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Abstract

Modelling long-term dependencies is a challenge for recurrent
neural networks. This is primarily due to the fact that gradi-
ents vanish during training, as the sequence length increases.
Gradients can be attenuated by transition operators and are
attenuated or dropped by activation functions. Canonical archi-
tectures like LSTM alleviate this issue by skipping information
through a memory mechanism. We propose a new recurrent
architecture (Non-saturating Recurrent Unit; NRU) that relies
on a memory mechanism but forgoes both saturating activa-
tion functions and saturating gates, in order to further alleviate
vanishing gradients. In a series of synthetic and real world
tasks, we demonstrate that the proposed model is the only
model that performs among the top 2 models across all tasks
with and without long-term dependencies, when compared
against a range of other architectures.

Introduction
Vanishing and exploding gradients remain a core challenge
in the training of recurrent neural networks. While explod-
ing gradients can be alleviated by gradient clipping or norm
penalties (Pascanu, Mikolov, and Bengio, 2013), vanishing
gradients are difficult to tackle. Vanishing gradients prevent
the network from learning long-term dependencies Hochre-
iter (1991); Bengio, Simard, and Frasconi (1994) and arise
when the network dynamics have attractors necessary to store
bits of information over the long term (Bengio, Simard, and
Frasconi, 1994). At each step of backpropagation, gradients
in a recurrent neural network can grow or shrink across linear
transition operators and shrink across nonlinear activation
functions.

Successful architectures, like the LSTM Hochreiter and
Schmidhuber (1997) and GRU Cho et al. (2014), alleviate
vanishing gradients by allowing information to skip transition
operators (and their activation functions) via an additive path
that serves as memory. Both gates and transition operators
use bounded activation functions (sigmoid, tanh). These help
keep representations stable but attenuate gradients in two
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ways: they are contractive and they saturate at the bounds.
Activation functions whose gradients contract as they saturate
are typically referred to as saturating nonlinearities; in that
sense, rectified linear units (ReLU) Nair and Hinton (2010)
are non-saturating and thus help reduce vanishing gradients
in deep feed-forward networks Krizhevsky, Sutskever, and
Hinton (2012); Xu et al. (2015).

Saturating activation functions still dominate in the liter-
ature for recurrent neural networks, in part because of the
success of LSTM on sequential problems (Sutskever, Vinyals,
and Le, 2014; Vinyals and Le, 2015; Merity, Keskar, and
Socher, 2017; Mnih et al., 2016). As these functions saturate,
gradients contract. In addition, while saturated gates may
push more information through memory, improving gradi-
ent flow across a long sequence, the gradient to the gating
units themselves vanishes. We expect that non-saturating ac-
tivation functions and gates could improve the modelling of
long-term dependencies by avoiding these issues. We propose
a non-saturating recurrent unit (NRU) that forgoes both satu-
rating activation functions and saturating gates. We present
a new architecture with the rectified linear unit (ReLU) and
demonstrate that it is well equipped to process data with long
distance dependencies, without sacrificing performance on
other tasks.

Background

Vanishing Gradient Problem in RNNs

Recurrent Neural Networks are the most successful class of
architectures for solving sequential problems. A vanilla RNN,
at any time step t, takes xt as input and updates its hidden
state as follows:

zt = Wht−1 +Uxt (1)
ht = f(zt), (2)

(3)

where W and U are the recurrent and the input weights of the
RNN respectively and f(.) is any non-linear activation func-
tion like a sigmoid or tanh. Consider a sequence of length T
with loss L computed at the end of the sequence. To compute
∂L
∂Wij

at time step t, we should first compute ∂L
∂ht

using the
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following chain rule:

∂L
∂ht

=
∂L
∂hT

∂hT
∂ht

(4)

=
∂L
∂hT

T−1∏
k=t

∂hk+1

∂hk
(5)

=
∂L
∂hT

T−1∏
k=t

(diag[f ′(zk)]W) . (6)

