
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Online Learning from Data Streams with Varying Feature Spaces

Ege Beyazit
University of Louisiana at Lafayette

Lafayette, LA, USA
exb6143@louisiana.edu

Jeevithan Alagurajah
University of Louisiana at Lafayette

Lafayette, LA, USA
jxa4540@louisiana.edu

Xindong Wu
University of Louisiana at Lafayette

Lafayette, LA, USA
xwu@louisiana.edu

Abstract

We study the problem of online learning with varying fea-
ture spaces. The problem is challenging because, unlike tra-
ditional online learning problems, varying feature spaces can
introduce new features or stop having some features without
following a pattern. Other existing methods such as online
streaming feature selection (Wu et al. 2013), online learning
from trapezoidal data streams (Zhang et al. 2016), and learn-
ing with feature evolvable streams (Hou, Zhang, and Zhou
2017) are not capable to learn from arbitrarily varying fea-
ture spaces because they make assumptions about the fea-
ture space dynamics. In this paper, we propose a novel online
learning algorithm OLVF to learn from data with arbitrarily
varying feature spaces. The OLVF algorithm learns to clas-
sify the feature spaces and the instances from feature spaces
simultaneously. To classify an instance, the algorithm dynam-
ically projects the instance classifier and the training instance
onto their shared feature subspace. The feature space clas-
sifier predicts the projection confidences for a given feature
space. The instance classifier will be updated by following
the empirical risk minimization principle and the strength of
the constraints will be scaled by the projection confidences.
Afterwards, a feature sparsity method is applied to reduce the
model complexity. Experiments on 10 datasets with varying
feature spaces have been conducted to demonstrate the per-
formance of the proposed OLVF algorithm. Moreover, ex-
periments with trapezoidal data streams on the same datasets
have been conducted to show that OLVF performs better than
the state-of-the-art learning algorithm (Zhang et al. 2016).

Introduction
The goal of learning a classifier in an online setup, where
the training instances arrive one by one, has been studied
extensively and a wide variety of algorithms have been de-
veloped for online learning (Leite, Costa, and Gomide 2010;
Yu, Neely, and Wei 2017; Agarwal, Saradhi, and Karnick
2008). These algorithms have made it possible to learn in
applications where it is computationally not feasible to train
over the entire dataset. Additionally, online learning algo-
rithms have been used in applications where the data contin-
uously grow over time and new patterns need to be extracted
(Shalev-Shwartz and others 2012). However, online learn-
ing algorithms assume that the feature space they learn from

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

remains constant. On the other hand, in a wide range of ap-
plications, feature spaces dynamically change over time. For
example in a spam e-mail classification task, each e-mail can
have a different set of words and words that are being used
in spam e-mails can change over time. In social networks,
the features provided by each user can be different than each
other. In these scenarios, absence of a feature can also con-
vey information and should not be treated as missing data.
When the feature space in a data stream keeps changing, we
refer the feature space as a varying feature space.

To enable learning from data with varying feature spaces,
we propose the Online Learning from Varying Features
(OLVF) algorithm, which will also be referred to as ‘the al-
gorithm’ in this paper. To learn an instance classifier, the
OLVF algorithm projects the existing classifier and the cur-
rent instance onto their shared feature subspace, and makes
a prediction. Based on the prediction, a loss will be suffered
and the classifier will be updated according to an empirical
risk minimization principle with adaptive constraints. The
algorithm re-weights the constraints based on the confidence
of the classifier and the training instance’s projection given
the feature space. To learn a feature space classifier, the al-
gorithm follows a maximum likelihood principle, using the
current feature space information and the output of the in-
stance classifier. After each update, a sparsity step is applied
to decrease the classifier size. The contributions of this paper
can be listed as follows:

• The problem of real-time learning from data where the
feature space arbitrarily changes has been studied.

• A new learning algorithm, Online Learning from Varying
Features (OLVF), that is capable of learning from varying
feature spaces on a single pass is proposed.

• Performance of the OLVF algorithm is empirically vali-
dated on 10 datasets in two different scenarios: data with
varying feature spaces and trapezoidal data streams.

Related Work
Because of the dynamic nature of its feature space and the
streaming instances, learning from data with varying feature
spaces can be related to online learning, online learning from
trapezoidal data streams and learning with feature evolvable
streams.

3232

Online Learning
The online learning is performed in consecutive rounds and
at each round, the learner is given a training example which
can be seen as a question with its answer hidden. The
learner makes a prediction on this question and the answer
is revealed. Based on the difference between the learner’s
prediction and the actual answer, a loss is suffered. The
aim of the learner is to minimize the total loss through all
rounds. Many different algorithms have been developed for
learning in online setting (Tsang, Kocsor, and Kwok 2007;
Roughgarden and Schrijvers 2017; Domingos and Hulten
2000; Kuzborskij and Cesa-Bianchi 2017). These algorithms
can be broadly grouped into two categories: first-order and
second-order methods. First-order algorithms use first-order
derivative information for updates (Rosenblatt 1958; Ying
and Pontil 2008). Many first order algorithms (Crammer
et al. 2006; Gentile 2001; Kivinen, Smola, and Williamson
2004) use the maximum margin principle to find a discrim-
inant function that maximizes the separation between dif-
ferent classes. By taking the curvature of the space into ac-
count, second-order methods improve the convergence and
are able to minimize a quadratic function in a finite num-
ber of steps (Cesa-Bianchi, Conconi, and Gentile 2005;
Crammer, Dredze, and Pereira 2009; Crammer, Kulesza,
and Dredze 2009; Wang, Zhao, and Hoi 2016; Orabona and
Crammer 2010). Second-order methods are more noise sen-
sitive and more expensive than first-order methods, because
they require the calculation of the second derivatives. Tra-
ditional online learning methods can not learn from varying
feature spaces since they assume the feature space they learn
from remains the same.

