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Abstract
One of the factors hindering the use of classification models
in decision making is that their predictions may contradict
expectations. In domains such as finance and medicine, the
ability to include knowledge of monotone (nondecreasing)
relationships is sought after to increase accuracy and user sat-
isfaction. As one of the most successful classifiers, attempts
have been made to do so for Random Forest. Ideally a so-
lution would (a) maximise accuracy; (b) have low complex-
ity and scale well; (c) guarantee global monotonicity; and (d)
cater for multi-class. This paper first reviews the state-of-the-
art from both the literature and statistical libraries, and identi-
fies opportunities for improvement. A new rule-based method
is then proposed, with a maximal accuracy variant and a
faster approximate variant. Simulated and real datasets are
then used to perform the most comprehensive ordinal classi-
fication benchmarking in the monotone forest literature. The
proposed approaches are shown to reduce the bias induced by
monotonisation and thereby improve accuracy.

Introduction
This paper concerns monotone prior knowledge. A mono-
tone (or non-decreasing) relationship between X and Y
means that an increase in X should not lead to a decrease
in Y. For example, a house with three bedrooms should not
be cheaper than one with two bedrooms (all other factors
constant). Monotonicity between input variable (feature) xj
and output variable y may thus be defined:

For an increase in xj , response variable y should not
decrease (all other variables held constant).

Monotonicity can be defined when the model output is or-
dered, including ordinal classification, which seeks to as-
sign objects to two or more ordered classes (but where the
distances between classes are irrelevant). Examples include
credit ratings (AA, A, BB, ...), or cancer diagnosis (No/Yes).

This paper focuses on Random Forest (RF) style tree en-
sembles with independent large (unpruned) trees (Breiman
2001). RF is one of the most popular classifiers, achieving
both high accuracy and ease of use. It’s competitive accu-
racy was somewhat surprisingly reasserted in the compre-
hensive 2015 comparison by Fernandez et al. of 179 classi-
fiers against 121 datasets (Fernandez-Delgado et al. 2014),
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where it was the highest ranked model family. We note that
this comparison omitted deep learning approaches, to which
monotonicity has recently been extended (You et al. 2017).
However, there remains a significant use case for RF for
smaller datasets, users with less expertise, where computa-
tional power is limited and where solution time is critical.

However, despite its popularity, for sensitive domains like
finance and medicine where users want to know how the
model works, RF’s lack of comprehensibility is a problem.
As a result the ability to define monotone features is popu-
larly requested and implemented in many libraries such as
R’s GBM and Arborist and XGBoost. This helps achieve
quality control (ensuring a model behaves ‘sensibly’), satis-
faction of user requirements (e.g. known medical risk fac-
tors) and improved comprehensibility. Although still not
fully comprehensible, features may now be categorised as
increasing or decreasing, with magnitude estimated by vari-
able importance measures. This latter is particularly com-
pelling given the recently enacted GDPR legislation 1, which
confers on data subjects the right to ‘meaningful information
about the logic involved’ in ‘automated decision making’.

This paper therefore pursues the twin goals of compre-
hensibility and accuracy. We first review the state-of-the-art
in monotone random forest, with extensions where neces-
sary to multi-class. This review for the first time combines
both previous literature and approaches in popular statistical
libraries that are absent from the literature.

A key limitation of some approaches is that monotonicity
is increased locally, but not guaranteed globally. There is a
big difference between being able to claim that an algorithm
usually complies, and that it categorically always complies.
The latter is surely preferable. Of the techniques that do
achieve global monotonicity, we show their mechanisms can
result in sub-optimal monotonisation (high loss/bias). Since
RF primarily improves accuracy by variance reduction, this
introduced bias cannot be corrected and accuracy suffers.

We thus propose a method with global monotonicity
and minimal monotonisation loss. Examples and simulation
demonstrate lower monotonisation loss, and experiments on
17 real datasets show a compelling increase in accuracy. The
algorithm is available at github2.