For a very long sequence length T , repeated multiplication of
W in Equation 6 can cause exponential growth or decay of
backpropagated gradients. Exploding gradients are caused by
eigenvalues greater than one in W. Conversely, eigenvalues
less than one lead to vanishing gradients. The second cause
of vanishing gradients is the activation function f . If the
activation function is a saturating function like a sigmoid or
tanh, then its Jacobian diag[f ′(zk)] has eigenvalues less than
or equal to one, causing the gradient signal to decay during
backpropagation. Long term information may decay when the
spectral norm of diag[f ′(zk)] is less than 1 but this condition
is actually necessary in order to store this information reliably
(Bengio, Simard, and Frasconi, 1994; Pascanu, Mikolov, and
Bengio, 2013). While gradient clipping can limit exploding
gradients, vanishing gradients are harder to prevent and so
limit the network’s ability to learn long term dependencies
(Hochreiter, 1991; Bengio, Simard, and Frasconi, 1994).

Existing Solutions
A key development in addressing the vanishing gradient is-
sue in RNNs was the introduction of gated memory in the
Long Short Term Memory (LSTM) network Hochreiter and
Schmidhuber (1997). The LSTM maintains a cell state that is
updated by addition rather than multiplication and serves as
an “error carousel” that allows gradients to skip over many
transition operations.

There have been several improvements proposed in the lit-
erature to make LSTM learn longer term dependencies. Gers,
Schmidhuber, and Cummins (2000) proposed to initialize the
bias of the forget gate to 1 which helped in modelling medium
term dependencies when compared with zero initialization.
This was also recently highlighted in the extensive explo-
ration study by Jozefowicz, Zaremba, and Sutskever (2015).
Tallec and Ollivier (2018) proposed chrono-initialization to
initialize the bias of the forget gate (bf ) and input gate (bi).
Chrono-initialization requires the knowledge of maximum
dependency length (Tmax) and it initializes the gates as fol-
lows:

bf ∼ log(U [1, Tmax − 1]) (7)
bi = −bf . (8)

This initialization method encourages the network to remem-
ber information for approximately Tmax time steps. While
these forget gate bias initialization techniques encourage the
model to retain information longer, the model is free to un-
learn this behaviour.

The Gated Recurrent Unit (GRU) (Cho et al., 2014) is a
simplified version of the LSTM (with fewer gates) which

works equally well Chung et al. (2014). Recently, van der
Westhuizen and Lasenby (2018) proposed a forget-gate only
version of LSTM called JANET. JANET outperforms the
LSTM on some long-term dependency tasks. We suspect that
this may be because JANET omits a few saturating gates
in the LSTM which are not crucial for the performance of
the model. In that sense, JANET is similar to the proposed
NRU. However, the NRU uses non-saturating gates and hence
should have better gradient flow than JANET.

The non-saturating ReLU activation function should re-
duce the incidence of vanishing gradients in a vanilla RNN
but can make training unstable through unbounded growth of
the hidden state. Better initialization of the recurrent weight
matrix has been explored in the literature for such RNNs. Le,
Jaitly, and Hinton (2015) proposed initializing the recurrent
weight matrix using the identity matrix. Orthogonal initializa-
tion of recurrent weight matrices has been studied by Henaff,
Szlam, and LeCun (2016). These initialization techniques,
like bias initialization in the LSTM, encourage better gradient
flow at the beginning of the training. Vorontsov et al. (2017)
proposed various ways to parameterize the recurrent weight
matrix so that it could stay orthogonal or nearly orthogonal.
They observed that allowing slight deviation from orthogo-
nality helps improve model performance and convergence
speed.

The idea of using unitary matrices for recurrent weight
matrices has been explored in Arjovsky, Shah, and Bengio
(2016); Wisdom et al. (2016); Jing et al. (2017b). While
Arjovsky, Shah, and Bengio (2016); Jing et al. (2017b) pa-
rameterize the matrix to be unitary, Wisdom et al. (2016)
reprojects the matrix after every gradient update. Orthogonal
and unitary matrices do not filter out information, preserving
gradient norm but making forgetting depend on a separate
mechanism such as forget gates. This has been explored with
saturating gates in Jing et al. (2017a); Dangovski, Jing, and
Soljacic (2017).

