
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Deep Neural Network Quantization via
Layer-Wise Optimization Using Limited Training Data

Shangyu Chen,1 Wenya Wang,1 Sinno Jialin Pan1

1Nanyang Technological University
schen025@e.ntu.edu.sg, wangwy@ntu.edu.sg, sinnopan@ntu.edu.sg

Abstract

The advancement of deep models poses great challenges to
real-world deployment because of the limited computational
ability and storage space on edge devices. To solve this prob-
lem, existing works have made progress to prune or quantize
deep models. However, most existing methods rely heavily on
a supervised training process to achieve satisfactory perfor-
mance, acquiring large amount of labeled training data, which
may not be practical for real deployment. In this paper, we
propose a novel layer-wise quantization method for deep neu-
ral networks, which only requires limited training data (1% of
original dataset). Specifically, we formulate parameters quan-
tization for each layer as a discrete optimization problem,
and solve it using Alternative Direction Method of Multipli-
ers (ADMM), which gives an efficient closed-form solution.
We prove that the final performance drop after quantization is
bounded by a linear combination of the reconstructed errors
caused at each layer. Based on the proved theorem, we pro-
pose an algorithm to quantize a deep neural network layer by
layer with an additional weights update step to minimize the
final error. Extensive experiments on benchmark deep mod-
els are conducted to demonstrate the effectiveness of our pro-
posed method using 1% of CIFAR10 and ImageNet datasets.
Codes are available in: https://github.com/csyhhu/L-DNQ

Introduction
Deep neural networks have been extensively employed with
promising results in various applications especially in com-
puter vision (Krizhevsky, Sutskever, and Hinton 2012; Si-
monyan and Zisserman 2014; He et al. 2016). However,
high performance comes with huge cost brought by enor-
mous amount of parameters and tremendous computational
cost. Consider a very deep model which is fully well-trained
and deployed, to use it for making predictions, most of the
computations involve multiplications of a real-valued weight
by a real-valued activation in forward propagation. These
multiplications are expensive as they are all float-point to
float-point multiplication operations. To alleviate this prob-
lem, a number of approaches have been proposed to com-
press deep models by pruning or quantization. Han et al.
(2015) proposed to sparsify weights to reduce the number
of multiplications directly. Courbariaux, Bengio, and David

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(2015) and Hubara et al. (2016) proposed to binarize weights
to be in {±1}. Rastegari et al. (2016) introduced a float value
αl known as the scaling factor in layer l, turning binarized
weights as αl × {±1}. To accelerate inference, αl is multi-
plied by layer input, such that weights become integer values
{±1}, converting float-point multiplication into float-point
to integer computation. Li, Zhang, and Liu (2016) extended
binary weights to ternary values, and Leng et al. (2017) fur-
ther proposed to quantize the models with more bits in or-
der to provide more flexibility. Apart from above mentioned
training-based method, direct quantization methods also ex-
ist that don’t require training data: Gong et al. (2014) clus-
tered weights using Kmeans. Jacob et al. (2017), Vanhoucke,
Senior, and Mao (2011) projected weights to nearest dis-
crete points. Li et al. (2017) proposed convergence analysis
of quantization training.

However, most prevailing low bits compression methods
relied on a heavy training process with large amount of la-
beled data. Specifically, given a pre-trained full-precision
deep neural network as the initial parameters, which is usu-
ally trained in a cloud environment, most methods carry the
compression process in a supervised learning manner with
sufficient training data by minimizing the error between the
compressed network outputs and the ground-truth labels.
However, practical scenarios pose more strict challenges. On
the one hand, excessive training data for a specific applica-
tion is inaccessible due to data privacy, especially in com-
mercial models with high confidential requirement (Wu et al.
2016). On the other hand, many real cases require the com-
pression conducted on edge devices, which greatly limit the
storage space to deploy large amount of training data (e.g.
ImageNet dataset occupies over 500Gb). Therefore, com-
pression under limited instances is crucial in practice.

