
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Large-Scale Interactive
Recommendation with Tree-Structured Policy Gradient

Haokun Chen,1 Xinyi Dai,1 Han Cai,1 Weinan Zhang,1
Xuejian Wang,1 Ruiming Tang,2 Yuzhou Zhang,2 Yong Yu1

1Shanghai Jiao Tong University
2Huawei Noah’s Ark Lab

{chenhaokun,xydai,hcai,wnzhang,xjwang,yyu}@apex.sjtu.edu.cn
{tangruiming,zhangyuzhou3}@huawei.com

Abstract
Reinforcement learning (RL) has recently been introduced to
interactive recommender systems (IRS) because of its nature
of learning from dynamic interactions and planning for long-
run performance. As IRS is always with thousands of items
to recommend (i.e., thousands of actions), most existing RL-
based methods, however, fail to handle such a large discrete
action space problem and thus become inefficient. The ex-
isting work that tries to deal with the large discrete action
space problem by utilizing the deep deterministic policy gra-
dient framework suffers from the inconsistency between the
continuous action representation (the output of the actor net-
work) and the real discrete action. To avoid such inconsis-
tency and achieve high efficiency and recommendation ef-
fectiveness, in this paper, we propose a Tree-structured Pol-
icy Gradient Recommendation (TPGR) framework, where a
balanced hierarchical clustering tree is built over the items
and picking an item is formulated as seeking a path from
the root to a certain leaf of the tree. Extensive experiments
on carefully-designed environments based on two real-world
datasets demonstrate that our model provides superior recom-
mendation performance and significant efficiency improve-
ment over state-of-the-art methods.

Introduction
Interactive recommender systems (IRS) (Zhao, Zhang, and
Wang 2013) play a key role in most personalized services,
such as Pandora, Musical.ly and YouTube, etc. Different
from the conventional recommendation settings (Mooney
and Roy 2000; Koren, Bell, and Volinsky 2009), where the
recommendation process is regarded as a static one, an IRS
consecutively recommends items to individual users and re-
ceives their feedbacks which makes it possible to refine its
recommendation policy during such interactive processes.

To handle the interactive nature, some efforts have been
made by modeling the recommendation process as a multi-
armed bandit (MAB) problem (Li et al. 2010; Zhao, Zhang,
and Wang 2013). However, these works pre-assume that the
underlying user preference remains unchanged during the
recommendation process (Zhao, Zhang, and Wang 2013)
and do not plan for long-run performance explicitly.

Recently, reinforcement learning (RL) (Sutton and Barto
1998), which has achieved remarkable success in various

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

challenging scenarios that require both dynamic interac-
tion and long-run planning such as playing games (Mnih
et al. 2015; Silver et al. 2016) and regulating ad bidding
(Cai et al. 2017; Jin et al. 2018), has been introduced to
model the recommendation process and shows its potential
to handle the interactive nature in IRS (Zheng et al. 2018;
Zhao et al. 2018b; 2018a).

However, most existing RL techniques cannot handle the
large discrete action space problem in IRS as the time com-
plexity of making a decision is linear to the size of the ac-
tion space. Specifically, all Deep Q-Network (DQN) based
methods (Zheng et al. 2018; Zhao et al. 2018b) involve a
maximization operation taken over the action space to make
a decision, which becomes intractable when the size of the
action space, i.e., the number of available items, is large
(Dulac-Arnold et al. 2015), which is very common in IRS.
Most Deep Deterministic Policy Gradient (DDPG) based
methods (Zhao et al. 2018a; Hu et al. 2018) also suffer from
the same problem as a specific ranking function is applied
over all items to pick the one with highest score when mak-
ing a decision. To reduce the time complexity, Dulac-Arnold
et al. (2015) propose to select the proto-action in a continu-
ous hidden space and then pick the valid item via a nearest-
neighbor method. However, such a method suffers from the
inconsistency between the learned continuous action and the
actually desired discrete action, and thereby may lead to un-
satisfied results (Tavakoli, Pardo, and Kormushev 2018).

In this paper, we propose a Tree-structured Policy Gra-
dient Recommendation (TPGR) framework which achieves
high efficiency and high effectiveness at the same time. In
the TPGR framework, a balanced hierarchical clustering tree
is built over the items and picking an item is thus formulated
as seeking a path from the root to a certain leaf of the tree,
which dramatically reduces the time complexity in both the
training and the decision making stages. We utilize policy
gradient technique (Sutton et al. 2000) to learn how to make
recommendation decisions so as to maximize long-run re-
wards. To the best of our knowledge, this is the first work
of building tree-structured stochastic policy for large-scale
interactive recommendation.

Furthermore, to justify the proposed method using pub-
lic available offline datasets, we construct an environment
simulator to mimic online environments with principles de-
rived from real-world data. Extensive experiments on two

3312

real-world datasets with different settings show superior per-
formance and significant efficiency improvement of the pro-
posed TPGR over state-of-the-art methods.

Related Work and Background
Advanced Recommendation Algorithms for IRS
MAB-based Recommendation A group of works (Li et
al. 2010; Chapelle and Li 2011; Zhao, Zhang, and Wang
2013; Zeng et al. 2016; Wang, Wu, and Wang 2016) try
to model the interactive recommendation as a MAB prob-
lem. Li et al. (2010) adopt a linear model to estimate the
Upper Confidence Bound (UCB) for each arm. Chapelle
and Li (2011) utilize the Thompson sampling technique to
address the trade-off between exploration and exploitation.
Besides, some researchers try to combine MAB with ma-
trix factorization technique (Zhao, Zhang, and Wang 2013;
Kawale et al. 2015; Wang, Wu, and Wang 2017).