A non-gated Statistical Recurrent Unit (SRU) was pro-
posed in Oliva, Póczos, and Schneider (2017). SRU uses
only a ReLU activation function and recurrent multi-scale
summary statistics. The summary statistics are calculated
using exponential moving averages which might shrink the
gradients. We compare NRU with SRU in our experiments.

Other related lines of work which aim to model long-
term dependencies in RNNs are Memory Augmented Neural
Networks (MANNs) Graves, Wayne, and Danihelka (2014);
Graves et al. (2016); Gülçehre et al. (2018); Gülçehre, Chan-
dar, and Bengio (2017). Graves, Wayne, and Danihelka
(2014); Graves et al. (2016) have continuous addressing
schemes for the external memory, which also suffer from the
vanishing gradient problem. Gülçehre et al. (2018); Gülçehre,
Chandar, and Bengio (2017) attempts to address this issue by
moving to a discrete addressing mechanism so that gradients
could flow better. However, they use approximate gradient
methods like REINFORCE Williams (1992) or the Gumbel-
softmax trick Maddison, Mnih, and Teh (2016); Jang, Gu,
and Poole (2016) which are either difficult to train or to scale.
All these architectures use saturating activation functions and
saturating gates for memory control.

Data flow normalization techniques like layer normaliza-
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tion Ba, Kiros, and Hinton (2016) and recurrent batch nor-
malization Cooijmans et al. (2016) were also proposed in the
literature to improve the gradient flow in recurrent architec-
tures. Gülçehre et al. (2016) proposed to inject noise in the
saturating gates so that the gradients may flow easily.

Non-saturating Recurrent Unit (NRU)
Network

Saturating gating functions introduce a trade-off where dis-
tant gradient propagation may occur at the cost of vanishing
updates to the gating mechanism. We seek to avoid this trade-
off between distant gradient propagation but not updateable
gates (saturated gates) and short gradient propagation but up-
dateable gates (non-saturated gates). To that end, we propose
the Non-saturating Recurrent Unit — a gated recurrent unit
with no saturating activation functions.

Model
At any time step t, NRU takes some input xt and updates its
hidden state as follows:

ht = f(Whht−1 +Wixt +Wcmt−1) (9)

where ht−1 ∈ Rh is the previous hidden state, mt−1 ∈ Rm
is the previous memory cell, and f is a ReLU non-linearity.
The memory cell in NRU is a flat vector similar to the cell
vector in LSTM. However, in NRU, the hidden state and
the memory cell need not be of the same size. We allow the
memory cell to be larger than the hidden state to hold more
information.

At every time step t, memory cell is updated as as follows:

mt = mt−1 +
∑
k1

αiv
w
i −

∑
k2

βiv
e
i (10)

where
• mt ∈ Rm is the memory vector at time t.
• k1 is the number of writing heads and k2 is the number of

erasing heads. We often set k1 = k2 = k.
• vwi ∈ Rm is a normalized vector which defines where to

write in the memory. Similarly vei ∈ Rm is a normalized
vector which defines where to erase in the memory.
• αi is a scalar value which represents the content which is

written in the memory along the direction of vwi . Similarly,
βi is a scalar value which represents the content which is
removed from the memory along the direction of vei .
Intuitively, the network first computes a low-dimensional

projection of the current hidden state by generating a k-
dimensional α vector. Then it writes each unit of this k-
dimensional vector along k different basis directions (vwi s).
These k basis directions specify where to write as continuous-
valued vectors and hence there is no need for saturating non-
linearities or discrete addressing schemes. The network also
similarly erases some content from the memory (by using β
and vei s).