In these situations, existing training-based compression
methods fail to proceed as they need abundant data to train
a compressed model. Direct quantization methods show
considerable gap. To overcome this limitation, we develop
a quantization method, which only uses a small portion
of training data while is still able to preserve the perfor-
mance of the original network after quantization. The pro-
posed method is named Layer-wise/Limited training data
Deep Neural Network Quantization (L-DNQ), which aims
to achieve the following goals: 1) For each layer, parame-
ters are quantized while the layer output is similar to that of

3329

the original full-precision parameters. 2) The quantization
can be obtained in a closed-form solution without gradient-
based training. 3) There is a theoretical guarantee on the
overall prediction performance after quantization. 4) The
whole process consumes only a small portion of instances
from training data (1% of training dataset in experiments).

To achieve the first goal, we formulate a quadratic opti-
mization problem for each layer to minimize the error be-
tween the quantized layer output and the full-precision layer
output. The quantized weights serve as discrete constraints,
leading to a discrete optimization problem. This problem
is solved by Alternative Direction Methods of Multipliers
(ADMM) (Boyd et al. 2011) that decouples the continuous
variables and discrete constraints to update them separately.
ADMM is highly efficient and provides a closed-form so-
lution to our quantization problem which contributes to our
second goal. Regarding our third goal, inspired by (Aghasi et
al. 2017; Dong, Chen, and Pan 2017) which provide theoret-
ical bounds for network pruning, we derive a bound for net-
work quantization. Most importantly, to avoid inefficient us-
age of data as is common in existing works, we approximate
full-precision network under quantized constraints without
the need for label supervision for optimization except a light
retraining process. Experiments verify that the quantized
networks learned by our proposed method with limited train-
ing data only bring a slight drop of the prediction perfor-
mance, which achieves our fourth goal.

L-DNQ is able to achieve promising results with only
limited training data compared with existing quantization
methods. In practice, L-DNQ shows tremendous efficiency
in data usage compared with some state-of-the-art methods.

Related Work
Regarding deep networks quantization, Courbariaux, Ben-
gio, and David (2015) proposed network binarization
through deterministic and stochastic rounding for parame-
ters update after backpropagation. Hubara et al. (2016) and
Rastegari et al. (2016) extended the idea by introducing bi-
nary activation. However, they all fail to recover a closing
accuracy of the full-precision models. Li, Zhang, and Liu
(2016) assumed a prior distribution for parameters to find an
approximated threshold for ternarization. However, a proper
prior is difficult to define. Lin, Zhao, and Pan (2017) ap-
proximated the full-precision weight with a linear combi-
nation of multiple binary weight bases. Zhu et al. (2016)
set different scaling factors for positive and negative param-
eters ternarization. To update these factors, they first per-
formed gradient descent, then gathered and averaged gradi-
ents for different factors based on some heuristic thresholds.
Both of these methods relied on retraining and manually de-
signed thresholds. Leng et al. (2017) modified the quanti-
zation retraining objective function using ADMM, which
separates the processes on training real-valued parameters
and quantizing the updated parameters. Zhou et al. (2017)
proposed to incrementally quantize a portion of parame-
ters based on weight partition. Polino, Pascanu, and Alis-
tarh (2018) used distillation to assist training quantized net-
work. All the above approaches relied on heavy supervised
training process. Hou and Kwok (2018) extended neural

network binarization from (Hou, Yao, and Kwok 2016) to
quantization. By directly quantizing weights without train-
ing, Gong et al. (2014) clustered weights using Kmeans, Ja-
cob et al. (2017), Vanhoucke, Senior, and Mao (2011) pro-
jected weights to nearest discrete points, Kundu et al. (2017)
approximated full-precision weights by addition of a set of
discrete values. Lin, Talathi, and Annapureddy (2016) con-
verted pre-trained floating point models based on ignal-to-
quantization-noise-ratio (SQNR). Still, such direct quantiza-
tion can hardly cover performance drop. Other related works
to ours include (Aghasi et al. 2017) and (Dong, Chen, and
Pan 2017), which are also layer-wise deep compression ap-
proaches. However, they focused on pruning unimportant
weights of the original networks rather than quantizing the
real values of the weights into discrete bits.