RL-based Recommendation RL-based recommendation
methods (Tan, Lu, and Li 2017; Zheng et al. 2018; Zhao
et al. 2018b; 2018a), which formulate the recommendation
procedure as a Markov Decision Process (MDP), explicitly
model the dynamic user status and plan for long-run perfor-
mance. Zhao et al. (2018b) incorporate negative as well as
positive feedbacks into a DQN framework (Mnih et al. 2015)
and propose to maximize the difference of Q-values between
the target and the competitor items. Zheng et al. (2018) com-
bine DQN and Dueling Bandit Gradient Decent (DBGD)
(Grotov and de Rijke 2016) to conduct online news recom-
mendation. Zhao et al. (2018a) propose to utilize a DDPG
framework (Lillicrap et al. 2015) with a page-display ap-
proach for page-wise recommendation.

Large Discrete Action Space Problem in RL-based
Recommendation
Most RL-based models become unacceptably inefficient for
IRS with large discrete action space as the time complexity
of making a decision is linear to the size of the action space.

For all DQN-based solutions (Zhao et al. 2018b; Zheng et
al. 2018), a value function Q(s, a), which estimates the ex-
pected discounted cumulative reward when taking the action
a at the state s, is learned and the policy’s decision is:

πQ(s) = argmax
a∈A

Q(s, a). (1)

As shown in Eq. (1), to make a decision, |A| (A denotes
the item set) evaluations are required, which makes both
learning and utilization intractable for tasks where the size
of the action space is large, which is common for IRS.

Similar problem exists in most DDPG-based solutions
(Zhao et al. 2018a; Hu et al. 2018) where some ranking pa-
rameters are learned and a specific ranking function is ap-
plied over all items to pick the one with highest ranking
score. Thus, the complexity of sampling an action for these
methods also grows linearly with respect to |A|.

Dulac-Arnold et al. (2015) attempt to address the large
discrete action space problem based on the DDPG frame-
work by mapping each discrete action to a low-dimensional
continuous vector in a hidden space while maintaining an

actor network to generate a continuous vector av in the hid-
den space which is later mapped to a specific valid action
a among the k-nearest neighbors of av . Meanwhile, a value
network Q(s, a) is learned using transitions collected by ex-
ecuting the valid action a and the actor network is updated
according to ∂Q(s,â)

∂â

∣∣
â=av

following the DDPG framework.
Though such a method can reduce the time complexity of
making a decision from O(|A|) to O(log(|A|)) when the
value of k (i.e., the number of nearest neighbors to find) is
small, there is no guarantee that the actor network is learned
in a correct direction as in the original DDPG. The reason
is that the value network Q(s, a) may behave differently on
the output of the actor network av (when training the ac-
tor network) and the actually executed action a (when train-
ing the value network). Besides, the utilized approximate k-
nearest neighbors (KNN) method may also cause trouble as
the found neighbors may not be exactly the nearest ones.

In this paper, we propose a novel solution to address the
large discrete action space problem. Instead of using the
continuous hidden space, we build a balanced tree to rep-
resent the discrete action space where each leaf node corre-
sponds to an action and top-down decisions are made from
the root to a specific leaf node to take an action, which re-
duces the time complexity of making a decision fromO(|A|)
toO(d×|A|1/d), where d denotes the depth of the tree. Since
such a method does not involve a mapping from the continu-
ous space to the discrete space, it avoids the gap between the
continuous vector given by the actor network and the actu-
ally executed discrete action in (Dulac-Arnold et al. 2015),
which could lead to incorrect updates.

Proposed Model
Problem Definition
We use an MDP to model the recommendation process,
where the key components are defined as follows.
• State. A state s is defined as the historical interactions

between a user and the recommender system, which can
be encoded as a low-dimensional vector via a recurrent
neural network (RNN) (see Figure 2).

• Action. An action a is to pick an item for recommenda-
tion, such as a song or a video, etc.

• Reward. In our formulation, all users interacting with the
recommender system form the environment that returns a
reward r after receiving an action a at the state s, which
reflects the user’s feedback to the recommended item.

• Transition. As the state is the historical interactions, once
a new item is recommended and the corresponding user’s
feedback is given, the state transition is determined.
An episode in the above defined MDP corresponds to

one recommendation process, which is a sequence of user
states, recommendation actions and user’s feedbacks, e.g.,
(s1, a1, r1, s2, a2, r2, · · · , sn, an, rn, sn+1). In this case,
the sequence starts with user state s1 and then transits to
s2 after a recommendation action a1 is carried out by the
recommender system and a reward r1 is given by the en-
vironment indicating the user’s feedback to the recommen-
dation action. The sequence is terminated at a specific state

3313

sn+1 when some pre-defined conditions are satisfied. With-
out loss of generality, we set the length of an episode n to a
fixed number (Cai et al. 2017; Zhao et al. 2018b).

Tree-structured Policy Gradient Recommendation
Intuition for TPGR To handle the large discrete action
space problem and achieve high recommendation effective-
ness, we propose to build up a balanced hierarchical cluster-
ing tree over items (Figure 1 left) and then utilize the policy
gradient technique to learn the strategy of choosing the op-
timal subclass at each non-leaf node of the constructed tree
(Figure 1 right). Specifically, in the clustering tree, each leaf
node is mapped to a certain item (Figure 1 left) and each
non-leaf node is associated with a policy network (note that
only three but not all policy networks are shown in the right
part of Figure 1 for the ease of presentation). As such, given
a state and guided by the policy networks, a top-down mov-
ing is performed from the root to a leaf node and the corre-
sponding item is recommended to the user.

Balanced Hierarchical Clustering over Items Hierar-
chical clustering seeks to build a hierarchy of clusters, i.e., a
clustering tree. One popular method is the divisive approach
where the original data points are divided into several clus-
ters, and each cluster is further divided into smaller sub-
clusters. The division is repeated until each sub-cluster is
associated with only one point.