Online Learning from Trapezoidal Data Streams
Online learning from trapezoidal data streams (Zhang et al.
2015; 2016) is closely related to data streams with varying
feature spaces. Trapezoidal data streams are streams with
a doubly growing nature: the number of instances and the
number of features provided by instances can grow simulta-
neously. In trapezoidal streams, the current training instance
either has the same features as previous instances or ad-
ditional new features. In other words the feature space at
each iteration contains the feature spaces from previous iter-
ations. The proposed algorithms OLSF − I and OLSF − II
learn a linear classifier from trapezoidal data streams by fol-
lowing the passive-aggressive update rule. At each iteration,
they receive a training instance and try to make a predic-
tion. If the prediction is correct, they do not do any classi-
fier update, else they update their classifier with the weights
that minimize the error and are close to the previous clas-
sifier weights. While doing this, they also learn additional
weights for the new features, if any introduced by the cur-
rent training instance. Moreover, sparsity is introduced by
applying projection and truncation to the classifier at each
round, to decrease the model complexity and improve gen-
eralization. However OLSF and its variants can not handle
data with varying feature spaces, where the feature space can
also shrink and the instances can have completely different
sets of features from each other.

Learning with Feature Evolvable Streams
Learning with feature evolvable streams (Hou, Zhang, and
Zhou 2017) tackle the problems of classification and regres-
sion for data streams where features vanish and new features
occur. However, they assume that the feature space evolves
in a strictly sequential manner: after the new features arrive,
there exists a time period that both the new and old features
are available, before some of the old features vanish. Based
on this assumption, they use the overlapping time period to
learn a projection matrix from old features to the new ones
by minimizing a least squares loss. Then to learn a predictor,
they propose two methods: weighted combination and dy-
namic selection. Weighted combination follows an ensemble
strategy by combining the outputs of a set of predictors with
weights based on exponential of the cumulative loss. On the
other hand, dynamic selection selects the output of the pre-
dictor of larger weight with higher probability. Even though
learning with feature evolvable streams focuses on feature
spaces that can dynamically grow and shrink, the assump-
tion of sequential evolution is too strong and application
specific. If there is no overlap period of or linear relation-
ship between the old and new features, the projection does
not carry any useful information. Consequently, the algo-
rithm reduces to an ensemble based online learning method
with a runtime overhead. Moreover, it is not always compu-
tationally feasible to learn a projection matrix and multiple
predictors if the data stream is high dimensional.

Learning from data with varying feature spaces is more
challenging than the problems stated above since the classi-
fier needs to adapt itself to a dynamically changing feature
space without any assumptions on the dynamics of the fea-
ture space or interactions of features. The algorithm needs
to continuously learn from data while extracting knowledge
when arbitrary features stop being generated as well as new
features arrive, in one pass. The existing learning methods
are not able to solve learning from varying feature spaces
since none of them handle such dynamic and unconstrained
feature spaces while learning a classifier.

Preliminaries
In this section, we first present two preliminary concepts
that we make use of to design our algorithm: online learn-
ing of linear classifiers, and soft-margin classification. Then,
we discuss the problem setting for learning binary classifiers
from varying feature spaces.

Online Learning of Linear Classifiers
We consider binary classification using linear classifiers. At
each round t, the algorithm receives an instance xt ∈ Rd

and tries to predict the true label yt ∈ {−1,+1} of the
instance by using its classifier wt ∈ Rd. Prediction is
done by using the function ŷt = sign(xt · wt). After pre-
diction, the true label of the instance is revealed. Based
on the difference between prediction ŷt and true label yt,
a loss l(yt, ŷt) is suffered. One of the widely used loss
functions is the Hinge loss (Gentile and Warmuth 1999;
Wu and Liu 2007; Bartlett and Wegkamp 2008) defined as
l(yt, ŷt) = max{0, 1−y(xt ·wt)}. It is based on the margin

3233

between the example xt and the classifier wt. The margin
is calculated by y(xt · wt). Because online learning is an
incremental task, it is important to minimize the loss while
keeping the change to the current model minimum, in order
to preserve the knowledge from previous instances. More-
over when the data is noisy, forcing the classifier to correctly
predict for every instance leads to overfitting and poor gen-
eralization. Therefore, it is more preferable to learn a clas-
sifier which is able to separate the bulk of the data while
ignoring the noise. To accomplish this, a soft decision mar-
gin (Shawe-Taylor and Cristianini 2002) is used to let the
classifier make a few mistakes. Many online learning algo-
rithms combine the constraints stated above and formulate
the learning of the weights as an optimization problem:

wt+1 = argmin
w:

l(yt,ŷt)≤ξ

1

2
‖w − wt‖2 + Cξ. (1)

By introducing a slack variable, Equation (1) adds nonlin-
earity to the discriminator to allow a certain amount of error
to be made. This error is bounded by ξ. The parameter C
adjusts the slackness of the constraint. Since real life data
is noisy, we use the soft-margin approach to model learning
from varying feature spaces.