Problem Statement and Preliminary
Problem Statement
Given a training set of n instances of d dimensions,
{xj , yj}nj=1, and a well-trained deep neural network with
L layers (excluding the input layer)1. The well-trained net-
work is considered as a reference or teaching network. De-
note the input and the final output of the well-trained deep
neural network by X=[x1, ...,xn]∈Rd×n and Y∈RmL×n,
respectively. For a layer l, we denote the input and the out-
put of the layer by Yl−1 = [yl−11 , ...,yl−1n]∈Rml−1×n and
Yl = [yl1, ...,y

l
n] ∈ Rml×n, respectively, where yli can be

considered as a representation of xi in layer l, and Y0 = X,
YL = Y, m0 = d. Using one forward-pass step, we have
Yl = σ(Zl), where Zl = W̄>

l Yl−1 with W̄l ∈ Rml−1×ml

denoting the matrix of full-precision parameters for layer l
of the well-trained neural network, and σ(·) is the activation
function. For convenience in presentation and proof, we de-
fine the activation function σ(·) as the rectified linear unit
(ReLU). We further denote by Θ̄l ∈ Rml−1ml×1 the vec-
torization of W̄l. For a well-trained neural network, Yl, Zl

and Θ̄l are all fixed matrices and contain most information
of the neural network. The goal of quantization is to dis-
cretize the values of all elements of Θ̄l for each layer into a
finite set Ωl, e.g. symmetric: Ωl = {−αl, 0, αl} or random:
Ωl = {αl, βl, γl}. We denote the quantized Θ̄l by Θ̂l.

Alternative Direction Methods of Multipliers
ADMM is a widely-used optimization method (Aghasi et al.
2017; Takapoui et al. 2017). It combines the decomposabil-
ity of dual ascent and convergence properties of the methods
of multipliers. Given the following minimization problem:

min f(x) + g(z), s.t.h(x, z) = 0.

In ADMM, we first reformulate (1) with augmented La-
grangian as:

Lρ(x,y, z) = f(x)+g(z)+y>h(x, z)+
ρ

2
||h(x, z)||22, (1)

1For simplicity in presentation, we suppose the neural network
is a feed-forward (fully-connected) network. However, our method
works beyond feed-forward networks, and can be applied to deep
models with CNN layers, such as VGG and ResNet.

3330

where y is the Lagrangian multipliers. In practice, y is re-
placed by λ = (1ρ)y (Boyd et al. 2011) to convert (1) to

Lρ(x,y, z)=f(x)+g(z)+
ρ

2
||h(x, z)+λ||22−

ρ

2
||λ||2. (2)

We then breaks (2) into subproblems with respect to x, z, λ,
respectively, and solve them iteratively using the following
updates:

Proximal step : xk+1 = argmaxxLρ(x, z
k,λk) (3)

Projection step : zk+1 = argmaxzLρ(x
k+1, z,λk) (4)

Dual update Step : λk+1 =λk + xk+1 − zk+1 (5)

Layer-Wise Quantization
Our proposed L-DNQ is a layer-wise cascade algorithm,
where the output of a quantized layer is used as the input for
quantizing the subsequent layer. Specifically, suppose one
has quantized the well-trained network up to the (l−1)-th
layer. Then, to quantize the l-th layer, we consider Ŷl−1 =

f(Y0; Θ̂[1,...,l−1]) as the input, where f(Y0; Θ̂[1,...,l−1])
denotes the output of the (l−1)-th layer with the first (l−1)
layers being quantized, given input Y0. In the subsequent
steps, L-DNQ aims at quantize the weights from layer l to
the last layer L, denoted by Θ̂[l,...,L], such that the diver-
gence of the final layer output between quantized network
and pre-trained network is minimized:

min
Θ̂[l,...,L]

||f(Ŷl−1; Θ̂[l,...,L])− f(Yl−1; Θ̄[l,...,L])||2F , (6)

s.t. Θ̂[l,...,L] ∈ Ω[l,...,L].