1https://eur-lex.europa.eu/eli/reg/2016/679/oj
2https://github.com/chriswbartley/monoensemble
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Monotone Ordinal Classification and Random
Forest

The classification task is to build a function f : X → Y
to predict the class y ∈ Y given input point x ∈ X , where
Y = {c1, c2, ..., cC}. The classifier f is built using a training
set of N samples {(xi, yi)}, i = 1..N, xi ∈ X , yi ∈ Y . The
ordinal classification task adds a total order on the classes
to be predicted c1 ≺ c2 ≺ ... ≺ cC . Unlike regression, the
distance between classes is undefined.

Partially monotone ordinal classifiers allow the user to
specify that one or more of the features in X has a non-
decreasing (non-increasing) impact on the output class. For
clarity we split the input space Rp into X × Z , X ⊆
Rpx ,Z ⊆ Rpz , where X contains the px monotone features,
and Z the pz non-monotone features (p = px + pz). Thus:

Definition 1 Partial Dominance
Given (x, z), (x′, z′) ∈ Rpx × Rpz , the partial order �X is:

(x, z) �X (x′, z′)⇔ x � x′ ∧ z = z′ (1)

As a partial order, �X is transitive, anti-symmetric and re-
flexive. We can now define a partially monotone function:

Definition 2 Partially Monotone Function
Function F : X ×Z → Y , X ⊆ Rpx ,Z ⊆ Rpz is monotone
increasing in the features of X (i.e. {1..px}) if:

x � x′ ⇒ F (x, z) ≤ F (x′, z),∀x, x′ ∈ X , z ∈ Z (2)

Random Forest (RF) The RF algorithm was proposed by
Breiman in 2001 and emerges from the tree ensemble tech-
niques developed in the late 1990s (Breiman 2001). Each
component tree differs from the well-known CART algo-
rithm due to: first, each tree is trained on a bootstrap sam-
ple of the training data (‘bagging’); second, as each tree is
inducted only a random subset of mtry of the features are
considered for the best split. The greatly improved accu-
racy achieved by RF is due to the variance reducing impact
of bagging on unbiased predictors (unpruned trees) that are
decorrelated (due to mtry) (Hastie, Tibshirani, and J. 2009).
As will become apparent, it is therefore crucial to minimise
bias when monotonising the trees, because bagging (unlike
boosting) cannot correct for it.

Existing Monotone RF Approaches
This section describes state-of-the-art monotone tree ensem-
bles and critiques them as they apply to RF. To our knowl-
edge this is the most comprehensive account in the literature,
and includes approaches from statistical libraries that are not
mentioned in the literature (split-wise constraints and the
XGBoost approach) or exist independently within different
branches (Isotonic Classification Trees vs Rule Reshaping).

First Order Stochastic Dominance RF (FSD-RF) The
naı̈ve solution to monotonising a tree is to constrain each
branch to prohibit nonmonotone splits. For regression trees
this corresponds to ensuring the means of proposed leaf
nodes correspond to the leaf partial order (for splits on

monotone features). This technique is implemented for ex-
ample in the GBM3 and Arborist4 libraries for R. For
binary classification the constraint is simply applied to
Pr(y=+1) rather than the leaf mean.

We extend this to multi-class using First-order Stochas-
tic Dominance (FSD). FSD is a partial order over probabil-
ity distributions, and is expressed in terms of the cumulative
probability distribution (cdf). For ordinal classes c ∈ {1..C}
the cdf FA(c∗) = Pr(c ≤ c∗) has first order stochastic dom-
inance over FB(c∗) if FA(c∗) ≤ FB(c

∗) ∀c∗ ∈ {1..C}.
FSD-RF thus simply prohibits non-FSD branch splits.

The advantage of split-wise constraints is that it has vir-
tually no computational overhead. The disadvantage is that
monotonicity is not necessarily global. For example Figure
1 shows a tree that is not globally monotone despite each
branch satisfying constraints on x1 and x2: when node t6
splits on x2 ≤ 3, the created t7 predicts y = -1 and is non-
monotone in both x1 and x2.