Scalars αi and βi are computed as follows:

αi = fα(xt,ht,mt−1) (11)
βi = fβ(xt,ht,mt−1) (12)

where fα and fβ are linear functions followed by an optional
ReLU non-linearity. Vectors vwi and vei are computed as
follows:

vwi = fw(xt,ht,mt−1) (13)
vei = fe(xt,ht,mt−1) (14)

where fw and fe are linear functions followed by an optional
ReLU non-linearity followed by an explicit normalization.
We used L5 normalization in all of our experiments.

Each v vector is m-dimensional and there are 2k such
vectors that needs to be generated. This requires a lot of
parameters which could create problems both in terms of
computational cost and in terms of overfitting. We reduce
this large number of parameters by using the following outer
product trick to factorize the v vectors:

pwi = fw1
(xt,ht,mt−1) ∈ R

√
m (15)

qwi = fw2
(xt,ht,mt−1) ∈ R

√
m (16)

vwi = g(vec(pwi q
w
i
T )) (17)

where fw1 and fw2 are linear functions, vec() vectorizes a
given matrix, g is an optional ReLU non-linearity followed
by an explicit normalization. Thus, instead of producing an
m-dimensional vector for the direction, we only need to pro-
duce a 2

√
m-dimensional vector which requires substantially

fewer parameters and scales more reasonably. We can fur-
ther reduce the number of parameters by generating 2

√
km-

dimensional vector instead of 2k
√
m-dimensional vector and

then use the outer product trick to generate the required km-
dimensional vector. We do this trick in our implementation
of NRU.

If there is no final ReLU activation function while comput-
ing α, β, and v, then there is no distinction between write
and erase heads. For example, either βi or vei could become
negative, changing the erasing operation into one that adds to
the memory. Having an explicit ReLU activation in all these
terms forces the architecture to use writing heads to add infor-
mation to the memory and erasing heads to erase information
from the memory. However, we treat this enforcement as
optional and in some experiments, we let the network decide
how to use the heads by removing these ReLU activations.

Discussion
In vanilla RNNs, the hidden state acts as the memory of the
network. So there is always a contradiction between stabil-
ity (which requires small enough Wh to avoid explosions)
and long-term storage (which requires high enough Wh to
avoid vanishing gradients). This contradiction is exposed
in a ReLU RNN which avoids the saturation from gates at
the cost of network stability. LSTM and GRU reduce this
problem by introducing memory in the form of information
skipped forward across transition operators, with gates deter-
mining which information is skipped. However, the gradient
on the gating units themselves vanishes when the unit acti-
vations saturate. Since distant gradient propagation across
memory is aided by gates that are locked to ON (or OFF),
this introduces an unfortunate trade-off where either the gate
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mechanism receives updates or gradients are skipped across
many transition operators.

NRU also maintains a separate memory vector like LSTM
and GRU. Unlike LSTM and GRU, NRU does not have
saturating gates. Even if the paths purely through hidden
states h vanish (with small enough Wh), the actual long term
memories are stored in memory vector m which has additive
updates and hence no vanishing gradient.

Although the explicit normalization in vectors vwi and vei
may cause gradient saturation for large values, we focus on
the nonlinearities because of their outsized effect on vanish-
ing gradients. In comparison, the effect of normalization is
less pronounced than that of explicitly saturating nonlinear-
ities like tanh or sigmoid which are also contractive based
on our experiments. Also, normalization has been employed
to avoid the saturation regimes of these nonlinearities (Ioffe
and Szegedy, 2015; Cooijmans et al., 2016). Furthermore,
we observe that forgoing these nonlinearities allows the NRU
to converge much faster than other models.

Experiments
In this section, we compare the performance of NRU net-
works with several other RNN architectures in three synthetic
tasks (5 including variants) and two real tasks. Specifically,
we consider the following extensive list of recurrent architec-
tures: RNN with orthogonal initialization (RNN-orth), RNN
with identity initialization (RNN-id), LSTM, LSTM with
chrono initialization (LSTM-chrono), GRU, JANET, SRU,
EURNN Jing et al. (2017b), GORU Jing et al. (2017a). We
used the FFT-like algorithm for the orthognal transition oper-
ators in EURNN and GORU as it tends to be much faster than
the tunable algorithm, both proposed by Jing et al. (2017b).
While these two algorithms have a low theoretical computa-
tional complexity, they are difficult to parallelize.