The Problem Setting and Notation
A feature space that keeps changing on different instances
in a data stream is referred to as a varying feature space.
We consider the problem of learning a classifier from data
with varying feature spaces, by doing single pass over each
instance. Let input to the learning algorithm consist of a se-
quence of examples (xt, yt) where t = 1, ..., T . Each in-
stance xt ∈ Rxt is a vector that contains an arbitrary set
of features and yt ∈ {−1,+1} is a binary class label for
all t. Let wt be the weight vector for the instance classi-
fier at round t and ŷt = sign(xt · wt) be the prediction
of the instance classifier for the instance xt. Let w̄t be the
weight vector for the feature space classifier at round t and
pt = σ(Rxt · w̄t) is the prediction of the feature space clas-
sifier for the feature space Rxt .

In data with varying feature spaces, the feature space can
dynamically change; new features can be introduced or some
of the existing features can cease to exist. At each round
t, when an instance arrives, we divide the explored feature
space into three groups: existing, shared and new features.
The existing features are only contained by the current clas-
sifiers, the new features are only contained by the current
instance, and the shared features are the intersection of cur-
rent classifiers’ and the current instance’s feature spaces. To
make a prediction, the learning algorithm projects its cur-
rent classifiers and the current training instance onto their
shared feature space. We denote the projection of a classi-
fier at round t onto the existing feature space as wt

e, shared
feature space as wt

s and the new feature space as wt
n. This

notation also applies for the projections of other vectors such
as training instances (xte, xts, xtn), and feature space clas-
sifiers (w̄e

t , w̄s
t , w̄n

t).
We define a feature space R as a binary bag of features

vector, where each feature in the shared and new feature

spaces is represented by a one and, each feature in the ex-
isting feature space represented by a zero.

Online Learning from Varying Feature Spaces
In this section, we explain the building blocks of the OLVF
algorithm and discuss the motivation behind their design.
Then, we derive the soft-margin classifier update rules for
the instance and feature space classifiers in a binary classi-
fication setting. Note that the algorithm can easily be gen-
eralized to a multiclass setting by converting the problem
to multiple binary classification problems (Bolon-Canedo,
Sanchez-Marono, and Alonso-Betanzos 2011), using the
One vs Rest or One vs One (Sáez et al. 2014; Xu 2011)
strategies. Finally, we combine the building blocks to form
the main steps and discuss the running time complexity of
the OLVF algorithm.

Learning to Predict Projection Confidences
In traditional online learning problems the feature space re-
mains constant. When a classifier makes a poor prediction, it
needs to be updated aggressively. However in data with vary-
ing feature spaces, our instance classifier can make poor pre-
dictions because of the unfair conditions caused by varying
feature spaces: the instance classifier often needs to predict
the labels for instances that belong to feature spaces differ-
ent than its own. For example, when our learner receives an
instance that does not have some of the features included by
the current instance classifier, the learner will not able to use
its full potential, since the instance classifier will only be
using the features in the shared feature space. Similarly, if
the learner receives an instance with new features, the in-
stance loses the information provided by the new feature
space. Hence, if the instance classifier makes a bad predic-
tion, the reason can also be the high difference between the
feature spaces of itself and the current instance.

We measure the loss of information after projecting a vec-
tor onto a feature space with projection confidence: proba-
bility that the instance classifier makes a correct prediction
given the vectors projected feature space. We learn to esti-
mate projection confidences by training a feature space clas-
sifier w̄t. Let I(y, ŷ) be an indicator function defined as:

I(y, ŷ) =

{
1, if y = ŷ

0, otherwise
(2)

We model the probability that the instance classifier wt

makes a correct prediction, y = ŷ, given the feature space
Rxt parameterized by the feature space classifier w̄t with the
likelihood function

P (I(yt, ŷt)|Rxt ; w̄t) =

σ(Rxet · w̄e
t + Rxst · w̄s

t + Rxnt · w̄n
t)I(yt,ŷt)+

σ(Rxet · w̄e
t + Rxst · w̄s

t + Rxnt · w̄n
t)1−I(yt,ŷt). (3)

After taking the negative logarithm of the likelihood func-
tion above, we rearrange and define our loss function to train
the feature space classifier w̄t as:

l̄t(Rxt , I(yt, ŷt), w̄t) =

log(1 + e−I(yt,ŷt)w̄
s
tR
xst
e−I(yt,ŷt)w̄

n
t R

xnt
) (4)