Monotone Induction Decision Trees (MID-RF)
González, Herrera, and Garcia (2015) propose a forest
based on Ben-David’s MID Trees (Ben-David 1995). MID
modifies tree induction by choosing the split to minimise
not just entropy E, but T = E +RA, where A is the ‘order
ambiguity’, and R ≥ 0 is a weighting factor. A penalises
splits that result in nonmonotone branch pairs. MID-RF
randomises R ∈ {1, 2, ..., Rlim}, Rlim = 100 for each tree
and also prunes the ensemble to retain only the x = 50%
most monotone trees. MID-RF has the advantage of natively
allowing multi-class classification.

MID-RF does not achieve global monotonicity since the
leaf-wise non-monotonicity penalty discourages but does
not prohibit nonmonotone splits. The second limitation is
complexity. Each branch split compares all possible splits
against all other existing leaves to calculate A, resulting in
O(ntreemtrypÑ

3) complexity, where ntree is the number
of trees, mtry is the number of random features considered,
p is the number of features, and Ñ is the number of unique
points in a bootstrap sample (≈ 0.632N ).

Partially Monotone Random Forest (PM-RF) Bartley,
Liu, and Reynolds (2016) monotonise RF by introducing
training point weights s = {si | i = 1..N} and using convex
optimisation to calculate them such that the ensemble com-
plies withK discrete constraints (x∼k, x̃k) designed to correct

nonmonotonicities while minimising
∑N
i=1(si −

1
N )2. The

disadvantages are similar to MID-RF: although constraint
compliance is assured global monotonicity is not, and solv-
ing the quadratic program is approximately O(N3).

PM-RF is a binary classifier, and to extend it to multi-
class we use the monotone ensembling by Kotlowski (Kot-
lowski 2008). Let hc(x) = 1[y < c] be a binary classifier
that distinguishes class less than c from class greater than
or equal to c, where 1[condition] = 1 if condition else 0.
Then multi-class classifier h : X → Y (Y = {1, 2, ..., C})
is given by:

3https://cran.r-project.org/web/packages/gbm/index.html
4past.rinfinance.com/agenda/2016/talk/MarkSeligman.pdf
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Figure 1: Split Constrained Tree Example (monotone in x1, x2). Left: Tree. Right: Leaf partitions shown dotted, class boundary
bold dotted. Positive class +, negative ◦. p+ denotes Pr(y=+1). Note nonmonotone t7, despite splits respecting monotonicity.
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Figure 2: XGBoost Monotone Tree Example. Left: Tree. Right: Leaf partitions dotted, class boundary bold dotted. Positive
class +, negative ◦. p+ denotes Pr(y=+1). Note t8 non-optimally predicts y = −1 (p+ ≤ 0.5) due to inherited constraints.

h(x) = 1 +

C∑
c=2

hc(x) (3)

If hc(x) are monotone, h(x) are monotone with L1 loss
bounded by the sum of the L1 loss of hc (Kotlowski 2008).

XG-Boost Constrained Trees (XGM-RF) The popular
XGBoost (Chen and Guestrin 2016) uses a novel approach
that combines split constraints with inherited leaf coefficient
limits. At each split, the mean of the left and right coef-
ficients is passed down as an upper limit on future coeffi-
cients to the left leaf, and a lower limit to the right leaf (for
binomial deviance these are the mean of logit(Pr(y=+1))
rather than Pr(y=+1)). These inherited constraints are re-
spected when greedily finding optimal leaf splits and effec-
tively guarantee global monotonicity. This elegant approach
has virtually no computational overhead while achieving
globally guaranteed monotonicity.

The disadvantage is that this can severely reduce the in-
sample accuracy of large trees (i.e. it biases the tree away
from the training data). Figure 2 shows how this occurs. The
root node t0 passes an upper limit to t1 of p+ ≤ 0.68, which
is reduced to p+ ≤ 0.43 when split to create t3. Then from t3
onwards it is impossible to predict y=+1 (p+ > 0.5). Thus
when t8 (hatched) is created to extract the positive point, the

lowest loss solution allowed is p+=0.43, predicting y=-1.
This is despite the fact t8 could predict p+=0.68 without vi-
olating monotonicity. In fact after depth≈ 2 one branch will
be constrained to predict y=+1, and one to predict y=-1.