Directly solving the above problem is difficult as the in-
puts to quantized network (Ŷl−1) and the reference network
(Yl−1) are different. Here, instead we propose to optimize
the upper bound of the objective in (6), which is given by the
following triangle inequality:

||f(Ŷl−1; Θ̂[l,...,L])− f(Yl−1; Θ̄[l,...,L])||2F
≤ ||f(Ŷl−1; Θ̂[l,...,L])− f(Ŷl−1; Θ̄

new
[l,...,L])||2F︸ ︷︷ ︸

Quantization

+ ||f(Ŷl−1; Θ̄
new
[l,...,L])− f(Yl−1; Θ̄[l,...,L])||2F︸ ︷︷ ︸

Weights Update

, (7)

where f(Ŷl−1; Θ̂[l,...,L]) presents the final output with
quantized weights Θ̂[l,...,L] and input Ŷl−1. Θ̄

new
[l,...,L] is in-

troduced as updated full precision weights learned during
training. The objective in (6) is upper bounded by the sum-
mation of the Quantization term and the Weights Update
term. To optimize its upper bound, we present an ADMM
algorithm to minimize the Quantization term for each layer
and a back-propagation algorithm to minimize the Weights
Update term right after the quantization on each layer. These
two procedures are conducted alternatingly until all layers
are quantized.

Layer-Wise Error
During layer-wise quantization in layer l, which is the quan-
tization term in (7), suppose Θ̂l is the quantized parameters
of Θ̄

new
l (when l = 1, Θ̄

new
1 = Θ̄1; matrix form as W̄new

l)
to be learned. With the cascade input Ŷl−1 and Θ̂l, we ob-
tain a new outcome of the weighted sum before performing
the activation function σ(·) for layer l, denoted by Ẑl. Com-
pared with the weighted sum of updated weights and cascade
input: Zl∗ = (W̄new

l)>Ŷl−1, we define an error function
E(·) as:

El = E(Ẑl) =
1

n

∥∥∥Ẑl − Zl∗

∥∥∥2
F
, (8)

where ‖ · ‖F is the Frobenius Norm. Based on the definition
of the error function (8), E(Zl∗) = 1

n

∥∥Zl∗ − Zl∗
∥∥2
F

= 0.
Using this property and following (Hassibi and Stork 1993;
LeCun, Denker, and Solla 1990), (8) can be approximated
by functional Taylor series as follows,

El = E(Ẑl)− E(Zl∗) (9)

=

(
∂El

∂Θl

)>
δΘl +

1

2
δΘl

>HlδΘl +O(‖δΘl‖32),

where δΘl denotes a perturbation of Θ̄
new
l , Hl ≡

∂2El/∂Θl
2 is the Hessian matrix w.r.t. Θl. It can be proven

that with the error function defined in (8), the first (linear)
term ∂El

∂Θl

∣∣∣Θl=Θ̄new
l

= 0, and O(‖δΘl‖32) vanishes. Hence

we can rewrite (9) as El = 1
2δΘl

>HlδΘl. Since our goal is
to quantize the weights to obtain Θ̂, by replacing δΘl with
Θ̂l − Θ̄

new
l , the final objective becomes:

min
Θ̂l

f(Θ̂l) =
1
2 (Θ̂l − Θ̄

new
l)>Hl(Θ̂l − Θ̄

new
l), (10)

s.t. Θ̂l ∈ Ωl,

where Ωl is a discrete set of all possible values of the quan-
tized weights in layer l. To solve (10), which is a discrete op-
timization problem, we develop a ADMM-based algorithm.

