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André L. Teixeira
teixeira@cs.uregina.ca
University of Regina

Canada

Abstract
We give conditions under which convolutional neural net-
works (CNNs) define valid sum-product networks (SPNs).
One subclass, called convolutional SPNs (CSPNs), can be
implemented using tensors, but also can suffer from being
too shallow. Fortunately, tensors can be augmented while
maintaining valid SPNs. This yields a larger subclass of
CNNs, which we call deep convolutional SPNs (DCSPNs),
where the convolutional and sum-pooling layers form rich di-
rected acyclic graph structures. One salient feature of DC-
SPNs is that they are a rigorous probabilistic model. As
such, they can exploit multiple kinds of probabilistic reason-
ing, including marginal inference and most probable expla-
nation (MPE) inference. This allows an alternative method
for learning DCSPNs using vectorized differentiable MPE,
which plays a similar role to the generator in generative ad-
versarial networks (GANs). Image sampling is yet another
application demonstrating the robustness of DCSPNs. Our
preliminary results on image sampling are encouraging, since
the DCSPN sampled images exhibit variability. Experiments
on image completion show that DCSPNs significantly outper-
form competing methods by achieving several state-of-the-art
mean squared error (MSE) scores in both left-completion and
bottom-completion in benchmark datasets.

Introduction
Generative models are of current interest in the deep
learning community, including generative adversarial net-
works (GANs) (Goodfellow et al. 2014), variational auto-
encoders (Kingma and Welling 2014), neural autoregres-
sive distribution estimators (Larochelle and Murray 2011),
pixel recurrent neural networks (Oord, Kalchbrenner, and
Kavukcuoglu 2016), and convolutional arithmetic circuits
(Sharir et al. 2018). Convolutional neural networks (CNNs)
(Goodfellow, Bengio, and Courville 2016) can be used in
GANs. Sum-product networks (SPNs) (Poon and Domin-
gos 2011) are a generative model that have received limited
attention from the deep learning community (Peharz et al.
2018). An SPN is a directed acyclic graph (DAG), where
leaf nodes are tractable distributions and each internal node
is either a sum or product operation. A valid SPN defines a
joint probability distribution and allows for efficient infer-
ence (Poon and Domingos 2011).
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Conditions are given as to when subclasses of CNNs de-
fine valid SPNs, including convolutional layer filters of cer-
tain sizes and non-overlapping windows in sum-pooling lay-
ers. Satisfaction of these conditions yields a subclass of
CNNs, called convolutional SPNs (CSPNs). CSPNs permit a
vectorized representation allowing for exploitation of tensor
libraries such as Tensorflow, but they also can suffer from
being too shallow, and it is known that deep SPNs are more
expressive than shallow SPNs (Delalleau and Bengio 2011).

We introduce deep convolutional sum-product networks
(DCSPNs). DCSPNs permit the convolutional and sum-
pooling layers to form rich DAG structures by augmenting
layer tensors under conditions that maintain decomposabil-
ity and completeness. As a decomposable and complete SPN
is a valid SPN, our main result is that DCSPNs are a larger
subclass of CNNs that define valid SPNs. DCSPNs are a rig-
orous probabilistic model. As such, they can exploit prob-
abilistic reasoning, including marginal inference and most
probable explanation (MPE) inference. This allows an al-
ternative method for learning DCSPNs using vectorized dif-
ferentiable MPE. We show how to vectorize MPE using a
mask algorithm and how it plays a role similar to the GANs
generator. Image sampling is yet another application demon-
strating the robustness of DCSPNs. This involves a minor
modification to the mask algorithm. Our preliminary results
on image sampling are promising, since the DCSPN sam-
pled images exhibit variability. Experimental results on left-
and bottom-completion like those in Table 1 show DCSPNs
achieve state-of-the-art by building deeper structures using
both vertical and horizontal sum-pooling windows, which
leverage local structure in the image data in both direc-
tions. Applying a simple low pass filter as a post-processing
smoothing operation lowers the mean squared error (MSE)
score from 455 to 401 for left-completion in Olivetti.