In its original context (gradient boosting) this approach
remains ideal because the trees are shallow (depth≈ 3), and
any bias introduced by one tree can be corrected by subse-
quent trees. In contrast, RF uses trees created from indepen-
dent bootstrap samples (with no opportunity to correct intro-
duced bias), and grows deep trees to near leaf purity (often
having > 40 leaves and depth > 6). This approach thus in-
troduces bias that appears likely to reduce RF accuracy.

To extend this method to multi-class we cannot use stan-
dard one-vs-rest (OVR) ensembling because the partial or-
der is unclear (e.g. Class 2 vs Classes 1,3,4). Instead we use
the Kotlowski ensembling (Kotlowski 2008), as outlined for
PM-RF in (3).

Isotonic Classification Trees (ICT-RF) Recently
Bonakdarpour et al. (2018) proposed a ‘rule reshaping’
based monotone RF. They define a partial order between
the leaves of a tree, where leaf A dominates leaf B if
it is possible for (a) points in leaf A to be greater than
those in leaf B in the monotone features; and (b) for their
nonmonotone features to be equal. Isotonic regression then
provides a loss minimised leaf relabelling that respects

3226



t2
p+ = 0. 0

t3
p+ = 1. 0

t1
p+ = 0. 75

x2 2

t4
p+ = 0. 0

t0
p+ = 0. 43

x1 2Yes No

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

x1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

x
2

t2
p+, orig = 0. 0
p+, iso = 0. 0

t3
p+, orig = 1. 0
p+, iso = 0. 5

t4
p+, orig = 0. 0
p+, iso = 0. 5

Figure 3: Isotonic Classification Tree Example. Left: Tree. Right: Leaf partitions dotted, class boundary bold dotted. Positive
class +, negative ◦. p+ denotes Pr(y=+1). Best possible solution to isotonic relabelling is p+ = 0.43 for all leaves (i.e. ŷ=-1).

this leaf partial order. We note this is in effect the Isotonic
Classification Trees (ICT) approach proposed by van de
Kamp, Feelders, and Barile (2009), where it is also noted
that the tree may be sequentially simplified to eliminate
branches where both leaves predict the same class. Thus for
ICT a relabelling/simplification cycle is repeated until all
leaves are monotone with respect to each other. ICT also
allows multi-class by using monotone ensembling based on
FSD and selecting the lowest median to allow multi-class.
Thus instead of the ‘rule reshaping’ approach we use ICT
for each tree.

However, we observe this is likely to yield biased and sub-
optimal monotonisation. Because the regression is limited
to relabelling existing leaves, the monotonisation candidates
are not always very good. This is illustrated in Figure 3. The
original tree finds leaf purity with three leaves, with prob-
abilities p+,orig. The regression must then respect the leaf
partial order t2 � t3 � t4 and the optimal and only solution
is p+,iso = 0.43, universally predicting the majority class
(-1) and misclassifying the three + points). The obvious so-
lution (two nodes x2 ≤ 2 and x2 > 2), which would only
misclassify one point, is not possible by leaf relabelling be-
cause the regression was given an unfortunate leaf partition.
Another disadvantage of ICT (and rule reshaping) is that the
solution to isotonic regression is typically O(N3) for inte-
rior point solutions to the quadratic program.

A New Method: Monotone Rule RF (MR-RF)

We now propose an approach to address the weaknesses
above. MID-RF, PM-RF, and FSD-RF are unable to guaran-
tee monotonicity. XGM-RF and ICT-RF do guarantee global
monotonicity, but both use mechanisms that are likely to
lead to sub-optimal monotonisation.