3234

Since we learn the feature space classifier in an online set-
ting, merely minimizing the loss function can lead to a poor
performance. As the learner receives new instances and up-
dates the feature space classifier, it is important to preserve
the knowledge of previously seen feature spaces. Moreover
when a set of new features arrive and need to be added to the
current feature space classifier, there can be infinitely many
solutions because of the lack of information about those new
features. To avoid overfitting, we need to learn the smallest
weights possible that minimize the loss. Also, because real-
life data is noisy, we want our algorithm to follow a soft-
margin strategy to avoid poor generalization. As a result, we
formulate the problem of learning the feature space classifier
as constrained optimization, using the loss function defined
in Equation (4):

w̄t+1 = argmin
w̄=[w̄e,w̄s,w̄n]:

l̄t≤ξ,ξ≥0

1

2
‖w̄e − w̄e

t ‖
2

+

1

2
‖w̄s − w̄s

t ‖
2

+
1

2
‖w̄n‖2 + C̄ξ, (5)

Note that we use the slack variable C̄ to bound the loss l̄t. We
solve the optimization problem with the inequalities l̄t ≤ ξ
and ξ ≥ 0 defined in Equation (5) by using a Lagrangian
function with K.K.T. conditions (Luo and Yu 2006):

L(w̄, τ, α, ξ) =
1

2
‖w̄e − w̄e

t ‖
2

+
1

2
‖w̄s − w̄s

t ‖
2

+

1

2
‖w̄n‖2 + C̄ξ + τ(l̄t − ξ)− αξ, (6)

where τ and α are Lagrange multipliers. Setting the deriva-
tives of L(w̄, τ, α, ξ) with respect to w̄e, w̄s, w̄n and ξ, we
obtain the following conditions:

w̄e = w̄e
t

w̄s = w̄s
t + τ

∂l̄t(Rxt , I(yt, ŷt), w̄t)

∂w̄s

wn = −τ ∂l̄t(R
xt , I(yt, ŷt), w̄t)

∂w̄n

α = C − τ,

where

∂l̄t(Rxt , I(yt, ŷt), w̄t)

∂w̄s
=

− log(e−I(yt,ŷt)(w̄
s
tR
xst+w̄nt R

xnt))

log(1 + e−I(yt,ŷt)(w̄stR
xst+w̄nt R

xnt))
I(yt, ŷt)Rxst , (7)

and

∂l̄t(Rxt , I(yt, ŷt), w̄t)

∂w̄n
=

− log(e−I(yt,ŷt)(w̄
s
tR
xst+w̄nt R

xnt))

log(1 + e−I(yt,ŷt)(w̄stR
xst+w̄nt R

xnt))
I(yt, ŷt)Rxnt (8)

Using the conditions and partial derivatives defined above,
we obtain the following representation of our problem and

find τ :

L(τ) =
1

2
τ2

∥∥∥∥ ∂l̄t∂w̄s

∥∥∥∥2

+
1

2
τ2

∥∥∥∥ ∂l̄t
∂w̄n

∥∥∥∥2

+

τ l̄t(Rxt , I(yt, ŷt), w̄t) (9)

τ = min{C, −l̄t(R
xt , I(yt, ŷt), w̄t)∥∥∥ ∂l̄t

∂w̄s

∥∥∥2

+
∥∥∥ ∂l̄t
∂w̄n

∥∥∥2 }. (10)

To make a prediction given an instance xt, the learner
makes projections of both the instance classifier and the in-
stance onto the current shared feature space. We use the
feature space classifier w̄t to estimate the projection con-
fidences and adaptively re-weight the different parts of the
objective function corresponding to the different pieces of
the instance classifier weights wt = [we

t , w
s
t , w

n
t]. This re-

weighting strategy helps to adjust the priorities of each con-
straint in the objective function, scales the regularization
weights for each instance xt, and improves the learning con-
vergence.

Learning to Classify Instances from Varying
Feature Spaces
In order to adapt the instance classifier to the dynamic na-
ture of the varying feature spaces, we modify the Hinge loss
by using the projections of the instance classifier and the in-
stance:

lt = max{0, 1− y(xt
s · ws)− y(xt

n · wn)}. (11)

Motivated by the same reasons discussed for the objective
function defined in Equation (5), we formulate the problem
of learning the instance classifier from varying features as

wt+1 = argmin
w=[we,ws,wn]:

lt≤ξ,ξ≥0

1

2
‖we − wt

e‖2 +

1

2
pwt ‖ws − wt

s‖2 +
1

2
pxt ‖wn‖2 + Cξ, (12)

where pwt = σ(Rwt · w̄t) is the projection confidence of the
instance classifier wt and pxt = σ(Rxt · w̄t) is the projec-
tion confidence of the instance xt. Note that the objectives
for ws and wn are weighted using these projection con-
fidences. When the projection confidence of the classifier
onto the shared subspace pwt is close to 1, then the shared
feature space is not very different than the feature space of
the current classifier. Therefore, the objective of minimizing
‖ws − wt

s‖2 is important in order to remember the informa-
tion received from previous instances. Moreover if the pro-
jection confidence of the training instance onto the shared
subspace pxt is close to 1, the objective of minimizing ‖wn‖2
is easier and can be emphasized more to avoid overfitting.
On the other hand low projection confidences imply a sud-
den change in the feature space. In this case, the objective
function must focus on minimizing the loss more than try-
ing to keep the classifier weights small or close to the pre-
vious weights. We solve the optimization problem with in-
equalities defined above by using another Lagrangian func-
tion with K.K.T. conditions and obtain the following update

3235

rules:

we = wt
e

ws = wt
s + τpwt ytxt

s

wn = τpxt ytxt
n

α = C − τ.