Quantization with ADMM
In our problem setting, we apply ADMM to separately op-
timize continuous variables and discrete variables in (10).
To be specific, we introduce an auxiliary parameter G and
reformulate (10) as follows,

min
Θ̂,G

f(Θ̂) + IΩ(G), s.t. Θ̂ = G, (11)

where IΩ(G) is an indicator function that induces great
penalty if G 6∈ Ω. Here we drop the subscript l for sim-
plification in presentation. By introducing G and applying
the ADMM algorithm, the optimization problem (11) can
be converted to

Lρ(Θ̂,G,λ)

= f(Θ̂) + IΩ(G) +
ρ

2
‖Θ̂−G + λ‖22 −

ρ

2
‖λ‖22.(12)

(12) can be broken into 3 subproblems that are solved alter-
natingly and iteratively by repeating the following steps.

3331

Proximal Step At iteration k+1, the proximal step in-
volves the update on Θ̂ via

Θ̂
k+1

= argmin
Θ̂

Lρ(Θ̂,Gk,λk), (13)

where

Lρ(Θ̂,Gk,λk) = f(Θ̂) +
ρ

2
‖Θ̂−Gk + λk‖22. (14)

Since f(Θ̂) is a quadric function with continuous variable,
setting the gradient to 0 leads to the optimal solution by
solving the following linear equation:(

H+diag(ρ)
)
Θ̂k+1 = HΘ̄

new
+diag(ρ)(Gk−λk). (15)

This is far more efficient than gradient descent (Leng et al.
2017), and costs only a few seconds even if H is large.
Besides, gradient descent requires fine-tuning a number of
hyper-parameters and has unpredictable convergence. These
issues are avoided using (15). As we can observe in (14), ρ
acts as an importance weight for the discrete term. A large ρ
leads Θ̂

k+1
to approach discrete feasible solution Gk −λk,

while a small ρ guides it to original weights Θ̄
new.

Projection Step In projection step, we optimize G by
solving the following optimization problem:

min
G
‖Θ̂

k+1
−G + λk‖22, s.t. G ∈ Ω. (16)

We define Vk = Θ̂
k+1

+ λk, which is fixed in the projec-
tion step. The goal of (16) is to find G that is closest to Vk

and lie in the discrete set Ω. Take Ω = {−α, 0, α} as an
example. We further denote by Q ∈ {−1, 0, 1} an interme-
diate variable such that G = g(α,Q) = α · Q. Here g(·)
represents a mapping from integers to discrete real values.
Thus, (16) can be rewritten as:

min
G,α
‖Vk − α ·Q‖22, s.t. Q ∈ {−1, 0, 1}, (17)

which consists of two types of variables to be optimized:
the scaling factor α that is continuous and the discrete con-
straints Q. The problem is non-convex and non-smooth.
We propose to solve it alternatingly: optimize α with Q
fixed and vice versa. Specifically, given a fixed Q, (17)
is a quadric function w.r.t α, which can be easily solved
by α = V>Q

Q>Q
. With α fixed, the optimal Q is obtained

by projecting Vk to the nearest feasible solution as Q =

Proj{−1,0,1}
(

Vk

α

)
, where ProjΩ(x) denotes the nearest

point in the set Ω for x. The projection step is efficient to
compute. Empirical experiments show that α and Q could
reach a stable range in less than 10 iterations. Finally we
can have Gk+1 = g(α,Q).

Dual Update Step After obtaining Θ̂k+1 and Gk+1, the
dual variable λ is updated using the following rule:

λk+1 = λk + Θ̂
k+1
−Gk+1. (18)

The ADMM-based layer-wise optimization saves much
effort compared to existing gradient-descent-based meth-
ods. Computation complexity for the three steps are:

quantized network

original network

Figure 1: Weights Update: After layer l − 1 is quan-
tized from Θ̄l−1 to Θ̂l−1. Input Yl−1 and Ŷl−1 are
fed into two networks to generate f(Yl−1; Θ̄[l,...,L]) and
f(Ŷl−1; Θ̄[l,...,L]), respectively. Squared difference is back-
propated to update weights in higher layers: Θ̄

new
l,...,L.