We propose instead to convert the Random Forest to a rule
ensemble in such a way as to ensure global monotonicity
while reducing the introduced bias. First observe that binary
RF can be considered as an additive rule ensemble (Bart-
ley, Liu, and Reynolds 2016; Bonakdarpour et al. 2018).
Splitting the input space into the monotone (x) and non-
monotone (z), the classifier produced by tree ensembles can

be written as a weighted sum over all leaves of all trees:

F (x, z) = sign

(
T∑
t=1

Lt∑
l=1

at,lft,l(x, z)

)
(4)

where:

ft,l(x, z) = 1
[
(x, z) ∈ leaf l of tree t

]
(5)

is the leaf membership indicator function

at,l =
1

N

N∑
i=1

yi
bi,t
Kt,l

is the leaf prediction

and bi,t is the number of occurrences of xi in the bootstrap
sample used for tree t and T , N , Lt are the number of trees,
training points, and leaves in tree t respectively.

We first extend the typical instance based monotone rule
ensemble (Kotlowski 2008) to partial monotonicity. F (x, z)
will be partially monotone in the features of X if it fulfils:

Theorem 1 (Partially Monotone Ensemble Conditions)
Given a function F : X × Z → Y of the form
F (x, z) = a0+

∑M
m=1 amfm(x, z), F will satisfy (2) if each

fm(x, z) and am satisfy one of the below (m = 1..M ):

(a) fm(x, z) = 1
[
x � xm and z ∈ Zm

]
am ≥ 0

(b) fm(x, z) = 1
[
x � xm and z ∈ Zm

]
am ≤ 0

where:
xm ∈ X ,Zm ⊆ Z
The proof is easily done and omitted.

The question then becomes how best to convert the RF
leaf rules ft,l(x) into rules complying with Theorem 1. We
start by rewriting (5) for leaf membership in terms of the
logical conjunction of the branch node rules that lead to it:

ft,l(x, z) = 1
[
Rt,l(x) ∧ St,l(z)

]
(6)
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Figure 4: Example Monotone Rule solutions. Left panel: Solution to XGBoost Example (from Figure 2). Right panel: Solution
to ICT-RF Example (from Figure 3). Class boundary bold dotted. In both cases a lower loss monotone solution is found.

where:

Rt,l(x) = rt,l,1(x) ∧ ... ∧ rt,l,Rl
(x) (7)

St,l(z) = st,l,1(z) ∧ ... ∧ st,l,Sl
(z) (8)

rt,l,k(x) ∈ {xi ≤ vi−t,l,k, xi > vi+t,l,k}

st,l,p(z) ∈ {zj ≤ qj−t,l,k, zj > qj+t,l,k, zj ∈ Q
j
t,l,k,

zj ∈ Zj \Qjt,l,k}

In other words, each branch split leading to a leaf node is
captured in a rule rt,l,k(x) for monotone features or st,l,p(z)
for non-monotone features. Non-monotone feature rules can
take the form of thresholds (zj ≤ qj−t,l,k) for ordinal features,
or set membership (zj ∈ Qjt,l,k) for categorical features.

We observe that the Theorem 1 condition for non-
monotone features z is satisfied by all leaves, because condi-
tions of the form St,l(z) simply describe a fixed subset of Z .
Thus for compliance with Theorem 1, leaves with at,l ≥ 0
must be able to expressRt,l(x) in the form x � xt,l for some
base point xt,l. Given it is trivial to show this also applies to
strict inequalities �, it is possible if all conditions rt,l,k(x)
use the > inequality. Then we can rewrite (7) as:

Rt,l(x) = x � xt,l (9)

where: xt,l = (x1t,l, ..., x
i
t,l, ..., x

px
t,l)

xit,l = max
[
{− inf} ∪ {vi+t,l,k}

Rl

k=1

]
In other words, element i of xt,l is − inf if there are no

branch nodes associated with feature i, or else the largest of
the lower bounds vit,l,k in any branch node leading to leaf l.