Table 1: Mean squared error (MSE) scores in Olivetti Face.

left bottom
P&D (Poon and Domingos 2011) 942 918
ICNN (Amos, Xu, and Kolter 2017) 833 -
D&V (Dennis and Ventura 2012) 779 782
DCGAN (Yeh et al. 2017) 935 707
DCSPN 455 503
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Sum-Product Networks
We denote random variables by uppercase letters, such as X
and Y, possibly with subscripts, and their values by corre-
sponding lowercase letters x and y. Sets of random variables
are denoted by boldfaced uppercase letters and their com-
bined values by corresponding boldfaced lowercase letters.

A sum-product network (SPN) (Poon and Domingos
2011) over variables X can be defined as a directed acyclic
graph (DAG) containing three types of nodes: leaf distribu-
tions, sums, and products. Leaves are tractable distribution
functions over Y ⊆ X. Sum nodes S compute weighted
sums S =

∑
N∈Ch(S) wS,NN , where Ch(S) are the chil-

dren of S and wS,N are weights that are assumed to be non-
negative and normalized (Peharz et al. 2015). Product nodes
P compute P =

∏
N∈Ch(P ) N . The value of an SPN, de-

noted S(x), is the value of its root.
The scope of a sum or product node N is recursively de-

fined as sc(N) =
⋃

C∈Ch(N) sc(C), while the scope of a
leaf distribution is the set of variables over which the dis-
tribution is defined. A valid SPN defines a joint probabil-
ity distribution and allows for efficient inference (Poon and
Domingos 2011). The following two structural constraints
on the DAG guarantee validity. An SPN is complete if, for
every sum node, its children have the same scope. An SPN
is decomposable if, for every product node, the scopes of its
children are pairwise disjoint.

Nodes of an SPN can be organized as layers for a vector-
ized implementation. The discussion here draws from (Ver-
gari, Di Mauro, and Esposito 2016). The SPN input layer is
formed by the leaf distribution nodes. Let L(x) ∈ IRs be the
output of a generic layer with s nodes and input x. The value
of a sum layer with an input x from r input nodes is
L(x) = log(w × x), (1)

where w ∈ IRs×r is a matrix of weights defining sparse
connections:

wij =

{
wij if edge (i, j) exists
0 otherwise

and x ∈ [0, 1]r represents the input probability values. Sim-
ilarly, the value of a product layer with input x is

L(x) = exp(p× x), (2)

where p ∈ {0, 1}s×r is a matrix of sparse connections:

pij =

{
1 if edge (i, j) exists
0 otherwise

and x ∈ [0, 1]r represents the input probability values in log-
space. In this formulation, the exponential and logarithmic
functions act as nonlinearities.

In our paper, we relate SPNs with convolutional neu-
ral networks (CNNs) (Goodfellow, Bengio, and Courville
2016). In general, CNNs are formed by convolutional and
pooling layers. A convolutional layer can be constructed by
applying a convolutional operation with a filter on a previ-
ous layer output. A pooling layer can be built by applying a
max or average operation over some elements of the previ-
ous layer with respect to a sliding window. A sum-pooling
layer can be easily obtained from an average-pooling layer.

Convolutional SPNs
We study when subclasses of CNNs define valid SPNs.

First, note that a vectorized SPN can represent a CNN.
SPN sum layers correspond to CNN convolutional layers.
Here, sum layer weights are convolutional filters and the
sum layer value computes the convolution operation. Sim-
ilarly, SPN product layers correspond to CNN sum-pooling
layers. The sum-pooling window computes the product layer
value in log-space.
Example 1 Figure 1 illustrates an SPN with 3 layers being
represented by a CNN with 3 layers, where colours represent
node scopes. The input layer is the same for both, while the
sum and product layers in the SPN are convolutional and
sum-pooling layers in the CNN, respectively.

Conversely, we show how a CNN can represent a vector-
ized SPN in log-space. Representational, convolutional, and
sum-pooling layers in CNNs can represent the input, sum,
and product layers in SPNs, respectively.