O(n3),O(n),O(n), where n is the number of weights in one
kernel. Most importantly, solving the optimization objective
requires no label information, which is beneficial when la-
beled data is not available in real world applications.

Remaining Non-quantized Layers Update
In order to optimize the weights update term in (7), we
first obtain the network where the previous l − 1 layers are
quantized while the remaining ones are not. Denote the dif-
ference or error of the final layer output between the cur-
rent partially-quantized network and the original network
by ε[l...L] = ‖f(Ŷl−1; Θ̄

new
[l,...,L]) − f(Yl−1; Θ̄[l,...,L])‖2F .

Here, we consider f(Yl−1; Θ̄[l,...,L]) as the ground-truth,
and use back-propagation to learn Θ̄

new
[l,...,L]. After we update

Θ̄[l,...,L] to Θ̄
new
[l,...,L], we can apply the ADMM algorithm in-

troduced in the previous section to quantize layer l by replac-
ing Θ̄l with Θ̄

new
l in (10). Fig.1 demonstrates the weights

update procedure.

Algorithm 1 Layer-wise Unsupervised Network Quantiza-
tion
Require: Θ̄ = {Θ̄l}1≤l≤L, C = {µl, σl, γl, βl}1≤l≤L:

well-trained network, X: training data
Ensure: Θ̂ = {Θ̂l}1≤l≤L, Ĉ = {µ̂l, σ̂l, γ̂l, β̂l}1≤l≤L,
{αl}1≤l≤L: quantized network

1: for l = 1, 2, ...L do
2: Calculate Hessian matrix Hl of layer l from Θ̄

new
l

and X. (If l = 1, Θ̄
new
1 = Θ̄1)

3: Perform ADMM to obtain quantized weight Θ̂l by
solving (12)

4: Learn Θ̄
new
[l+1,...,L] by minimizing ε[l+1...L] =

‖f(Ŷl; Θ̄
new
[l+1,...,L])− f(Yl; Θ̄[l+1,...,L])‖2F , and up-

date Θ̄[l+1,...,L] ← Θ̄
new
[l+1,...,L].

5: end for
6: Retrain.

L-DNQ in Practice
The overall procedure of L-DNQ is summarized in Algo-
rithm 1. In the algorithm,C denotes the set of parameters for

3332

batch normalization, which is also updated in the quantized
network. Steps 1-5 corresponds to the quantization proce-
dure using ADMM. After quantization, models can be fur-
ther boosted by retraining: using label information to fine-
tune parameters in batch normalization layers and unquan-
tized layer. In practice, we adopt approximated Hessian cal-
culation in (Dong, Chen, and Pan 2017), which only needs to
calculate one block matrix of the original Hessian, making
our Hessian computation suitable to handle. About 200 im-
ages are sufficient to generate Hessian matrix for each layer.

Theoretical Analysis
Recall that our goal is to control the consistency of the net-
work’s final output YL before and after quantization. In the
following, we show how the layer-wise errors propagate to
the final output layer. We prove that the accumulated error
over multiple layers is upper bounded by a constant.

Theorem 1. Given a quantized network via layer-wise
quantization introduced in Section , each layer has its own
layer-wise error εl for 1 ≤ l ≤ L, then the accumulated
error of ultimate network output ε̂L = 1√

n
‖ŶL − YL‖F

obeys:

ε̂L ≤
L−1∑
k=1

(
L∏

l=k+1

A
√
εk

)
+
√
εL, (19)

where Ŷl= σ(Ŵ>
l Ŷl−1) for 2≤ l≤L denotes the “accu-

mulated pruned output” of layer l. The term A= ‖Θ̂l‖F is
upper bounded according to different quantizations.

Consider Ω = {±α, 0} as an example. It can be proven
that A ≤ α2 × (ml × ml−1). Moreover, empirical experi-
ments shows that 0 occupies 50%-70% of the quantized pa-
rameters, thus A is much smaller in practice. In summary,
Theorem 1 shows that: 1) Layer-wise error for layer l will
be scaled by continued multiplication of parameters’ Frobe-
nius Norm over the following layers when it propagates to
final output. For quantization, this Frobenius Norm is upper
bounded by a constant determined by the quantization in-
tervals. 2) The final error of the ultimate network output is
bounded by the weighted sum of layer-wise errors.