In this paper, we aim to conduct balanced hierarchical
clustering over items, where the constructed clustering tree
is supposed to be balanced, i.e., for each node, the heights
of its subtrees differ by at most one and the subtrees are also
balanced. For the ease of presentation and implementation,
it is also required that each non-leaf node has the same num-
ber of child nodes, denoted as c, except for parents of leaf
nodes, whose numbers of child nodes are at most c.

We can perform balanced hierarchical clustering over
items following a clustering algorithm which takes a group
of vectors and an integer c as input and divides the vectors
into c balanced clusters (i.e., the item number of each clus-
ter differs from each other by at most one). In this paper,
we consider two kinds of clustering algorithms, i.e., PCA-
based and K-means-based clustering algorithms whose de-
tailed procedures are provided in the appendices. By repeat-
edly applying the clustering algorithm until each sub-cluster
is associated with only one item, a balanced clustering tree
is constructed. As such, denoting the item set and the depth
of the balanced clustering tree as A and d respectively, we
have:

cd−1 < |A| ≤ cd. (2)

Thus, given A and d, we can set c = ceil(|A| 1d) where
ceil(x) returns the smallest integer which is no less than x.

The balanced hierarchical clustering over items is nor-
mally performed on the (vector) representation of the items,
which may largely affect the quality of the attained balanced
clustering tree. In this work we consider three approaches
for producing such representation:
• Rating-based. An item is represented as the correspond-

ing column of the user-item rating matrix, where the value
of each element (i, j) is the rating of user i to item j.

Figure 1: Architecture of TPGR.

• VAE-based. Low-dimensional representation of the rat-
ing vector for each item can be learned by utilizing a vari-
ational auto-encoder (VAE) (Kingma and Welling 2013).

• MF-based. The matrix factorization (MF) technique (Ko-
ren, Bell, and Volinsky 2009) can also be utilized to learn
a representation vector for each item.

Architecture of TPGR The architecture of the Tree-
structured Policy Gradient Recommendation (TPGR) is
based on the constructed clustering tree. To ease the illustra-
tion, we assume that there is a status point to indicate which
node is currently located. Thus, picking an item is to move
the status point from the root to a certain leaf. Each non-leaf
node of the tree is associated with a policy network which
is implemented as a fully-connected neural network with a
softmax activation function on the output layer. Considering
node v where the status point is located, the policy network
associated with v takes the current state as input and outputs
a probability distribution over all child nodes of v, which
indicates the probability of moving to each child node of v.

Using a recommendation scenario with 8 items for illus-
tration, the constructed balanced clustering tree with the tree
depth set to 3 is shown in Figure 1 (left). For a given state
st, the status point is initially located at the root (node1)
and moves to one of its child nodes (node3) according to
the probability distribution given by the policy network cor-
responding to the root (node1). And the status point keeps
moving until reaching a leaf node and the corresponding
item (item8 in Figure 1) is recommended to the user.

We use the REINFORCE algorithm (Williams 1992) to
train the model while other policy gradient algorithms can
be utilized analogously. The objective is to maximize the
expected discounted cumulative rewards, i.e.,

J(πθ) = Eπθ
[n∑
i=1

γi−1ri

]
, (3)

and one of its approximate gradient with respect to the pa-
rameters is:

∇θJ(πθ) ≈ Eπθ [∇θ log πθ(a|s)Qπθ (s, a)], (4)

where πθ(a|s) is the probability of taking the action a at
the state s, and Qπθ (s, a) denotes the expected discounted
cumulative rewards starting with s and a, which can be es-
timated empirically by sampling trajectories following the
policy πθ.

An algorithmic description of the training procedure is
given in Algorithm 1 where I denotes the number of non-
leaf nodes of the tree. When sampling an episode for TPGR

3314

Algorithm 1 Learning TPGR
Require: episode length n, tree depth d, discount factor γ,

learning rate η, reward functionR, item set A with rep-
resentation vectors

Ensure: model parameters θ
1: c = ceil(|A| 1d)
2: construct a balanced clustering tree T with the number

of child nodes set to c
3: I = cd−1

c−1
4: for j = 1 to I do
5: initialize θj ← random values
6: end for
7: θ = (θ1, θ2, ..., θI)
8: repeat
9: ∆θ = 0

10: (s1, p1, r1, ..., sn, pn, rn) ← SamplingEpisode(θ, n,
c, d, T ,R) (see Algorithm 2)

11: for t = 1 to n do
12: map pt to an item at w.r.t. T and record the trajec-

tory nodes’ indexes (i1, i2, ..., id)

13: Q̂πθ (st, at) =
∑n
i=t γ

i−tri
14: πθ(at|st) =

∏d
d′=1 πθid′

(ptd′ |st)
15: ∆θ = ∆θ +∇θ log πθ(at|st)Q̂πθ (st, at)
16: θ = θ + η∆θ
17: end for
18: until converge
19: return θ

(as shown in Algorithm 2), pt denotes the path from the root
to a leaf at timestep t, which consists of d choices, and each
choice is represented as an integer between 1 and c denoting
the corresponding child node to move. Making the consec-
utive choices corresponding to pt from the root, we traverse
the nodes along pt and finally reach a leaf node. As such, a
path pt is mapped to a recommended item at, thus the prob-
ability of choosing at given state st is the product of the
probability of making each choice (to reach at) along pt.

Time and Space Complexity Analysis Empirically, the
value of the tree depth d is set to a small constant (typically
set to 2 in our experiments). Thus, both the time (for making
a decision) and the space complexity of each policy network
is O(c) (see more details in the appendices).

Considering the time spent on sampling an action given
a specific state in Algorithm 2, the TPGR makes d choices,
each of which is based on a policy network with at most c
output units. Therefore, the time complexity of sampling one
item in the TPGR is O(d × c) ' O(d × |A| 1d). Compared
to the normal RL-based methods whose time complexity of
sampling an action is O(|A|), our proposed TPGR can sig-
nificantly reduce the time complexity.