A representational layer (Sharir et al. 2018) is formed by
applying n representation functions f1, . . . , fn : IRs → IR
over s-dimensional local patches of the dataset. We apply
the logarithmic function in representational layers so as to
correspond to SPN input layers in log-space. For instance,
n Gaussian distributions can be used as representation func-
tions to map patches of dataset instances to n values in the
representational layer.

The value of a convolutional layer with input x is com-
puted element-wise depending on filter w’s size with depth
c being either m-by-n (top) or height-by-width (bottom):

Lij(x) =

{∑m−1
q=0

∑n−1
l=0 log(wql) + x(i+q)(j+l)∑c−1

k=0 log(wijk) + xijk.
(3)

Convolutional layers in (3) relate to sum layers in (1).
The value of a sum-pooling layer with sliding window

size m-by-n and input x is computed element-wise as:

Lij(x) =

m−1∑
q=0

n−1∑
l=0

x(i+q)(j+l). (4)

Figure 1: Input, convolutional, and sum-pooling layers in a
CNN representing input, sum, and product layers in an SPN.
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Figure 2: A CSPN represents a valid SPN and is vectorized, but also can suffer from being shallow.

Sum-pooling layers in (4) relate to product layers in (2).
We now define a subclass of CNNs that represent SPNs

by restricting convolutional and sum-pooling layers.

Definition 1 A convolutional SPN (CSPN) is a CNN formed
under the following two restrictions: (i) convolutional layer
filters must have height and width of 1-by-1 or h-by-w,
where h and w are the height and width of the convolutional
layer, respectively; (ii) in sum-pooling layers, the horizontal
and vertical stride of the sliding window must be at least the
width and the height of the window itself, respectively.

Example 2 Consider the CSPN illustrated in Figure 2,
where colours represent node scopes. The dataset is mapped
to a 4-by-4 representational layer using 2 representation
functions. Next, a convolutional layer is formed with 6 filters
of size 4-by-4. A 2-by-2 sum-pooling layer is then built with
a 2-by-2 sliding window. Finally, the root node is a 1-by-1
convolutional layer obtained using one 2-by-2 filter.

Next, we show that CSPNs represent valid SPNs.

Theorem 1 Let C be a CSPN formed with respect to a CNN
C′ in Definition 1. Then, C is a valid SPN.

Proof 1 To be valid, C must be both complete and decom-
posable. The restriction on each convolutional layer filter
in C′ to be 1-by-1 or h-by-w ensures that the sum in the
convolution operation in (3) occurs over elements of the
same scope. Thus, C is complete. The restriction on the sum-
pooling layers with the horizontal and vertical stride of the
sliding window being at least the size of the window itself
guarantees that the multiplication (summation, in log-space)
in the pooling operation in (4) occurs over elements with dis-
joint scopes in the current and subsequent layers. Therefore,
C is decomposable. By definition, C is a valid SPN.

CSPNs can struggle with depth, since the sum-pooling
window size quickly reduces the size of the layers. For ex-
ample, as depicted by the CSPN in Figure 2, the 4-by-4 rep-
resentational layer reduced to the 1-by-1 root layer after two
convolutions and one sum-pooling operation. As deep SPNs
are more expressive than shallow SPNs (Delalleau and Ben-
gio 2011), we now turn our attention to introducing deep
CSPNs.

We build deep CSPNs by considering two related issues.
First, we seek a DAG structure rather than a chain structure.
Second, since each node is implemented as a tensor, each
combination of tensors must be done such that a valid SPN
is maintained. The next section formalizes these ideas.

Deep Convolutional SPNs
In this section, we introduce a tractable generative model,
called deep convolutional SPNs (DCSPNs).

We denote by T a tensor of rank (order) n and dimen-
sion m in each mode. That is, T is a multi-dimensional ar-
ray, specified by a shape with n indexes [d1, . . . , dn], each
ranging in [m] ≡ {1, . . . ,m}. Without loss of generality, a
layer is represented as a rank 4 tensor with shape [b, h, w, c],
where b is the batch (number of instances) being considered,
and h, w, and c are the height, width, and channel (depth),
respectively. Tensor elements are SPN nodes. In a sum layer
tensor, elements are sum nodes, while in a product layer,
tensor elements are product nodes.