For a given RF tree, leaves that can be written in this form
(and analogously for at,l ≤ 0 leaves) are therefore already
monotone compliant under Theorem 1. To address the leaves
that do not comply, we now present Monotone Rule RF (Al-
gorithm 1), which takes a tree ensemble, and returns a mono-
tone rule ensemble in log odds (logistic) form.

Monotonisation is achieved in two steps. Firstly the leaf
rules are made compliant (lines 1-10): the sign of the leaf co-
efficient at,l is taken as evidence of whether the rule should

be positive or negative, and the rule is modified to eliminate
upper limits (positive rules) or lower limits (negative rules).

This process is illustrated by comparing Figure 4 left
panel with Figure 2 (XGM-RF example), and right panel
with Figure 3 (ICT-RF example). In both cases MR-RF
avoids the relevant pitfall, finding the superior monotone
solution to t8 for XGM-RF example (mislabelling 0 points
rather than 1), and the lower loss two node solution for the
ICT-RF example (mislabelling 1 instead of 3 points).

However, because we now have a set of overlapping rules
we need to re-calculate the coefficients {αt,l}, with the con-
straint that the coefficient signs must match the rule direction
(line 11). Below we present two options to achieve this.

Constrained Logistic Regression (MR-RF-log) The ob-
vious solution is to calculate coefficients that minimise a loss
function on the training data. Binomial deviance is an appro-
priate loss function for binary classification, resulting in the
logistic regression problem with coefficient sign constraints:

{αt,l}Lt

l=0 =argmin
α

N∑
i=1

L
(
yi, F

∗
t (xi, zi)

)
+ λ ||α||22 (10)

αt,l ≤ 0, if at,l ≤ 0

αt,l > 0, if at,l > 0

where:

F ∗t (xi, zi)) = αt,0 +

Lt∑
l=1

αt,lf
∗
t,l(x, z) (11)

L(yi, F
∗
t (xi, zi)) = log(1 + exp(−2yiF ∗t (xi, zi)))

It is well known regularisation is needed to stabilise logistic
regression when the data is separable. We use L2 regulari-
sation but L1 would also work as long as regularisation is
minimal. This standard problem is solvable by interior point
or gradient descent. We use scipy’s fmin-tnc solver.

Naı̈ve Bayesian approximation (MR-RF-bay) The dis-
advantage of logistic regression is complexity. Here we de-
rive an approximation equivalent to Naı̈ve Bayesian (NB)
classification. By making the ‘naı̈ve’ assumption of condi-
tional independence between the features, with the log odds
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Algorithm 1 Monotone Rule Random Forest (MR-RF)
Input:

X = {(x1, z1)..(xN , zN )} . Training data, monotone
in x
Y = {y1..yN | yi ∈ {−1,+1}} . Training labels
F (x, z) = sign

(∑T
t=1

∑Lt

l=1 at,lft,l(x, z)
)

Output:
F ∗(x, z) = 1

T

∑T
t=1

(
αt,0 +

∑Lt

l=1 αt,lf
∗
t,l(x, z)

)
. Monotone Rule Ensemble

1: for each t = 1..T do
2: for each l = 1..Lt do
3: if at,l > 0 then
4: x∗t,l = (x1t,l, ..., x

i
t,l, ..., x

px
t,l)

. where xit,l = max
[
{− inf} ∪ {vi+t,l,k}

Rl

k=1

]
5: f∗t,l(x, z) = 1

[
x � x∗t,l ∧ St,l(z)

]
6: else
7: x∗t,l = (x1t,l, ..., x

i
t,l, ..., x

px
t,l)

. where xit,l = min
[
{+ inf} ∪ {vi−t,l,k}

Rl

k=1

]
8: f∗t,l(x, z) = 1

[
x � x∗t,l ∧ St,l(z)

]
9: end if

10: end for
11: {αt,l}Lt

l=0=
CalcCoefs(X,Y, {f∗t,l(x, z)}

Lt

l=1, {at,l}
Lt

l=1)
12: end for

13: return F ∗(x, z) = 1
T

T∑
t=1

(
αt,0 +

Lt∑
l=1

αt,lf
∗
t,l(x, z)