Using these conditions, we obtain the following representa-
tion of our problem and find τ :

L(τ) =
1

2
τ2(pwt)

2 ‖xts‖2 +
1

2
τ2(pxt)2 ‖xtn‖2 +

τ(1− yt(wt
s · xts)), (13)

τ = min{C, −lt
‖xt‖2

}. (14)

After rearranging, we can define the update strategy as:

wt+1 = [we
t+1, w

s
t+1, w

n
t+1] =

[we, wt
s +min{Cpwt ytxts,

pwt ltytxt
s

‖xt‖2
},

min{Cpxt ytxtn,
pxt ltytxt

n

‖xt‖2
}]. (15)

Model Sparsity

Because the feature space can dynamically change, the num-
ber of features kept in the classifiers are not bounded. In
its current design, the learner keeps remembering even if
the features stop being generated. This can act as a bias on
feature space and instance classifier weights when the fea-
tures are reintroduced. Moreover, when vanishing features
re-emerge, there is a possibility that their meanings are dif-
ferent. As a result, this bias can lead to a poor performance.
Furthermore, because there is no feature selection mecha-
nism in the learner, the learner keeps using even the least
important features. Therefore, to improve the memory us-
age and running time efficiency, we do not want to keep the
classifier weights for every feature received by the learner.
Simply truncating the smallest weights from the instance
classifier leads to poor performance because it introduces a
sudden change to the result of the dot product. On the other
hand, the feature space classifier can tolerate this change be-
cause of the saturating sigmoid function. Therefore to spar-
sify the instance classifier, we introduce the following pro-
jection step before truncation:

wt := min{1, λ

wt · w̄t
}wt, (16)

where λ is a regularization parameter. With a ratio of B, we
truncate the smallest elements from the classifiers. Since w̄t

carries the information of which features contribute to the
classification task, we use it to scale the weights of the in-
stance classifier. This strategy helps to identify and truncate
the features that are either redundant or vanishing.

Algorithm 1: The OLVF Algorithm

Input : C, C̄ > 0: Loss bounding parameters
λ > 0: Regularization parameter
B ∈ (0, 1]: Proportion of selected features

Initialize: w1 = (0, ..., 0) ∈ Rx1

Initialize: w̄1 = (0, ..., 0) ∈ Rx1

1 for t = 1,2,... T do
2 Receive the current instance xt ∈ Rxt

3 Identify the shared feature space Rs = Rwt∩xt

4 Project wt, xt onto Rs: wt
s, xt

s

5 Predict the class label: ŷt = sign(wt
s · xts)

6 Receive the correct label: yt ∈ {+1,−1}
7 Update feature space classifier with yt, ŷt,Rxt ;

using Equation (7).
8 Predict the projection confidences:
9 pwt = σ(Rwt · w̄t)

10 pxt = σ(Rxt · w̄t)
11 Update the instance classifier with xt, yt, pwt , p

x
t ;

using Equation (15).
12 Project wt+1 using Equation (16) and λ.
13 Truncate wt+1 and w̄t+1 using B.
14 end

Time Complexity of OLVF
The pseudocode of our online learning from varying features
(OLVF) algorithm is shown in Algorithm 1. The time com-
plexity of the OLVF algorithm is as follows. Assuming at
round t, |wt| = |w̄t| is the number of features in the cur-
rent classifiers, |xt| is the number of features arrived with
the training instance, and |Rs| is the number of features in
the shared feature space. Since the operations are being done
for both the weight vectors and the current training instance,
the time complexity for identifying the shared feature space
and projecting the weight vectors with the training instance
onto their shared feature space is O(|wt| + |xt|). The time
complexity for making a prediction, calculating the projec-
tion confidences and suffering losses is O(|Rs|), because all
of these steps use the shared feature space. Finally, the time
complexity for the sparsity step is O(|wt|), since the size of
the instance classifier is always equal to the size of the fea-
ture space classifier. For a single round, the worst case time
complexity of the OLVF algorithm is O(|wt|+ |xt|+ |Rs|).
Because |Rs| is always less than |wt|+ |xt|, we can further
simplify the complexity as O(|wt| + |xt|). Considering the
fact that at any round t the feature sets of wt and xt can be
completely disjoint, we do not apply further simplification
for the time complexity. In other words, the running time of
the algorithm linearly scales with the number of features that
are being used at each round t.

Experiments
In this section we empirically evaluate the performance of
the OLVF algorithm in three different scenarios: data with
simulated varying feature spaces, simulated trapezoidal data
streams (Zhang et al. 2016) and real-life varying feature
spaces. In each scenario, the instances are provided to the

3236

Table 1: Numbers of samples and features of 10 datasets.
Dataset # Samples # Features

wpbc 198 34
ionosphere 351 35

wdbc 569 31
wbc 699 10

german 1,000 24
svmguide3 1,234 21
spambase 4,601 57
magic04 19,020 10

imdb 25,000 7500
a8a 32,561 123

classifier incrementally and only a single pass is allowed.
Similarly, the classifier does not have any initial knowledge
about the full feature space. We use 9 different UCI datasets
to simulate these scenarios. Additionally, we demonstrate
the effectiveness of the proposed sparse strategy. Finally
we evaluate the performance of OLVF using the real-world
dataset IMDB movie reviews (Maas et al. 2011). The num-
bers of instances and features for each dataset are listed in
Table 1. In all experiments, we measure the performance in
terms of the average prediction accuracy on 20 random per-
mutations of each dataset. The parameters C and C̄ are cho-
sen using grid search.