Let T1 and T2 be two tensors with the same height and the
same width. The channel augmentation of T1 and T2 is the
tensor with the same height and the same width formed by
concatenating T1 and T2 with respect to the channel axis.

Example 3 Let T1 and T2 be the two tensors in Figure 3 (a)
(left, right), respectively. Then, the channel augmentation of
T1 and T2 is the tensor depicted in Figure 3 (b).

Let T1 and T2 be two tensors with the same depth and
height. The width augmentation of T1 and T2 is the tensor
with the same depth and the same height formed by concate-
nating T1 and T2 with respect to the width axis. The height
augmentation is defined similarly.

Example 4 Let T1 and T2 be the two tensors in Figure 3 (c)
(left, right), respectively. Then, the width augmentation of T1
and T2 is the tensor depicted in Figure 3 (d).

Definition 2 A deep convolutional sum-product network
(DCSPN) D over n variables X1, . . . , Xn is a rooted DAG
whose leaves are representational layers and whose internal
nodes are convolutional and sum-pooling layers. A convolu-
tional layer with more than one child is formed by recur-
sively applying channel augmentation on all its children. A

(a) (b) (c) (d)

Figure 3: Channel (a)-(b) and width (c)-(d) augmentations.
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Figure 4: A DCSPN, depicting a rich DAG structure of convolutional and sum-pooling layers, while still being a valid SPN.

sum-pooling layer with more than one child is formed by re-
cursively applying either height or width augmentation on
all its children.

Example 5 Consider the DCSPN in Figure 4. The dataset is
mapped to 2 representational layers, each using 2 represen-
tation functions. In the upper branches, after a convolutional
and a sum-pooling layer, a channel augmentation is used
to form a convolutional layer. In the lower branch, after a
convolutional and sum-pooling layer, a width augmentation
is used to form a sum-pooling layer. Lastly, a sum-pooling
layer is followed by the root convolutional layer.

By construction, DCSPNs represent SPNs. We now pro-
vide structural conditions under which DCSPNs represent
valid SPNs.

Lemma 1 Consider a DCSPND where every convolutional
layer has children over the same element-wise scope. Con-
nect the children of each convolutional layer using channel
augmentation. Then, D is a complete SPN.

Proof 2 Consider the SPN defined by the DCSPN D. Chan-
nel augmentation over all children of each convolutional
layer yields tensors (layers) with elements of the same scope
aligned along the channel axis. By construction, summation
in the convolutional operation in (3) occurs over the channel
axis. Hence, every summation involves operands of the same
scope. By definition, D is complete.

Lemma 1 is important as it establishes one practical
method for combining tensors such that the resulting DC-
SPN is complete. Lemma 2, given next, provides a practical
method for combining tensors such that the obtained DC-
SPN is decomposable.

Lemma 2 Consider a DCSPN D where every sum-pooling
layer has children with element-wise disjoint scopes. Con-
nect the children of each sum-pooling layer using either
height or width augmentation. Then, D is a decomposable
SPN.

Proof 3 Consider the SPN defined by the DCSPN D. Width
augmentation over all children of each sum-pooling layer
yields tensors (layers) with elements of disjoint scopes at
corresponding positions in the width axis. A similar property
holds for height augmentation and the height axis. By con-
struction, multiplication in the log-space sum-pooling op-
eration in (4) occurs over either height or width or both
axes. Thus, every multiplication involves operands of dis-
joint scopes. By definition, D is decomposable.

We now show the desired result.

Theorem 2 LetD be a DCSPN in which the tensors of each
convolutional and sum-pooling layer are connected in ac-
cordance to Lemmas 1 and 2. Then, D is a valid SPN.

Proof 4 Consider the SPN defined by the DCSPN D. By
Lemma 1, D is necessarily a complete SPN. Moreover, D
is guaranteed to be a decomposable SPN, by Lemma 2. By
definition, sinceD is both complete and decomposable,D is
a valid SPN.