The space complexity of each policy network isO(c) and
the number of non-leaf nodes (i.e., the number of policy net-
works) of the constructed clustering tree is:

I = 1 + c+ c2 + · · ·+ cd−1 =
cd − 1

c− 1
. (5)

Algorithm 2 Sampling Episode for TPGR
Require: parameters θ, episode length n, maximum child

number c, tree depth d, balanced clustering tree T , re-
ward functionR

Ensure: an episode E
1: Initialize s1 ← [0]
2: for t = 1 to n do
3: node index = 1
4: for d′ = 1 to d do
5: sample cd′ ∼ πθnode index(st)
6: node index = (node index− 1)× c+ cd′ + 1
7: end for
8: pt = (c1, c2, ..., cd)
9: map pt to an item at w.r.t. T

10: rt = R(st, at)
11: if t < n then
12: calculate st+1 as described in Figure 2
13: end if
14: end for
15: return E = (s1, p1, r1, ..., sn, pn, rn)

Therefore, the space complexity of the TPGR is O(I ×
c) ' O(c

d−1
c−1 × c) ' O(cd) ' O(|A|), which is the same

as that of normal RL-based methods.

State Representation
In this section, we present the state representation scheme
adopted in this work, whose details are shown in Figure 2.

Figure 2: State representation.

In Figure 2, we assume that the recommender system
is performing the t-th recommendation. The input is a se-
quence of recommended item IDs and the corresponding re-
wards (user’s feedbacks) before timestep t. Each item ID is
mapped to an embedding vector which can be learned to-
gether with the policy networks in an end-to-end manner, or
can be pre-trained by some supervised learning models such
as matrix factorization and is fixed while training. Each re-
ward is mapped to a one-hot vector with a simple reward
mapping function (see more details in the appendices).

For encoding the historical interactions, we adopt a sim-
ple recurrent unit (SRU) (Lei and Zhang 2017), an RNN
model that is fast to train, to learn the hidden representation.
Besides, to further integrate more feedback information, we
construct a vector, denoted as user statust−1 in Figure 2,
containing some statistic information such as the number of
positive rewards, negative rewards, consecutive positive and
negative rewards before timestep t, which is then concate-

3315

nated with the hidden vector generated by the SRU to gain
the state representation at timestep t.

Experiments and Results
Datasets
We adopt the following two datasets in our experiments.
• MovieLens (10M).1 A dataset consists of 10 million rat-

ings from users to movies in MovieLens website.
• Netflix.2 A dataset contains 100 million ratings from Net-

flix’s competition to improve their recommender systems.
Detailed statistic information, including the number of users,
items and ratings, of these datasets is given in Table 1.

Table 1: Statistic information of the datasets.
Dataset #users #items total

#ratings
#ratings
per user

#ratings
per item

MovieLens 69,878 10,677 10,000,054 143 936
Netflix 480,189 17,770 100,498,277 209 5,655

Data Analysis
To demonstrate the existence of hidden sequential patterns
in the recommendation process, we empirically analyze the
aforementioned two datasets where each rating is attached
with a timestamp. Each dataset comprises numerous user
sessions and each session contains the ratings from one spe-
cific user to various items along timestamps.

Without loss of generality, we regard the ratings higher
than 3 as positive ratings (noticed that the highest rating is 5)
and the others as negative ratings. For a rating with at most
b consecutive positive (negative) ratings before it, we define
its consecutive positive (negative) count as b. As such, each
rating can be associated with a specific consecutive positive
(negative) count and we can calculate the average rating for
ratings with the same consecutive positive (negative) count.

We present the corresponding average ratings w.r.t. the
consecutive positive (negative) counts in Figure 3, where we
can clearly observe the sequential patterns in the user’s rat-
ing behavior: a user tends to give a linearly higher rating for
an item with larger consecutive positive count (green line)
and vice versa (red line). The reason may be that the more
satisfying (disappointing) items a user has consumed before,
the more pleasure (displeasure) she gains and as a result, she
tends to give a higher (lower) rating to the current item.

Environment Simulator and Reward Function
To train and test RL-based recommendation algorithms, a
straightforward way is to conduct online experiments where
the recommender system can directly interact with real
users, which, however, could be too expensive and commer-
cially risky for the platform (Zhang, Paquet, and Hofmann
2016). Thus, in this paper, we focus on evaluating our pro-
posed model on public available offline datasets by building
up an environment simulator to mimic online environments.

1http://files.grouplens.org/datasets/movielens/ml-10m.zip
2https://www.kaggle.com/netflix-inc/netflix-prize-data

1 2 3 4 5
consecutive count

3.0

3.2

3.4

3.6

3.8

4.0

av
er

ag
e

ra
tin

g

MovieLens
positive
negative
overall

1 2 3 4 5
consecutive count

3.3

3.4

3.5

3.6

3.7

3.8

av
er

ag
e

ra
tin

g

Netflix
positive
negative
overall

Figure 3: Average ratings for different consecutive counts.

Specifically, we normalize the ratings of a dataset into
range [−1, 1] and use the normalized value as the empiri-
cal reward of the corresponding recommendation. To take
the sequential patterns into account, we combine a sequen-
tial reward with the empirical reward to construct the final
reward function. Within each episode, the environment sim-
ulator randomly samples a user i and the recommender sys-
tem starts to interact with the sampled user i until the end of
the episode, and the reward of recommending item j to user
i, denoted as action a, at state s is given as:

R(s, a) = rij + α× (cp − cn), (6)

where rij is the corresponding normalized rating and is set
to 0 if user i does not rate item j in the dataset, cp and cn
denote the consecutive positive and negative counts respec-
tively; α is a non-negative parameter to control the trade-off
between the empirical reward and the sequential reward.