Experiments on Varying Feature Spaces
We simulate data with varying feature spaces by randomly
removing features from every training instance. We denote
the ratio of features removed from each training instance
as removing ratio (Rem.). At each round, we apply a ran-
dom permutation to the complete dataset and randomly re-
move the features. We conduct two different types of ex-
periments for varying features. The first set of experiments
measure the performance of the proposed algorithm in vary-
ing feature spaces using removing ratios of 0.25, 0.5 and
0.75. The second set of experiments show the trade-off be-
tween the accuracy and the sparsity of the classifier, in data
with varying feature spaces using 0.25 as the removing ra-
tio. 1) Experiments using different removing ratios: We test
the performance of the proposed algorithm using 3 differ-
ent removing ratios: 0.25, 0.5 and 0.75. If the removing ra-
tio for a varying feature space is 0.25, then 1/4 of the fea-
tures are randomly removed from each training instance, and
so on. Table 2 shows the average number of wrong predic-
tions made by OLVF with different removing ratios on 9
UCI datasets. For all datasets, OLVF achieves higher accu-
racy on the experiments with smaller removing ratio. This is
expected since a small removing ratio means a high number
of features sent to the classifier. 2) Experiments on sparse
and non-sparse OLVF: We observe the trade-off between us-
ing sparse classifiers to decrease the time and space usage,
and using the full feature space to increase the accuracy. To
demonstrate the effect of the sparsity step, we set the remov-
ing ratio to 0.25 while simulating the varying feature spaces.
Table 3 shows the average number of errors made by OLVF
and sparse OLVF. Table 4 shows the number of features

Table 2: Average number of errors made by OLV F on 9
UCI datasets in simulated varying feature spaces.

Rem. german ionosphere spambase
0.25 333.4± 9.7 77.2± 7.1 659.8± 14.5
0.5 350.9± 7.8 79.5± 7.4 864± 20.6
0.75 365.15± 3.6 79.7± 5.9 1375.8± 21.5
Rem. magic04 svmguide3 wbc
0.25 6152.4± 54.7 346.4± 11.6 25.3± 1.4
0.5 6775± 27.4 367.2± 11.9 60.6± 5.3
0.75 7136.4± 2.7 371.2± 11.7 123.1± 3.6
Rem. wpbc wdbc a8a
0.25 88.5± 5.8 40.8± 3.5 8993.8± 40.3
0.5 90.2± 5.1 55.2± 5.4 9585.8± 53.8
0.75 107.7± 7.7 202.85± 7.5 12453± 74.4

Table 3: Average number of errors made by non-sparse
OLV F and sparse OLV F on 9 UCI datasets in simulated
varying feature spaces.

Alg german ionosphere spambase
ns. 333.4± 9.7 77.2± 7.1 659.8± 14.5
s. 358± 9.2 79± 15.9 825.1± 42.7

Alg magic04 svmguide3 wbc
ns. 6154± 47.1 367.4± 11.6 25± 1.4
s. 6621.6± 46.6 361.4± 20.7 32.3± 2.6

Alg wpbc wdbc a8a
ns. 90.2± 5.1 39.6± 5.2 8933.2± 28.5
s. 97.4± 4.6 131± 7.9 8588.6± 575.3

used by the non-sparse and sparse versions of the OLVF
algorithm, along with their parameter settings. We can see
that with datasets german, ionosphere, spambase, magic04,
svmguide3, wbc and a8a sparse and non-sparse versions of
the proposed algorithm perform similarly, while the sparse
version of the algorithm uses a smaller subset of the pro-
vided feature space. With the wpbc dataset, the sparse ver-
sion of the algorithm demonstrates a more consistent perfor-
mance because the sparse strategy helps to reduce the noise
and avoid overfitting. In the wdbc dataset, the sparse version
of the proposed algorithm performs similarly to the non-
sparse version. However, it follows a lower accuracy trend
by ∼ 10% because wdbc has a relatively less number of in-
stances and less redundant features after randomly removing
1/4 of the features to simulate varying feature spaces.

Table 4: Parameters used by the sparse OLVF algorithm.
Dataset B C C

wbc 0.6 1 0.01
svmguide3 0.4 0.1 0.001

wpbc 0.7 0.0001 0.01
ionosphere 0.1 0.01 0.1
magic04 0.6 0.1 0.0001
german 0.5 0.01 0.001

spambase 0.3 0.01 0.001
wdbc 0.9 1 0.1
a8a 0.05 0.001 0.00001

3237

Table 5: Average number of errors made by OLSF and
OLV F on 9 UCI datasets in simulated trapezoidal data
streams, and on the IMDB dataset.