Theorem 2 is significant for two reasons. First, as DC-
SPNs define joint probability distributions, they are tractable
deep generative models. Second, DCSPNs are robust in that
there are many possible DAG structures in theory satisfying
Theorem 2. We will examine later a specific DAG structure
that performed exceptionally well in practice.

The DCSPN parameters can be learned with methods
such as expectation maximization and gradient descent, sim-
ilar to SPNs (Poon and Domingos 2011). More specifically,
given a DAG structure, we consider learning its parame-
ters Θ (weights of sum nodes) with the maximum likeli-
hood principle. This optimization problem can be equiva-
lently seen as minimizing the negative log-likelihood (NLL)
loss function L (Sharir et al. 2018):

L(Θ) = E[−log S(x)]. (5)

Given a DCSPN DAG structure coupled with parameters,
we turn our attention to applications demonstrating the ef-
fectiveness of DCSPNs.
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DCSPN Image Completion
Image completion is a difficult task (Dennis and Ventura
2012) that has been studied quite extensively in graphic and
vision communities (Poon and Domingos 2011). One SPN
approach is to use most probable explanation (MPE) infer-
ence (Poon and Domingos 2011; Dennis and Ventura 2012).
In our case, we will apply MPE inference in CNNs through
the unifying framework of DCSPNs.

MPE inference in SPNs is NP-hard (Peharz et al. 2017;
Conaty, Mauá, and de Campos 2017). Hence, approximate
MPE inference is used (Poon and Domingos 2011; Peharz
et al. 2017) and is briefly summarized as two passes. In the
forward pass, replace sum nodes with max nodes. The MPE
assignment is then obtained via Viterbi-style backtracking.
That is, start at the root and follow all children of product
nodes and one maximizing child of max nodes.

We propose a method for vectorizing MPE in DCSPNs.
In the forward pass, replace the sum operation in a con-
volutional layer with the max operation. For the backward
pass, vectorize the Viterbi-style backtracking by using mask
propagation. Starting at the root layer, a tensor mask of all
ones initiates the backward propagation. Using a slice of the
mask from each parent, a layer computes one mask for its
children. Participating children nodes assume value 1; other-
wise, 0. Lastly, representational layer masks indicate which
representation function is used in the MPE assignment.

Algorithm 1 formally describes our mask MPE backward
propagation method, which can utilize sparse tensor opti-
mization techniques available in libraries. Lines 1-2 per-
form initialization. The DCSPN is traversed according to
any topological ordering. For every layer L, we perform two
tasks: (i) combine slices from parent masks; and (ii) com-
pute one mask for its children using (i).

Consider task (i). If P is a convolutional layer in line 8,
slice the channel (depth) axis at the position of L in the mask
from each of its parents. Next, compute the channel augmen-
tation of all slices. Now, suppose P is a sum-pooling layer
in line 11, slice the width axis at the position of L in the
mask from each of its parents. Observe that here the DAG
dictates whether width or height augmentation is applied on
all slices. A mask of all ones is used for the root layer. The
output of task (i) is the mask PM .

Now consider task (ii). Let L be a convolutional layer in
line 18. The activation of L is saved in the forward pass and
represents the product of the filter and the input values dur-
ing the convolution. Determine the position of a maximizing
child using the ARGMAX function in line 20. The ONE HOT
function builds a mask of zeros, except for a 1 in the maxi-
mizing child position. Lastly, L’s mask is the element-wise
multiplication of the ONE HOT mask and PM . Next, if L
is a sum-pooling layer, then resize PM in line 24 to match
L’s previous layer size by upsampling PM using the near-
est neighbour method. Lastly, if L is a representational leaf
layer, then its mask in line 26 is PM . Finally, return all leaf
masks saved in line 26.

The output of Algorithm 1 indicates which representation
function is selected in the Viterbi-style backtracking. This,
in turn, can be used for computing the MPE assignment of
each selected representation function.