Main Experiments
Compared Methods We compare our TPGR model
with 7 methods in our experiments where Popularity and
GreedySVD are conventional recommendation methods;
LinearUCB and HLinearUCB are MAB-based methods;
DDPG-KNN, DDPG-R and DQN-R are RL-based methods.
• Popularity recommends the most popular item (i.e., the

item with highest average rating) from current available
items to the user at each timestep.

• GreedySVD trains the singular value decomposition
(SVD) model after each interaction and picks the item
with highest rating predicted by the SVD model.

• LinearUCB is a contextual-bandit recommendation ap-
proach (Li et al. 2010) which adopts a linear model to es-
timate the upper confidence bound (UCB) for each arm.

• HLinearUCB is also a contextual-bandit recommenda-
tion approach (Wang, Wu, and Wang 2016) which learns
extra hidden features for each arm to model the reward.

• DDPG-KNN denotes the method (Dulac-Arnold et al.
2015) addressing the large discrete action space problem
by combining DDPG with an approximate KNN method.

• DDPG-R denotes the DDPG-based recommendation
method (Zhao et al. 2018a) which learns a ranking vec-
tor and picks the item with highest ranking score.

• DQN-R denotes the DQN-based recommendation
method (Zheng et al. 2018) which utilizes a DQN to
estimate Q-value for each action given the current state.

3316

Table 2: Overall interactive recommendation performance (* indicates that p-value is less than 10−6 for significance test).
Dataset Method α = 0.0 α = 0.1 α = 0.2

Reward Precision@32 Recall@32 F1@32 Reward Precision@32 Recall@32 F1@32 Reward Precision@32 Recall@32 F1@32

MovieLens

Popularity 0.0315 0.0405 0.0264 0.0257 0.0349 0.0405 0.0264 0.0257 0.0383 0.0405 0.0264 0.0257
GreedySVD 0.0561 0.0756 0.0529 0.0498 0.0655 0.0759 0.0532 0.0501 0.0751 0.0760 0.0532 0.0502
LinearUCB 0.0680 0.0920 0.0627 0.0597 0.0798 0.0919 0.0627 0.0597 0.0917 0.0919 0.0627 0.0598

HLinearUCB 0.0847 0.1160 0.0759 0.0734 0.1023 0.1162 0.0759 0.0735 0.1196 0.1165 0.0761 0.0737
DDPG-KNN(k = 1) 0.0116 0.0234 0.0082 0.0098 0.0143 0.0240 0.0086 0.0102 0.0159 0.0239 0.0086 0.0102

DDPG-KNN(k = 0.1N) 0.1053 0.1589 0.0823 0.0861 0.1504 0.1754 0.0918 0.0964 0.1850 0.1780 0.0922 0.0975
DDPG-KNN(k = N) 0.1764 0.2605 0.1615 0.1562 0.2379 0.2548 0.1529 0.1504 0.3029 0.2542 0.1437 0.1477

DDPG-R 0.0898 0.1396 0.0647 0.0714 0.1284 0.1639 0.0798 0.0862 0.1414 0.1418 0.0656 0.0724
DQN-R 0.1610 0.2309 0.1304 0.1326 0.2243 0.2429 0.1466 0.1450 0.2490 0.2140 0.1170 0.1204
TPGR 0.1861* 0.2729* 0.1698* 0.1666* 0.2472* 0.2726* 0.1697* 0.1665* 0.3101 0.2729* 0.1702* 0.1667*

Netflix

Popularity 0.0000 0.0002 0.0001 0.0001 0.0000 0.0002 0.0001 0.0001 0.0000 0.0002 0.0001 0.0001
GreedySVD 0.0255 0.0320 0.0113 0.0132 0.0289 0.0327 0.0115 0.0135 0.0310 0.0315 0.0113 0.0132
LinearUCB 0.0557 0.0682 0.0212 0.0263 0.0652 0.0681 0.0212 0.0263 0.0744 0.0679 0.0211 0.0262

HLinearUCB 0.0800 0.1005 0.0314 0.0387 0.0947 0.0999 0.0312 0.0385 0.1077 0.0995 0.0310 0.0382
DDPG-KNN(k = 1) 0.0195 0.0291 0.0092 0.0106 0.0252 0.0328 0.0096 0.0113 0.0272 0.0314 0.0094 0.0111

DDPG-KNN(k = 0.1N) 0.1127 0.1546 0.0452 0.0561 0.1581 0.1713 0.0546 0.0653 0.1848 0.1676 0.0517 0.0632
DDPG-KNN(k = N) 0.1355 0.1750 0.0447 0.0598 0.1770 0.1745 0.0521 0.0646 0.2519 0.1987 0.0584 0.0739

DDPG-R 0.1008 0.1300 0.0343 0.0441 0.1127 0.1229 0.0327 0.0420 0.1412 0.1263 0.0351 0.0445
DQN-R 0.1531 0.2029 0.0731 0.0824 0.2044 0.1976 0.0656 0.0757 0.2447 0.1927 0.0526 0.0677
TPGR 0.1881* 0.2511* 0.0936* 0.1045* 0.2544* 0.2516* 0.0921* 0.1037* 0.3171* 0.2483* 0.0866* 0.1003*

Experiment Details For each dataset, the users are ran-
domly divided into two parts where 80% of the users are
used for training while the other 20% are used for test. In
our experiments, the length of an episode is set to 32 and the
trade-off factor α in the reward function is set to 0.0, 0.1 and
0.2 respectively for both datasets. In each episode, once an
item is recommended, it is removed from the set of available
items, thus no repeated items occur in an episode.

For DDPG-KNN, larger k (i.e., the number of nearest
neighbors) leads to better performance but poorer efficiency
and vice versa (Dulac-Arnold et al. 2015). For fair compar-
ison, we consider three cases with the value of k set to 1,
0.1N and N (N denotes the number of items) respectively.