We mention common design choices for all the experi-
ments here: RNN-orth and RNN-id were highly unstable in
all our experiments and we found that adding layer normaliza-
tion helps. Hence all our RNN-orth and RNN-id experiments
use layer normalization. We did not see any significant benefit
in using layer normalization for other architectures and hence
it is turned off by default for other architectures. NRU with
linear writing and erasing heads performed better than with
ReLU based heads in all our experiments except the language
model experiment. Hence we used linear writing and eras-
ing heads unless otherwise mentioned. We used the Adam
optimizer Kingma and Ba (2014) with a default learning rate
of 0.001 in all our experiments. We clipped the gradients by
norm value of 1 for all models except GORU and EURNN
since their transition operators do not expand norm. We used
a batch size of 10 for most tasks, unless otherwise stated.

Table-1 summarizes the results of this section. Out of 10
different architectures that we considered, NRU is the only
model that performs among the top 2 models across all 7
tasks. The code for NRU Cell is available at https://github.
com/apsarath/NRU.

Copying Memory Task
The copying memory task was introduced in Hochreiter and
Schmidhuber (1997) as a synthetic task to test the network’s

Table 1: Number of tasks where the models are in top-1 and
top-2. Maximum of 7 tasks. Note that there are ties between
models for some tasks so the column for top-1 performance
would not sum up to 7.

Model in Top-1 in Top-2
RNN-orth 1 1
RNN-id 1 1
LSTM 1 1
LSTM-chrono 1 1
GRU 1 2
JANET 1 3
SRU 1 1
EURNN 2 3
GORU 0 1
NRU 4 7

ability to remember information over many time steps. The
task is defined as follows. Consider n different symbols. In
the first k time steps, the network receives an initial sequence
of k random symbols from the set of n symbols sampled with
replacement. Then the network receives a “blank” symbol for
T − 1 steps followed by a “start recall” marker. The network
should learn to predict a “blank” symbol, followed by the ini-
tial sequence after the marker. Following Arjovsky, Shah, and
Bengio (2016), we set n = 8 and k = 10. The copying task
is a pathologically difficult long-term dependency task where
the output at the end of the sequence depends on the begin-
ning of the sequence. We can vary the dependency length by
varying the length of the sequence T . A memoryless model
is expected to achieve a sub-optimal solution which predicts
a constant sequence after the marker, for any input (referred
to as the “baseline” performance). The cross entropy for such
a model would be klogn

T+2n Arjovsky, Shah, and Bengio (2016).
We trained all models with approximately the same number

of parameters (∼23.5k), in an online fashion where every
mini-batch is dynamically generated. We consider T = 100
and T = 200. In Figure 1 we plot the cross entropy loss for all
the models. Unsurprisingly, EURNN solves the task in a few
hundred updates as it is close to an optimal architecture tuned
for this task Henaff, Szlam, and LeCun (2016). Conversely,
RNN-orth and RNN-id get stuck at baseline performance.
NRU converges faster than all other models, followed by
JANET which requires two to three times more updates to
solve the task.

We observed the change in the memory vector across the
time steps (in the appendix1). We can see that the network has
learnt to add information into the memory in the beginning
of the sequence and then it does not access the memory until
it sees the marker. Then it makes changes in the memory in
the last 10 time steps to copy the sequence.