Algorithm 1 Mask MPE Backward Propagation

Input: a DCSPN D with forward pass node values
Output: representational layer leaf masks
Main:

1: for L in D do . Initialization
2: masks[L] = ∅
3: for L in TOPOLOGICAL SORT(D) do
4: . Task (i): Combine parent layer masks (PM)
5: PM = ∅
6: for P in Pa(L) do
7: . Always slice at the position of L
8: if P is convolutional then
9: S = slice channel axis of masks[P ]

10: Channel augmentation of PM and S
11: else . P is sum-pooling
12: .D may dictate height augmentation instead
13: S = slice width axis of masks[P ]
14: Width augmentation of PM and S

15: if L is the root then
16: PM = ONES([1, 1, 1])

17: . Task (ii): Compute current layer mask (CM)
18: if L is convolutional then
19: A is the activation of L in the forward pass
20: C = ARGMAX(A)
21: M = ONE HOT(C)
22: mask = M � PM . Hadamard product
23: else if L is sum-pooling then
24: mask = RESIZE(PM) . Upsample
25: else . Representational (Leaf)
26: leaf masks[L] = PM . Leaf mask
27: masks[L] = mask

return leaf masks . Masks for leaves of D

Experiments
As promised, we now describe a DCSPN DAG structure
that performed exceptionally well in practice. A convolu-
tional layer follows every representational layer and every
sum-pooling layer. All convolutional layers have filter sizes
height-by-width matching the layer size. Two sum-pooling
layers follow each convolutional layer: one with a window
size of 1-by-2 and the other 2-by-1. Alternate the window
sizes of 1-by-2 and 2-by-1 with 2-by-2 and 2-by-2 every n
layers. This hyperparameter n is tuned per dataset and varied
between 70 and 100 in our experiments. For each dataset, we
randomly set aside one third (up to 50 images) for testing.
For training, we use ADAM (Kingma and Ba 2014) with a
learning rate of 0.005. Four Gaussian representation func-
tions are used per pixel (variable), where the mean and vari-
ance are computed from equal quantiles of pixel intensities.
In practice, we observed better accuracy when maintaining
a sum operation in convolutional layers rather than a max
operation during MPE. (Poon and Domingos 2011) made a
similar observation.

We compare DCSPNs with deep convolutional generative
adversarial networks (DCGANs) (Yeh et al. 2017) using the
publicly available code from (Amos 2016). Here, we use
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the hyperparameter values suggested in (Amos 2016) and
100 epochs during training. The Poisson blending (Pérez,
Gangnet, and Blake 2003) post-processing technique for
DCGANs is not implemented in (Amos 2016).

Table 1 gives the mean squared error (MSE) scores for
left-completion and bottom-completion in the Olivetti Face
dataset (Samaria and Harter 1994). We also compare com-
peting methods in (Poon and Domingos 2011; Amos, Xu,
and Kolter 2017; Dennis and Ventura 2012) with DCSPNs.
For left-completion, DCSPNs score 455, which is signifi-
cantly lower than the next lowest score 779. Similarly, for
bottom-completion, DCSPNs (503) again dramatically out-
perform the competition, whose lowest MSE score is 707.

Table 2 shows left-completion and bottom-completion
MSE scores in the Caltech datasets (Fei-Fei, Fergus, and
Perona 2007). (Dennis and Ventura 2012) did not report
MSE scores for the Dolphin and Helicopter datasets. DC-
SPNs have the lowest MSE scores in all three datasets for
left-completion. Similarly, for bottom-completion, DCSPNs
score well below its competitors in Dolphin and Helicopter,
but are slightly edged out by DCGANs in Face. Representa-
tive completions are illustrated in Figure 5.