For TPGR, we set the clustering tree depth d to 2 and ap-
ply the PCA-based clustering algorithm with rating-based
item representation when constructing the balanced tree
since they give the best empirical results as shown in the
following section. The implementation code3 of the TPGR
is available online.

All other hyper-parameters of all the models are carefully
chosen by grid search.

Evaluation Metrics As the target of RL-based methods is
to gain the optimal long-run rewards, we use the average re-
ward over each recommendation for each user in test set as
one evaluation metric. Furthermore, we adopt Precision@k,
Recall@k and F1@k (Herlocker et al. 2004) as our evalua-
tion metrics. Specifically, we set the value of k as 32, which
is the same as the episode length. For each user, all the items
with a rating higher than 3.0 are regarded as the relevant
items while the others are regarded as the irrelevant ones.

Results and Analysis In our experiments, all the mod-
els are evaluated in term of the four metrics including av-
erage reward over each recommendation, Precision@32,
Recall@32, and F1@32. The summarized results are pre-
sented in Table 2 with respect to the two datasets and three
different settings of trade-off factor α in the reward function.

From Table 2, we observe that our proposed TPGR out-
performs all the compared methods in all settings with p-

3https://github.com/chenhaokun/TPGR

values less than 10−6 (indicated by a * mark in Table 2) for
significance test (Ruxton 2006) in most cases, which demon-
strates the performance superiority of the TPGR.

When comparing the RL-based methods with the con-
ventional and the MAB-based methods, it is not surpris-
ing to find that the RL-based models provide superior per-
formances in most cases, as they have the ability of long-
run planning and dynamic adaptation which is lacking in
other methods. Among all the RL-based methods, our pro-
posed TPGR achieves the best performance, which can be
explained by two reasons. First, the hierarchical clustering
over items incorporates additional item similarity informa-
tion into our model, e.g., similar items tend to be clus-
tered into one subtree of the clustering tree. Second, differ-
ent from normal RL-based methods which utilize one com-
plicated neural network to make decisions, we propose to
conduct a tree-structured decomposition and adopt a certain
number of policy networks with much simpler architectures,
which may ease the training process and lead to better per-
formance.

Besides, as the value of trade-off factor α increases, we
observe that the improvement of TPGR over HLinearUCB
(i.e., the best non-RL-based method in our experiments) in
terms of average reward becomes more significant, which
demonstrates that the TPGR do have the capacity of captur-
ing sequential patterns to maximize long-run rewards.

Time Comparison In this section, we compare the effi-
ciency (in term of the consumed time for training and deci-
sion making stages) of RL-based models on the two datasets.

To make the time comparison fair, we remove the limi-
tation of no repeated items in an episode to avoid involving
the masking mechanism as the efficiency of the different im-
plementations of the masking mechanism is highly different.
Besides, all the models adopt the neural networks with the
same architecture which consists of three fully-connected
layers with the numbers of hidden units set to 32 and 16
respectively, and the experiments are conducted on the same
machine with 4-core 8-thread CPU (i7-4790k, 4.0GHz) and
32GB RAM. We record the consumed time for one train-
ing step (i.e., sampling 1 thousand episodes and updating

3317

Table 3: Time comparison for training and decision making.

Method Seconds per training step Seconds per 106 decisions

MovieLens Netflix MovieLens Netflix

DQN-R 13.1 15.3 19.6 34.6
DDPG-R 44.6 58.6 29.4 49.6

DDPG-KNN(k = 1) 1.3 1.3 1.8 1.8
DDPG-KNN(k = 0.1N) 24.2 40.3 200.4 313.0

DDPG-KNN(k = N) 248.4 323.9 1,875.0 3,073.2
TPGR 3.0 3.1 3.4 3.9

the model with those episodes) and the consumed time for
making 1 million decisions for each model.

As shown in Table 3, TPGR consumes much less time for
both the training and the decision making stages compared
to DQN-R and DDPG-R. DDPG-KNN with k set to 1 gains
high efficiency, which, however, is meaningless because it
achieves very poor recommendation performance as shown
in Table 2. In another case where k is set to N , DDPG-
KNN suffers from high time complexity which makes it
even much slower than DQN-R and DDPG-R. Thus, DDPG-
KNN can not achieve high effectiveness and high efficiency
at the same time. Compared to the case that DDPG-KNN
makes a trade-off between effectiveness and efficiency, i.e.,
setting k as 0.1N , our proposed TPGR achieves significant
improvement in term of both effectiveness and efficiency.

Influence of Clustering Approach
Since the architecture of the TPGR is based on the bal-
anced hierarchical clustering tree, it is essential to choose a
suitable clustering approach. In the previous section, we in-
troduce two clustering modules, K-means-based and PCA-
based modules, and three methods to represent an item,
namely rating-based, MF-based and VAE-based methods.
As such, there are six combinations to conduct balanced
hierarchical clustering. With α set to 0.1, we evaluate the
above six approaches in term of average reward on Netflix
dataset. The results are shown in Figure 4 (left).

K-means-based PCA-based
clustering module

0.05

0.10

0.15

0.20

0.25

av
er

ag
e

re
wa

rd

Influence of clustering approach
VAE
rating
MF

1 2 3 4
tree depth

0.240

0.245

0.250

0.255

av
er

ag
e

re
wa

rd

10

20

30

40

se
co

nd
s p

er
 tr

ai
ni

ng
 st

ep

Influence of tree depth
average reward
time per step

Figure 4: Influence of clustering approach and tree depth.