We performed additional experiments following the obser-
vation by Henaff, Szlam, and LeCun (2016) that gated models
like the LSTM outperform a simple non-gated orthogonal
network (similar to the EURNN) when the time lag T is var-
ied in the copying task. This variable length task highlights

1For appendix, refer https://arxiv.org/abs/1902.06704
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Figure 1: Copying memory task for T = 100 (in left) and T = 200 (in right). Cross-entropy for random baseline : 0.17 and 0.09
for T=100 and T=200 respectively.

the non-generality of the solution learned by models like EU-
RNN. Only models with a dynamic gating mechanism can
solve this problem. In Figure-2, we plot the cross-entropy loss
for all the models. The proposed NRU model is the fastest
to solve this task, followed by JANET, while the EURNN
performs poorly, as expected according to Henaff, Szlam, and
LeCun (2016). These two experiments highlight the fact that
NRU can store information longer than other recurrent archi-
tectures. Unlike EURNN which behaves like a fixed clock
mechanism, NRU learns a gating function to lock the infor-
mation in the memory as long as needed. This is similar to the
behaviour of other gated architectures. However, NRU beats
other gated architectures mainly due to better gradient flow
which results in faster learning. Figure-3 shows that NRU
converges significantly faster than its strongest competitors
(JANET and LSTM-chrono) in all the 4 tasks.

Denoising Task

The denoising task was introduced in Jing et al. (2017a) to
test both the memorization and forgetting ability of RNN
architectures. This is similar to the copying memory task.
However, the data points are located randomly in a long noisy
sequence. Consider again an alphabet of n different symbols
from which k random symbols are sampled with replace-
ment. These symbols are then separated by random lengths
of strings composed of a “noise” symbol, in a sequence of
total length T . The network is tasked with predicting the k
symbols upon encountering a “start recall” marker, after the
length T input sequence. Again we set n = 8 and k = 10.
This task requires both an ability to learn long term depen-
dencies and also an ability to filter out unwanted information
(considered noise).

The experimental procedure is exactly the same as de-
scribed for the copying memory task. In Figure 4 we plot the
cross-entropy loss for all the models for T = 100. In this
task, all the models converge to the solution except EURNN.
While NRU learns faster in the beginning, all the algorithms
converge after approximately the same number of updates.

Table 2: Bits Per Character (BPC) and Accuracy in test set
for character level language modelling in PTB.

Model BPC Accuracy
LSTM 1.48 67.98
LSTM-chrono 1.51 67.41
GRU 1.45 69.07
JANET 1.48 68.50
GORU 1.53 67.60
EURNN 1.77 63.00
NRU 1.47 68.48

Character Level Language Modelling

Going beyond synthetic data, we consider character level
language modelling with the Penn Treebank Corpus (PTB)
Marcus, Santorini, and Marcinkiewicz (1993). In this task,
the network is fed one character per time step and the goal is
to predict the next character. Again we made sure that all the
networks have approximately the same capacity (∼2.15M pa-
rameters). We use a batch size of 128 and perform truncated
backpropagation through time, every 150 time steps. We
evaluate according to bits per character (BPC) and accuracy.

All models were trained for 20 epochs and evaluated on
the test set after selecting for each the model state which
yields the lowest BPC on the validation set. The test set BPC
and accuracy are reported in Table-2. We did not add drop-
out or batch normalization to any model. From the table, we
can see that GRU is the best performing model, followed
closely by NRU. We note that language modelling does not
require very long term dependencies. This is supported by the
fact that changing the additive memory updates in NRU to
multiplicative updates does not hurt performance (it actually
improves it). This is further supported by our observation that
setting Tmax to 50 was better than setting Tmax to 150 in
chrono-initialization for LSTM and JANET. All the best per-
forming NRU models used ReLU activations in the writing
and erasing heads.
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Figure 2: Variable Copying memory task for T = 100 (in left) and T = 200 (in right).

Figure 3: Comparison of top-3 models w.r.t the number of
the steps to converge for different tasks. NRU converges
significantly faster than JANET and LSTM-chrono.

Figure 4: Denoising task for T = 100.

Permuted Sequential MNIST
The Permuted Sequential MNIST task was introduced in Le,
Jaitly, and Hinton (2015) as a benchmark task to measure
the performance of RNNs in modelling complex long term
dependencies. In a sequential MNIST task, all the 784 pixels
of an MNIST digit are fed to the network one pixel at a time
and the network must classify the digit in the 785th time step.
Permuted sequential MNIST (psMNIST) makes the problem
harder by applying a fixed permutation to the pixel sequence,
thus introducing longer term dependencies between pixels in
a more complex order.

