 2: Effect of penalty λ on multi-label classification per-
formance for data with 50% of labels withheld, averaged over
5 iterations. The red Horizontal line indicates performance
of NS.

given in the paper, not by searching over the grids of the λ.
Figure 2 shows the effect of different λ settings on F1

scores when the train-test split is set to 50%, averaged over 5
iterations. Note that especially in the case of the Blog Catalog
and Wikipedia Network datasets λ should be within a suitable
region in order for R-NS to outperform NS. Since in all of the
experimental results R-NS is superior to NS when it uses the
presented formulation for λ, the formula assigns a suitable
value to λ based on the network.

Source code for running experiments and data are available
online at https://github.com/delimited0/network embedding.

Conclusion
In this paper we examined the performance of the NS ap-
proximation to the SGA objective for network embedding.
We showed NS suffers from the Popular Neighbor Problem,
which can lead to embedding vectors with undesirable prop-
erties that are contrary to the goals of the SGA objective and
network embedding.We proposed R-NS, which avoids the
Popular Neighbor Problem. We demonstrated the efficiency
and effectiveness of R-NS by doing experiments on several
real-world networks. Moreover, because of the careful design
of R-NS, the method is scalable and can be employed for the
learning of embeddings in an unsupervised fashion.

For future work we plan to apply R-NS to other areas
where NS is widely used, such as natural language processing,
and evaluate its performance. We also plan to investigate
more intelligent schemes for choosing negative samples that
use more information than just the degree of a node and
the set of its neighbors. For example we could consider the
structure of the nodes and its measure of connectivity when
taking negative samples.
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