Algorithm german ionosphere
OLSF 385.5± 10.2 57.9± 4.7
OLV F 329.2± 9.8 51.8± 3.1

Algorithm magic04 svmguide3
OLSF 6147.4± 65.3 361.7± 29.7
OLV F 5784.0± 52.7 351.6± 25.9

Algorithm wpbc wdbc
OLSF 87.9± 5.6 52.9± 4.5
OLV F 78.2± 5.5 45.4± 2.9

Algorithm spambase wbc
OLSF 993.5± 25 48.1± 12.6
OLV F 825.8± 20.2 31.1± 2.8

Algorithm a8a imdb
OLSF 9420.4± 549.9 7851.0± 51.4
OLV F 8649.8± 526.7 4474.2± 39.1

Experiments on Trapezoidal Data Streams
We compare the prediction accuracy of OLVF with OLSF

algorithms (Zhang et al. 2016) on trapezoidal data streams.
For each dataset, we use the version of OLSF that performs
the best to compare with our algorithm. For the sparsity step,
we use the same λ and B parameters as in (Zhang et al.
2016). We used grid search to find the best C and C̄ for
each dataset. To simulate trapezoidal data streams, we split
each dataset into 10 chunks where the number of features
included by each chunk increases as the data flows in. For
example, instances in the first chunk have the first 10 per-
cent of features, instances in the second chunk have the first
20 percent of features and so on. Table 5 shows the average
numbers of errors with variances of the OLVF and theOLSF

algorithms in trapezoidal streams. Note that because the ex-
isting and shared feature spaces in trapezoidal data streams
never change, the only component that is effective while re-
weighting the objective function is the projection confidence
of the current training instance. From these experiments, we
observe that our OLVF achieves higher prediction accuracy
while learning classifiers with the same sparsity as OLSF,
because of its feature space adaptive constraint re-weighting
strategy. In Table 5 we observe that in addition to lower num-
bers of errors in 9 UCI datasets, the standard deviation of
the errors made by OLVF in 20 rounds is also lower than the
OLSF algorithms. This shows that OLVF has consistently
better performance than the OLSF algorithms on the 9 UCI
datasets.

Application to Real-World Varying Feature Spaces
In IMDB Movie Reviews dataset, the task is to classify each
movie review, provided in raw text, into positive or negative
sentiment. Each new movie review can include words that
the learner have never seen, or exclude the words exist in the
learners feature space. Hence, we can formulate the prob-
lem as learning from varying feature spaces and use OLVF.
The problem can also be seen as learning from trapezoidal
data streams by assuming non-existing features are missing

Figure 1: Mean error rates of OLV F and OLSF algorithms
as the data streams in (left), and projection confidences esti-
mated by the feature space classifier (right).

data. We evaluate these two approaches by comparing the
prediction accuracies of OLVF and OLSF algorithms. For
both algorithms, we set B’s to 0.1 and find their best setting
for the C and C̄ parameters by using grid search. We set the
C to 0.1, and C̄ to 10−5.

Table 5 shows that average number of wrong predictions
made by OLVF is lower than OLSF . Moreover, Figure 1
(left) shows that OLVF has a faster learning trend and higher
accuracy than OLSF because of its feature space adaptive
constraint weighting strategy. Figure 1 (left) also shows that
the loss suffered by the feature space classifier of OLVF de-
creases as the data streams in. This indicates that the model
learns how to classify feature spaces as it receives more in-
stances. Figure 1 (right) shows the change of projection con-
fidence predictions made by the feature space classifier. Note
that the projection confidences randomly fluctuate because
each instance comes from an arbitrary feature space. Addi-
tional to the fluctuations, the projection confidence of the
instance classifier has an increasing trend. This is because
the instance classifier learns new features and new informa-
tion relevant to its existing features, therefore becomes more
confident against unknown features as the data streams in.

Conclusion
In this paper we explored a new problem of online learn-
ing from data with varying feature spaces, where the feature
space of each training instance can be arbitrarily different
from other instances. We defined the concept of projection
confidence for learning from varying feature spaces and de-
rived an update rule for a projection confidence estimator.
Then, we presented a new algorithm OLVF that learns fea-
ture space level and instance level classifiers from data with
varying features by adaptively reweighting the constraints of
the objective function with projection confidences. We eval-
uated the proposed OLVF algorithms on 9 UCI datasets and
a real life dataset. Additionally, we compared the sparse and
non-sparse versions of OLVF algorithm. Finally, we showed
that our algorithm outperforms the state-of-the-artOLSF al-
gorithms.

3238

Acknowledgments
This research is supported by the US National Science Foun-
dation (NSF) under grants 1652107 and 1763620.