Table 2: MSE scores in Caltech datasets.

left P&D D&V DCGAN DCSPN
Face 1815 1657 1334 1178
Dolphin 3096 - 4096 2002
Helicopter 2749 - 3925 1702
bottom
Face 1924 1517 1046 1149
Dolphin 2767 - 4016 2102
Helicopter 3064 - 3811 2103

Analysis suggests several reasons why DCSPNs can reach
state-of-the-art results. First, deeper structures are created
by simultaneously deriving 1-by-2 and 2-by-1 sum-pooling
window sizes. Second, alternating every n layers with win-
dow sizes 2-by-2 and 2-by-2 serves as a regularization tech-
nique, since larger windows tend to yield shallower DAGs.
Third, the known vanishing gradient problem in SPNs (Poon
and Domingos 2011) seems to be alleviated by alternating
window sizes as above, since this has the effect of creating
branches of different lengths. This is similar to how short-
cuts work in residual networks (He et al. 2016). Fourth, the
vertical and horizontal windows of 1-by-2 and 2-by-1 lever-

Figure 5: Columns show original, DCSPN, DCGAN, and
P&D. The first and second rows show left-completion and
bottom-completions, respectively. Left and right pictures are
from datasets Olivetti Face and Caltech Face, respectively.

(a) (b) (c) (d)

Figure 6: DCSPNs performed well on a dataset with 65 im-
ages. Left-completion of the original image in (a) by DC-
SPN (b), P&D (c), and DCGAN (d).

age local structure in the image data in both directions. Fifth,
accuracy was improved by using height-by-width instead of
a 1-by-1 filter, that is, no sharing of parameters was more
effective than sharing parameters. A similar finding was ob-
served in (Sharir et al. 2018).

DCSPNs left-complete well on a small dataset. The Cal-
tech Dolphin dataset only contains 65 images. Nevertheless,
DCSPNs performed quite well, as exemplified by the MSE
scores in Table 2 and by the left-completions illustrated in
Figure 6.

On the contrary, DCSPN completions admittedly look as
though they are sometimes composed of random blocks of
high frequency. To mitigate this, a low pass Gaussian fil-
ter can be applied as a smoothing post-processing step. This
simple technique lowers the DCSPN MSE score in Olivetti
left-completion in Table 1 from 455 to 401.

We also tried other common CNN techniques, such as
average-pooling instead of sum-pooling layers, sharing pa-
rameters in convolutional layers, batch normalization, and
dropout, but did not observe any significant improvement. It
is noted that dropout was successfully applied in SPNs for
image classification (Peharz et al. 2018).

DCSPNs with Differentiable MPE
Motivated by future work suggested in (Vergari et al. 2018),
we propose an alternative method of training DCSPNs that
is based on differentiable MPE. Whereas (5) minimizes
the negative log-likelihood loss function, the new training
method also considers the error between the given input and
the MPE assignment (completion).

More formally, let D(x) be the value of a DCSPND with
input x. Let Y ⊆ X and consider input y, where the value
of each variable in Y is 1, namely, the variables in Y are
marginalized out. The MPE assignment after both forward
and backward propagation in D is denoted by M(y). Then,
the objective function for training D can be defined as:

min
M

max
D

E[log D(x)] + E[log(1−D(M(y)))]. (6)

Using (6) to train DCSPNs yields an MSE score of 651 for
left-completion in the Olivetti dataset. This beats all compet-
ing scores in Table 1, except for DCSPNs trained using (5).
Training DCSPNs using (6) is intriguing for more than sim-
ply a promising MSE score.

The training in (6) is similar to GANs training, which, in
general, involves two networks: a generator G and a discrim-
inator D. The input to G is a random sample z drawn from
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Figure 7: MPE and forward inference in SPNs are similar to
the generator and discriminator in GANs, respectively.

a simple distribution such as a normal distribution. G up-
samples z and outputs G(z). The discriminator D receives
G(z) or dataset samples x and downsamples to a classifica-
tion output. Hence, training GANs involves minimizing G
and maximizing D:

min
G

max
D

E[log D(x)] + E[log(1−D(G(z)))]. (7)

Figure 7 illustrates a general relationship between training
DCSPNs with differentiable MPE in (6) and GANs training
in (7). Observe that MPE inference computing M(y) in (6)
plays the role of the generator G in GANs computing G(z) in
(7). However, while the GANs generator G upsamples noise
to form an image, DCSPNs use MPE inference to upsample
the network value to form an image.