Figure 5: Validation curve for psMNIST task.

For this task, we used a batch size of 100. All the networks
have approximately the same number of parameters (∼165k).
This corresponds to 200 to 400 hidden units for most of the ar-
chitectures. Since the FFT-style algorithm used with EURNN
requires few parameters, we used a large 1024 unit hidden
state still achieving fewer parameters (∼17k parameters) at
maximum memory usage. We report validation and test ac-
curacy in Table-3 and plot the validation curves in Figure-5.
On this task, NRU performs better than all the other architec-
tures, followed by the EURNN. The good performance of the
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EURNN could be attributed to its large hidden state, since
it is trivial to store all 784 input values in 1024 hidden units.
This model excels at preserving information, so performance
is bounded by the classification performance of the output
layer. While NRU remains stable, RNN-orth and RNN-id
are not stable as seen from the learning curve. Surprisingly,
LSTM-chrono is not performing better than regular LSTM.

Table 3: Validation and test set accuracy for psMNIST task.

Model valid test
RNN-orth 88.70 89.26
RNN-id 85.98 86.13
LSTM 90.01 89.86
LSTM-chrono 88.10 88.43
GRU 92.16 92.39
JANET 92.50 91.94
SRU 92.79 92.49
EURNN 94.60 94.50
GORU 86.90 87.00
NRU 95.46 95.38

Model Analysis
Stability: While we use gradient clipping to limit exploding
gradients in NRU, we observed gradient spikes in some of
our experiments. We suspect that the network recovers due
to consistent gradient flow. To verify that the additive nature
of the memory does not cause memory to explode for longer
time steps, we performed a sanity check experiment where
we trained the model on the copy task (with T=100, 200,
and 500) with random labels and observed that training did
not diverge. We observed some instabilities with all the mod-
els when training with longer time steps (T = 2000). With
NRU, we observed that the model converged faster and was
more stable with a higher memory size. For instance, our
model converged almost twice as early when we increased
the memory size from 64 to 144.
Forgetting Ability: We performed another sanity check ex-
periment to gauge the forgetting ability of our model. We
trained it on the copy task but reset the memory only once ev-
ery k= 2, 5, and 10 examples and observed that NRU learned
to reset the memory in the beginning of every example.
Gradient Flow: To give an overview of the gradient flow
across different time steps during training, we compared the
total gradient norms in the copying memory task for the top 3
models: NRU, JANET and LSTM-Chrono (in the appendix).
We see that the NRU’s gradient norm is considerably higher
during the initial stages of the training while the other model’s
gradient norms rise after about 25k steps. After 25k steps, the
drop in the NRU gradient norm coincides with the model’s
convergence, as expected. We expect that this ease of gradient
flow in NRU serves as an additional evidence that NRU can
model long-term dependencies better than other architectures.

Conclusion
In this paper, we introduce Non-saturating Recurrent Units
(NRUs) for modelling long term dependencies in sequential

problems. The gating mechanism in NRU is additive (like
in LSTM and GRU) and non-saturating (unlike in LSTM
and GRU). This results in better gradient flow for longer
durations. We present empirical evidence in support of non-
saturating gates in the NRU with (1) improved performance
on long term dependency tasks, (2) higher gradient norms,
and (3) faster convergence when compared to baseline mod-
els. NRU was the best performing general purpose model in
all of the long-term dependency tasks that we considered and
is competitive with other gated architectures in short-term de-
pendency tasks. This work opens the door to other potential
non-saturating gated recurrent network architectures.

We would also like to apply NRU in several real world
sequential problems in natural language processing and rein-
forcement learning where the LSTM is the default choice for
recurrent computation.
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Gülçehre, Ç.; Chandar, S.; Cho, K.; and Bengio, Y. 2018.
Dynamic neural turing machine with continuous and discrete
addressing schemes. Neural Computation 30(4).
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