)

form for our rule ‘features’ f∗t,l(x, z) : X × Z → {0, 1}:
logit( Pr(y=+1 | x, z)) = logit(Pr(y=+1)) + (12)

Lt∑
l=1

f∗t,l(x, z) log

(
Pr(f∗t,l(x, z)=1 | y=+1)
Pr(f∗t,l(x, z)=1 | y=-1)

)
Comparing (12) with (11), the unconstrained estimates are:

α̂t,0 = logit(Pr(y=+1)) (13)

α̂t,l = log

(
Pr(f∗t,l(x, z)=1 | y=+1)
Pr(f∗t,l(x, z)=1 | y=-1)

)
(14)

Thus we have closed form solutions, and (13) and (14) can
be directly calculated by the plug-in estimates. The next step
is to ensure sign constraints are respected:

αt,0 = α̂t,0 (15)

αt,l =

{
max(α̂t,l, 0), if at,l > 0

min(α̂t,l, 0), if at,l ≤ 0
(16)

A final step can reduce bias further without compromising
monotonicity or significant computation. After αt,l are cal-
culated, the intercept is recalculated to minimise empirical
loss (we use the Newton method):

α∗t,0 =argmin
αt,0

N∑
i=1

L
(
yi, αt,0 +

Lt∑
l=1

αt,lf
∗
t,l(xi, zi)

)
(17)

Table 1: Dataset Summary

Figure 5: Training acc of globally MT trees (simulated data).

The NB assumption is false because the rules are condi-
tionally dependent, so the predicted probabilities unreliable
(pushed to 0 or 1). Nonetheless the surprisingly good perfor-
mance of NB is well known (Rish 2001) and worth consid-
ering given the computational advantage.

So far we have created a monotone binary Random For-
est. For multi-class ordinal applications we use Kotlowski
monotone ensembling as described above for PM-RF.

Simulation
To assess the monotonisation loss associated with the glob-
ally monotone trees, a simulated dataset was created:

f(x, z)=sign(a0 + a1x1 + a2x2 + a3x3)

where a1, a2, a3 ∈ [0.0, 1.0] were uniform random, a0
was chosen to give 50:50 class balance, training data
x1, x2, x3, z1, z2, z3 ∈ [−1.0, 1.0] were uniform random,
sample sizes between 32 and 2000 and 100 experiments.
Noise was introduced by reversing 5% of the class labels.
Trees were built to leaf purity with mtry of 2.

Figure 5 shows the resulting in-sample accuracy. The re-
sults are as expected: the standard tree (DT) has zero loss
(leaf purity), XGB causes the largest loss, ICT is better,
and the proposed MR induces the lowest loss (with logis-
tic slightly better than Bayes). Below we test whether this
translates into higher generalised accuracy in RF as hoped.
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Table 2: Classifier Performance Measures

Figure 6: Classifier Nonmonotonicity for local approaches.
MNC is proportion of test points with nonmonotone pre-
dictions, for least monotone feature (MNCmax).

Datasets and Experiments
Datasets. The 17 datasets in Table 1 were used, from UCI
(Lichman 2013) and KEEL (Alcala et al. 2010). Missing
value rows were removed.
Experiment Design. 100 experiments were performed,
with 2

3 of data randomly selected for training and the re-
mainder as test. Sub-sampling was stratified and the same
partitions were used for all classifiers. Monotone features
were identified from domain knowledge. 200 unpruned trees
were used in each ensemble. The optimal mtry was esti-
mated from minimum out-of-bag misclassification rate on a
parameter sweep of mtry ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 14}.
Measurement of Ordinal Classifier Accuracy. For ordi-
nal classification on imbalanced data, we want to account
for error distance (i.e. for class 4 a prediction of 1 is worse
than 3) and class imbalance (so as not to reward random
agreement). An ideal measure that accounts for both is lin-
ear weighted Cohen’s Kappa (Ben-David 2008). We also re-
port Mean Absolute Error (MAE) (which accounts for error
distance but not random agreement) and F-measure (which
accounts for class imbalance but not error distance).