As shown in Figure 4 (left), applying PCA-based cluster-
ing module with rating-based item representation achieves
the best performance. Two reasons may account for this re-
sult. First, the rating-based representation retains all the in-
teraction information between the users and the items, while
both the VAE-based and the MF-based representations are
low-dimensional, which retain less information than rating-
based representation after dimension reduction. Therefore,
using rating-based representation may lead to better cluster-
ing. Second, as the number of clusters c (i.e., child nodes

number of non-leaf nodes) is large (134 for Netflix dataset
with the tree depth set to 2), the quality of the clustering tree
derived from K-means-based method would be sensitive to
the choices of the initialization of center points and the dis-
tance function, etc., which may lead to worse performance
than more robust methods such as PCA-based method, as
observed in our experiments.

Influence of Tree Depth
To show how the tree depth influences the performance as
well as the training time of the TPGR, we vary the tree depth
from 1 to 4 and record the corresponding results.

As shown in Figure 4 (right), the green curve shows the
consumed time per training step with respect to different tree
depths, where each training step consists of sampling 1 thou-
sand episodes and updating the model with those episodes.
It should be noticed that the model with tree depth set to 1
is actually without a tree structure but with only one policy
network taking a state as input and giving the policy pos-
sibility distribution over all items. Thus, the tree-structured
models (i.e., models with tree depth set to 2, 3 and 4) do sig-
nificantly improve the efficiency. The blue curve in Figure
4 (right) presents the performance of the TPGR over differ-
ent tree depths, from which we can see that the model with
tree depth set to 2 achieves the best performance while other
tree depths lead to a slight discount on performance. There-
fore, setting the depth of the clustering tree to 2 is a good
starting point to explore suitable tree depth when using the
TPGR, which can significantly reduce the time complexity
and provide great or even the best performance.

Conclusion
In this paper, we propose a Tree-structured Policy Gradient
Recommendation (TPGR) framework to conduct large-scale
interactive recommendation. TPGR performs balanced hier-
archical clustering over the discrete action space to reduce
the time complexity of RL-based recommendation methods,
which is crucial for scenarios with a large number of items.
Besides, it explicitly models the long-run rewards and cap-
tures the sequential patterns so as to achieve higher rewards
in the long run. Thus, TPGR has the capacity of achiev-
ing high efficiency and high effectiveness at the same time.
Extensive experiments over a carefully-designed simulator
based on two public datasets demonstrate that the proposed
TPGR, compared to the state-of-the-art models, can lead to
better performance with higher efficiency. For future work,
we plan to deploy TPGR onto an online commercial recom-
mender system. We also plan to explore more clustering tree
construction schemes based on the current recommendation
policy, which is also a fundamental problem for large-scale
discrete action clustering in reinforcement learning.

Acknowledgements
The work is sponsored by Huawei Innovation Research Pro-
gram. The corresponding author Weinan Zhang thanks the
support of National Natural Science Foundation of China
(61632017, 61702327, 61772333), Shanghai Sailing Pro-
gram (17YF1428200).

3318

Algorithm 3 K-means-based Balanced Clustering
Require: a group of vectors v1, v2, ..., vm and the number

of clusters c
Ensure: clustering result

1: for j = 1 to c do
2: initialize the jth cluster← ∅
3: end for
4: if m ≤ c then
5: for j = 1 to m do
6: assign vj to the jth cluster
7: end for
8: return first m clusters
9: end if

10: use the normal k-means algorithm to find c centroids:
p1, p2, ..., pc

11: mark all input vectors as unassigned
12: i = 1
13: while not all vectors are marked as assigned do
14: find the vector v′ among unassigned vectors which is

with the shortest Euclid distance to pi
15: assign v′ to the ith cluster
16: mark v′ as assigned
17: i = i mod c+ 1
18: end while
19: return all c clusters

Appendices
Clustering Modules
We introduce two balanced clustering modules in this paper,
namely, K-means-based and PCA-based modules, whose al-
gorithmic details are shown in Algorithm 3 and Algorithm 4
respectively.

Time and Space Complexity for Each Policy
Network of TPGR
As the value of the tree depth d is empirically set to a small
constant (typically set to 2 in our experiments) and c equals
to ceil(|A| 1d), we have:

O(c+m) ' O(|A| 1d +m) ' O(|A| 1d) ' O(c) (7)

and

O(m× c) ' O(m× |A| 1d) ' O(|A| 1d) ' O(c) (8)

where m is a constant.
As described in the paper, each policy network is imple-

mented as a fully-connected neural network. Thus, the time
complexity of making a decision for each policy network
is O(a + b × c), where a is a constant indicating the time
consuming before the output layer while b is also a constant
indicating the number of hidden units of the hidden layer be-
fore the output layer. According to Eq. 7 and Eq. 8, we have
O(a+ b× c) ' O(c).

A similar analysis can be applied to derive the space com-
plexity for each policy network. Assuming that the space
occupation for each policy network except the parameters
of the output layer is a′ and the number of hidden units of

Algorithm 4 PCA-based Balanced Clustering
Require: a group of vectors v1, v2, ..., vm and the number

of clusters c
Ensure: clustering result

1: for j = 1 to c do
2: initialize the jth cluster← ∅
3: end for
4: if m ≤ c then
5: for j = 1 to m do
6: assign vj to the jth cluster
7: end for
8: return first m clusters
9: end if

10: use PCA to find the principal component u with the
largest possible variance

11: sort the input vectors according to the value of projec-
tions on u and gain vi1 , vi2 , ..., vim

12: thredhold = (m− 1)mod c+ 1
13: max length = ceil(m/c)
14: for j = 1 to thredhold do
15: start = (j − 1)×max length+ 1
16: assign vstart, vstart+1, ..., vstart+max length−1 to the

jth cluster
17: end for
18: for j = thredhold+ 1 to c do
19: start = thredhold × max length + (j − 1 −

thredhold)× (max length− 1) + 1
20: assign vstart, vstart+1, ..., vstart+max length−2 to the

jth cluster
21: end for
22: return all c clusters

the hidden layer before the output layer is b′, we can de-
rive that the space complexity for each policy network is
O(a′ + b′ × c) ' O(c).