Proof. We prove Theorem 1 via induction. First, for l=1:

ε̂l = εl =
√
δEl. (20)

Then suppose that Theorem 1 holds up to layer l:

ε̂l ≤
l−1∑
h=1

(

l∏
k=h+1

‖Θ̂k‖F
√
δEh) +

√
δEl. (21)

In order to show that (21) holds for layer l + 1 as well, we
refer to Ỹl+1 = σ(Ŵ>

l+1Y
l) as ‘layer-wise quantized out-

put’, where the input Yl is fixed as the same as the origi-
nally well-trained network. An accumulated input Ŷl+1 =

f(Y0; Θ̂[1,...,l]), and have the following theorem.

Theorem 2. Consider layer l + 1 in a quantized deep
network, the difference between its accumulated quantized

output, Ŷl+1, and layer-wise quantized output, Ỹl+1, is
bounded by:

‖Ỹl+1 − Ŷl+1‖2F ≤
√
n‖Θ̂l+1‖2F ε̂l. (22)

By using (20), (22) and the triangle inequality, we are now
able to extend (21) to layer l + 1:

ε̂l+1 =
1√
n
‖Ŷl+1 −Yl+1‖2F

≤ 1√
n
‖Ỹl+1 − Ŷl+1‖2F +

1√
n
‖Ỹl+1 −Yl+1‖2F

≤
l∑

h=1

(
l+1∏

k=h+1

‖Θ̂k+1‖2F ·
√
δEh

)
+
√
δEl+1.

Finally, we prove that (21) holds up for all layers, and
Theorem 1 is a special case when l = L. We further set
A = ‖Θ̂l‖F , which is the Frobenius norm of quantized
weights. A is upper bounded according to different quan-
tization. Consider Ω = {±α, 0} as an example. It can be
proven that A≤α2 × (ml ×ml−1).

Experiment
Experimental Setup
We conduct comparison experiments with the following
baseline approaches: 1) Extremely Low Bit Neural Network
(ExNN) (Leng et al. 2017) 2) Trained Ternary Quantization
(TTQ) (Zhu et al. 2016), 3) Incremental Network Quantiza-
tion (INQ) (Zhou et al. 2017) 4) Loss-Aware weight Ternar-
ized network (LAT) (Hou and Kwok 2018). 5) Compress-
ing Deep Convolutional Networks using Vector Quantiza-
tion (VQ) (Gong et al. 2014). 6) Direct Quantization (DQ)
which is commonly used in production (Jacob et al. 2017),
(Vanhoucke, Senior, and Mao 2011). 7) Ternary Residual
Networks (TRN) (Kundu et al. 2017). 8) Model compression
via distillation and quantization (DistilQuant) (Polino, Pas-
canu, and Alistarh 2018). Two benchmark datasets are used
including ImageNet ILSVRC-2012 and CIFAR-10. Regard-
ing deep architectures, we experiment with ResNet-18 (He
et al. 2016), AlexNet 2 (Krizhevsky, Sutskever, and Hinton
2012) on ImageNet dataset, and with CIFARNet3, VGG,
WRN4, ResNet-20, ResNet-32, ResNet-56 on CIFAR-10.
All these deep models are well trained at the first place. Due
to different deep learning framework, performance of well-
trained networks show slight difference.

As L-DNQ pioneers in limited-instance quantization, few
works have been published for comparison. VQ conducts
compression based on original pre-trained model by using
K-means clustering directly; DQ essentially projects full-
precision weights into nearest discrete points; TRN approx-
imated full-precision weights by a combination of quan-
tized weights. After quantization, training instances are used

2AlexNet with batch normalization layers is adopted.
3The network architecture is: (2 × 128C3) − MP2 − (2 ×

256C3) − MP2 − (2 × 512C3) − MP2 − (2 × 1024FC) −
10SVM , where C3 is a 3× 3 ReLU convolution layer, MP2 is a
2× 2 max-pooling layer.