Similarly, forward inference in DCSPNs computing D(x)
in (6) assumes the part of the discriminator in GANs
computing D(x) in (7). Hence, DCSPN forward inference
downsamples to a log-likelihood value measuring how likely
the given input is from the sample distribution, whereas
the GANs discriminator downsamples to a classification of
whether or not the input data is real.

On the other hand, the GANs generator has its own learn-
able parameters, since the generator and discriminator are
two different networks. However, a DCSPN is a single net-
work, resulting in the sharing of parameters during learning
between MPE inference and forward inference. Further in-
vestigation of DCSPNs with differentiable MPE and its re-
lationship to GANs training remains as future work.

Image Sampling
DCSPNs can sample images by modifying Algorithm 1. In-
stead of selecting a maximizing child, randomly select a
child. More formally, replace lines 19 and 20 to instead as-
sign values to C by randomly sampling from a categorical
distribution parameterized by the convolutional layer filter
weights. Note that the forward pass is no longer needed.

The sampled images in Figure 8 are encouraging as vari-
ability is evident. Moreover, these results were obtained in
an inaugural attempt at DCSPN image sampling involving a
minor modification to Algorithm 1. Some generative mod-
els, including GANs, are known for low variability due to
mode collapse (Metz et al. 2017; Salimans et al. 2016).

Figure 8: DCSPN image sampling shows variability.

Related Works
Here we comment on other vectorized approaches to SPNs.

(Poon and Domingos 2011) and (Vergari, Di Mauro, and
Esposito 2015) have discussed relationships between CNNs
and SPNs. The interpretation of an SPN sum layer depends
on the type of probabilistic inference being conducted. For
marginal inference, an SPN sum layer corresponds to a con-
volutional layer in CNNs. For MPE, on the other hand, an
SPN sum layer corresponds to a max-pooling layer in CNNs.
We extend the literature by showing that an SPN product
layer can correspond to a sum-pooling layer in CNNs.

(Sharir et al. 2018) introduced a tractable generative
model, called convolutional arithmetic circuits (ConvACs).
An arithmetic circuit (Darwiche 2003) is a deep learning
model that has been shown by (Rooshenas and Lowd 2014)
to be equivalent to SPNs. In particular, ConvACs include a
representation layer (Sharir et al. 2018). We found this in-
troduction useful in practice. However, similar to CSPNs,
ConvACs may suffer from being shallow.

(Peharz et al. 2018) suggest an SPN learning method in-
volving a discriminative and generative loss function. Al-
though the generative part is also based on the log-likelihood
similar to (6), the discriminative part is different. They con-
sider the cross-entropy function of the SPN parameters,
while we introduced to notion of a minmax game using dif-
ferentiable MPE.

Conclusion
Deep convolutional sum-product networks (DCSPNs) can
form rich DAG structures of convolutional and sum-pooling
layers, while still being valid SPNs. As a tractable generative
model, DCSPNs can perform efficient probabilistic reason-
ing, including marginal inference and approximate MPE in-
ference. On the other hand, as a CNN, DCSPNs can build
deeper structures using both vertical and horizontal sum-
pooling windows, which leverage local structure in the im-
age data. Practical applications of DCSPNs include image
completion and image sampling. DCSPNs are flexible in
that they allow for an alternative learning method based on
differentiable MPE. Relationships between this learning ap-
proach and learning in GANs are discussed.

Experimental results show that DCSPNs significantly out-
perform competitors and achieve several state-of-the-art re-
sults. For example, Table 1 reports the MSE scores for image
left-completion in the benchmark Olivetti Face dataset. The
DCSPN score of 455 is well below the next lowest score
of 779 obtained in (Dennis and Ventura 2012). Applying a
simple low pass filter as a post-processing step lowers the
DCSPN MSE score down to 401.

3254



References
Amos, B.; Xu, L.; and Kolter, J. Z. 2017. Input convex
neural networks. In Proceedings of the Thirty-Fourth Inter-
national Conference on Machine Learning (ICML 2017).
Amos, B. 2016. Image Completion with Deep Learn-
ing in TensorFlow. http://bamos.github.io/2016/08/09/
deep-completion. Accessed: July 1st, 2018.
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