Thus, both the time (for making a decision) and the space
complexity of each policy network is linear to the size of its
output units, i.e., O(c).

Reward Mapping Function
Assuming that the range of reward values is (a, b] and the
desired dimension of the one-hot vector is l, we define the
reward mapping function as:

onehot mapping(r) = onehot
(
l − floor

(l × (b− r)

b− a

)
, l
)

where floor(x) returns the largest integer no greater than x
and one hot(i, l) returns an l-dimensional vector where the
value of the i-th element is 1 while the others are set to 0.

References
Cai, H.; Ren, K.; Zhang, W.; Malialis, K.; Wang, J.; Yu, Y.;
and Guo, D. 2017. Real-time bidding by reinforcement
learning in display advertising. In Proceedings of the Tenth
ACM International Conference on Web Search and Data
Mining, 661–670. ACM.

3319

Chapelle, O., and Li, L. 2011. An empirical evaluation of
thompson sampling. In Advances in neural information pro-
cessing systems, 2249–2257.
Dulac-Arnold, G.; Evans, R.; van Hasselt, H.; Sunehag, P.;
Lillicrap, T.; Hunt, J.; Mann, T.; Weber, T.; Degris, T.; and
Coppin, B. 2015. Deep reinforcement learning in large dis-
crete action spaces. arXiv preprint arXiv:1512.07679.
Grotov, A., and de Rijke, M. 2016. Online learning to rank
for information retrieval: Sigir 2016 tutorial. In Proceed-
ings of the 39th International ACM SIGIR conference on
Research and Development in Information Retrieval, 1215–
1218. ACM.
Herlocker, J. L.; Konstan, J. A.; Terveen, L. G.; John; and
Riedl, T. 2004. Evaluating collaborative filtering recom-
mender systems. j acm trans inform syst. Acm Transactions
on Information Systems 22(1):5–53.
Hu, Y.; Da, Q.; Zeng, A.; Yu, Y.; and Xu, Y. 2018. Re-
inforcement learning to rank in e-commerce search engine:
Formalization, analysis, and application.
Jin, J.; Song, C.; Li, H.; Gai, K.; Wang, J.; and Zhang,
W. 2018. Real-time bidding with multi-agent rein-
forcement learning in display advertising. arXiv preprint
arXiv:1802.09756.
Kawale, J.; Bui, H.; Kveton, B.; Long, T. T.; and Chawla,
S. 2015. Efficient thompson sampling for online matrix-
factorization recommendation. 28.
Kingma, D. P., and Welling, M. 2013. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factoriza-
tion techniques for recommender systems. Computer 42(8).
Lei, T., and Zhang, Y. 2017. Training rnns as fast as cnns.
arXiv preprint arXiv:1709.02755.
Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010.
A contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th international
conference on World wide web, 661–670. ACM.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529.
Mooney, R. J., and Roy, L. 2000. Content-based book rec-
ommending using learning for text categorization. In Pro-
ceedings of the fifth ACM conference on Digital libraries,
195–204. ACM.
Ruxton, G. D. 2006. The unequal variance t-test is an un-
derused alternative to student’s t-test and the mann–whitney
u test. Behavioral Ecology 17(4):688–690.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering

the game of go with deep neural networks and tree search.
nature 529(7587):484–489.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.
Sutton, R. S.; McAllester, D. A.; Singh, S. P.; and Mansour,
Y. 2000. Policy gradient methods for reinforcement learning
with function approximation. In Advances in neural infor-
mation processing systems, 1057–1063.
Tan, H.; Lu, Z.; and Li, W. 2017. Neural network based
reinforcement learning for real-time pushing on text stream.
In Proceedings of the 40th International ACM SIGIR Con-
ference on Research and Development in Information Re-
trieval, 913–916. ACM.
Tavakoli, A.; Pardo, F.; and Kormushev, P. 2018. Ac-
tion branching architectures for deep reinforcement learn-
ing. AAAI.
Wang, H.; Wu, Q.; and Wang, H. 2016. Learning hidden fea-
tures for contextual bandits. In Proceedings of the 25th ACM
International on Conference on Information and Knowledge
Management, 1633–1642. ACM.
Wang, H.; Wu, Q.; and Wang, H. 2017. Factorization bandits
for interactive recommendation. In AAAI, 2695–2702.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. In Re-
inforcement Learning. Springer. 5–32.
Zeng, C.; Wang, Q.; Mokhtari, S.; and Li, T. 2016. Online
context-aware recommendation with time varying multi-
armed bandit. In Proceedings of the 22nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining, 2025–2034. ACM.
Zhang, W.; Paquet, U.; and Hofmann, K. 2016. Collective
noise contrastive estimation for policy transfer learning. In
AAAI, 1408–1414.
Zhao, X.; Xia, L.; Zhang, L.; Ding, Z.; Yin, D.; and Tang, J.
2018a. Deep reinforcement learning for page-wise recom-
mendations. arXiv preprint arXiv:1805.02343.
Zhao, X.; Zhang, L.; Ding, Z.; Xia, L.; Tang, J.; and Yin,
D. 2018b. Recommendations with negative feedback
via pairwise deep reinforcement learning. arXiv preprint
arXiv:1802.06501.
Zhao, X.; Zhang, W.; and Wang, J. 2013. Interactive collab-
orative filtering. In Proceedings of the 22nd ACM interna-
tional conference on Conference on information & knowl-
edge management, 1411–1420. ACM.
Zheng, G.; Zhang, F.; Zheng, Z.; Xiang, Y.; Yuan, N. J.; Xie,
X.; and Li, Z. 2018. Drn: A deep reinforcement learning
framework for news recommendation. WWW.

3320