Results and Discussion
Monotonicity Figure 6 shows that the local techniques

generally have non-zero monotonicity noncompliance. Gen-

Table 3: Adjusted P-values for Rank Differences (Hommel)

erally FSD-RF is best (median MNCmax = 0.9%), fol-
lowed by PM-RF (1.6%) and MID-RF (1.8%). The out-
lier for FSD-RF and MID-RF is the ERA dataset, where
MNCmax ≥ 15%! PM-RF is better withMNCmax=5.2%.
ERA is a highly non-monotone dataset. Thus local ap-
proaches can retain significant non-monotonicity.

Accuracy We first test our hypothesis that MR-RF can
achieve lower loss monotonisation and higher accuracy. Ex-
amining Table 2, both MR-RF variants achieve the best rank
and mean for all metrics. Statistically we follow Demsar
(2006) and use non-parametric rank tests. The Friedman
test for equal rank is rejected at α = 0.05 (Fcrit = 2.33)
with χ2

F of 32.4, 33.9, and 16.0 for MR-RF-log in Kappa,
F-measure and MAE, and 29.7, 23.4 and 13.4 for MR-RF-
bay. Proceeding with the Hommel test the adjusted p-values
are in Table 3. Both are significantly better than the two
globally monotone approaches (p � 0.05) except ICT-RF
in MAE (p = 0.169 for MR-RF-log and p = 0.714 for
MR-RF-bay). Compared to the local approaches MR-RF-
log achieved close to a significant difference for all (p near
0.10) except PM-RF in MAE (p = 0.169), while MR-RF-
bay is insignificantly different for all (p > 0.3). Thus MR-
RF-log is the stronger of the two, but MR-RF-bay neverthe-
less performs very well. Altogether we have strong support
for our thesis, albeit imperfect.

Table 2 also includes standard RF. It can be seen that MR-
RF-log improved mean Kappa, F-score and MAE by 0.025,
0.015, and 0.025 respectively, and MR-RF-bay by 0.029,
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Table 4: Classifier Solve Times. * MID-RF is pure python.
## XGM-RF estimated as (C-1)×FSD-RF.

0.017 and 0.025. These are notable improvements given the
impressive performance of standard RF.

Complexity Computation times are in Table 4. Apart
from XGM-RF and MID-RF, the techniques have compara-
ble implementations based on scikit-learn’s Decision-
TreeClassifier, with cython optimisations for array opera-
tions. XGM-RF and MID-RF were pure python and thus at
a significant disadvantage. For XGM-RF it was possible to
estimate comparable times by multiplying the FSD-RF time
by (C−1). For MID-RF no obvious correction was possible
and times should be regarded lightly.

To solve the constrained logistic regression for MR-
RF-log we use Newton Conjugate Gradient (scipy’s
fmin-tnc) although many gradient or Newton methods
can be used. Complexity can be difficult to estimate for
gradient methods but worst case is O(Ñ2.5) (Shewchuk et
al. 1994). This is solved C − 1 times per tree, resulting in
O(ntreeCÑ

2.5). MR-RF-bay isO(ntreeCpÑ
2), but in con-

trast is closed form, making it highly competitive.

Conclusions and Future Work
This paper compiled the state-of-the-art monotone tree en-
semble approaches from both the literature and popular li-
braries, critiqued their mechanisms, and proposed a lower
loss (bias) monotonisation method that works better with the
variance reducing mechanism of Random Forest.

The proposed MR-RF-log increased experimental accu-
racy with globally guaranteed monotonicity and reasonable
solution times. The approximate MR-RF-bay was slightly
weaker, but still dominated the existing approaches and did
so with a very fast closed form solution. The local meth-
ods had measureable nonmonotonicity, supporting the value
of global monotonicity. Compared to standard RF, improve-
ments in all metrics were seen, supporting the value of
monotone knowledge purely for the sake of accuracy.

Future work includes developing a bespoke MR-RF-log
solver, and automated monotone feature selection.
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