References
Agarwal, S.; Saradhi, V. V.; and Karnick, H. 2008. Kernel-
based online machine learning and support vector reduction.
Neurocomputing 71(7-9):1230–1237.
Bartlett, P. L., and Wegkamp, M. H. 2008. Classification
with a reject option using a hinge loss. Journal of Machine
Learning Research 9(Aug):1823–1840.
Bolon-Canedo, V.; Sanchez-Marono, N.; and Alonso-
Betanzos, A. 2011. Feature selection and classification in
multiple class datasets: An application to kdd cup 99 dataset.
Expert Systems with Applications 38(5):5947–5957.
Cesa-Bianchi, N.; Conconi, A.; and Gentile, C. 2005. A
second-order perceptron algorithm. SIAM Journal on Com-
puting 34(3):640–668.
Crammer, K.; Dekel, O.; Keshet, J.; Shalev-Shwartz, S.; and
Singer, Y. 2006. Online passive-aggressive algorithms.
Journal of Machine Learning Research 7(Mar):551–585.
Crammer, K.; Dredze, M.; and Pereira, F. 2009. Exact con-
vex confidence-weighted learning. In Advances in Neural
Information Processing Systems, 345–352.
Crammer, K.; Kulesza, A.; and Dredze, M. 2009. Adap-
tive regularization of weight vectors. In Advances in Neural
Information Processing Systems, 414–422.
Domingos, P., and Hulten, G. 2000. Mining high-speed
data streams. In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge Discovery and Data
Mining, 71–80. ACM.
Gentile, C., and Warmuth, M. K. 1999. Linear hinge loss
and average margin. In Advances in Neural Information Pro-
cessing Systems, 225–231.
Gentile, C. 2001. A new approximate maximal margin clas-
sification algorithm. Journal of Machine Learning Research
2(Dec):213–242.
Hou, B.-J.; Zhang, L.; and Zhou, Z.-H. 2017. Learning with
feature evolvable streams. In Advances in Neural Informa-
tion Processing Systems, 1417–1427.
Kivinen, J.; Smola, A. J.; and Williamson, R. C. 2004. On-
line learning with kernels. IEEE Transactions on Signal Pro-
cessing 52(8):2165–2176.
Kuzborskij, I., and Cesa-Bianchi, N. 2017. Nonparametric
online regression while learning the metric. In Advances in
Neural Information Processing Systems, 667–676.
Leite, D.; Costa, P.; and Gomide, F. 2010. Evolving granular
neural network for semi-supervised data stream classifica-
tion. In Neural Networks (IJCNN), The 2010 International
Joint Conference on, 1–8. IEEE.
Luo, Z.-Q., and Yu, W. 2006. An introduction to convex op-
timization for communications and signal processing. IEEE
Journal on Selected Areas in Communications 24(8):1426–
1438.

Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng, A. Y.;
and Potts, C. 2011. Learning word vectors for sentiment
analysis. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Lan-
guage Technologies, 142–150. Portland, Oregon, USA: As-
sociation for Computational Linguistics.
Orabona, F., and Crammer, K. 2010. New adaptive algo-
rithms for online classification. In Advances in Neural In-
formation Processing Systems, 1840–1848.
Rosenblatt, F. 1958. The perceptron: A probabilistic model
for information storage and organization in the brain. Psy-
chological Review 65(6):386.
Roughgarden, T., and Schrijvers, O. 2017. Online predic-
tion with selfish experts. In Advances in Neural Information
Processing Systems, 1300–1310.
Sáez, J. A.; Galar, M.; Luengo, J.; and Herrera, F. 2014.
Analyzing the presence of noise in multi-class problems: al-
leviating its influence with the one-vs-one decomposition.
Knowledge and Information Systems 38(1):179–206.
Shalev-Shwartz, S., et al. 2012. Online learning and online
convex optimization. Foundations and Trends in Machine
Learning 4(2):107–194.
Shawe-Taylor, J., and Cristianini, N. 2002. On the gener-
alization of soft margin algorithms. IEEE Transactions on
Information Theory 48(10):2721–2735.
Tsang, I. W.; Kocsor, A.; and Kwok, J. T. 2007. Simpler
core vector machines with enclosing balls. In Proceedings
of the 24th International Conference on Machine Learning,
911–918. ACM.
Wang, J.; Zhao, P.; and Hoi, S. C. 2016. Soft confidence-
weighted learning. ACM Transactions on Intelligent Systems
and Technology (TIST) 8(1):15.
Wu, Y., and Liu, Y. 2007. Robust truncated hinge loss sup-
port vector machines. Journal of the American Statistical
Association 102(479):974–983.
Wu, X.; Yu, K.; Ding, W.; Wang, H.; and Zhu, X. 2013.
Online feature selection with streaming features. IEEE
Transactions on Pattern Analysis and Machine Intelligence
35(5):1178–1192.
Xu, J. 2011. An extended one-versus-rest support vec-
tor machine for multi-label classification. Neurocomputing
74(17):3114–3124.
Ying, Y., and Pontil, M. 2008. Online gradient descent learn-
ing algorithms. Foundations of Computational Mathematics
8(5):561–596.
Yu, H.; Neely, M.; and Wei, X. 2017. Online convex opti-
mization with stochastic constraints. In Advances in Neural
Information Processing Systems, 1428–1438.
Zhang, Q.; Zhang, P.; Long, G.; Ding, W.; Zhang, C.; and
Wu, X. 2015. Towards mining trapezoidal data streams. In
Data Mining (ICDM), 2015 IEEE International Conference
on, 1111–1116. IEEE.
Zhang, Q.; Zhang, P.; Long, G.; Ding, W.; Zhang, C.; and
Wu, X. 2016. Online learning from trapezoidal data streams.
IEEE Transactions on Knowledge and Data Engineering
28(10):2709–2723.

3239