4Widen factor:20, depth:28, dropout rate:0.3

3333

for retraining and fine-tunning. These methods can be con-
sidered as baselines for limited-instance quantization. For
fair comparison with training-based quantization, we reduce
training data to 1% of the original training dataset. Specif-
ically, we re-implement ExNN, TTQ, INQ, LAT and Dis-
tilQuant to generate their reported results and then apply the
same sets of parameters to produce the results with limited
instances. 500 training instances in CIFAR-10 and 12,800
in ImageNet are randomly sampled to simulate the scenario
of limited instances. All experiments are conducted 5 times
and the average result is reported. Note that all methods use
different initial pre-trained models. For fair comparison, we
record the percentage of the improvements for these quan-
tized models over their corresponding pre-trained models,
which is positive for improvement while negative for degra-
dation after quantization (The higher the better).

L-DNQ adopts the following quantization intervals: Ωl =
αl×{0,±20,±21,±22...±2b} for each layer. Using power
of 2 is efficient for inference, because quantized weights can
be stored and calculated as integer (±1, 2, ...), with layer
output multiplying by αl to retrieve the actual layer out-
put. To facilitate notation, we use (2b+3)-bit to denote the
above quantization set, which can be interpreted as the to-
tal number of different values in the quantization set, e.g.,
α × {0,±20,±21,±22} is denoted as 7-bit. In INQ (Zhou
et al. 2017), (Jacob et al. 2017) and (Kundu et al. 2017), a
different presentation form for bits is used. Here we convert
the number of bits using our notation for fair comparison.

Network Method bits Imp∗(%) FP∗∗

ResNet20

TTQ 3 -77.25 91.77
INQ 15 -48.48 90.02

ExNN 3 -11.15

91.5VQ 3 -11.27
DQ 3 -19.92

L-DNQ 3 -4.30

ResNet32

TTQ 3 -79.99 92.33
INQ 15 -48.02 86.83

ExNN 3 -12.03

92.13VQ 3 -8.98
DQ 3 -21.07

L-DNQ 3 -3.66

ResNet56

TTQ 3 -80.64 93.20
INQ 15 -15.84 93.40

ExNN 3 -12.15

92.66VQ 3 -11.43
DQ 3 -18.67

L-DNQ 3 -3.49

CIFARNet

LAT 3 -11.62 89.62
VQ 3 -11.83

92.27DQ 3 -21.72
L-DNQ 3 -1.96

VGG∗∗∗ DistilQuant 3 -53.9 90.77
L-DNQ 3 -1.47 89.42

WRN DistilQuant 3 -6.57 92.25
L-DNQ 3 -2.22 91.43

Table 1: Comparison on CIFAR-10. All methods use 1%
(500 images) of training instances. ∗ indicates improvement.
∗∗ represents Full Precision (pre-trained model) Accuracy.
∗∗∗ is a VGG-like model adopted by DistilQuant.

Network Method bits Improvement(%) FP Accuracy

ResNet18

TTQ 3 -69.48/-88.49 69.6/89.2
INQ 15 -61.27/-64.22 68.27/88.69

ExNN 3 -43.53/-37.82

69.76/89.02

VQ 3 -35.69/-29.08
DQ 3 -61.22/-65.64

L-DNQ 3 -16.43/-10.67

DQ
8 -56.78/-58.92
16 -13.81/-8.68
32 -2.82/-1.51

L-DNQ 9 -2.73/-0.90

ResNet34 DistilQuant 3 -32.03/24.3 56.55/79.09L-DNQ 3 -29.31/18.37

AlexNet1

TTQ

3

-56.18/-78.26 57.2/80.3
DistilQuant -55.07/-72.79 56.55/79.09

ExNN -28.34/-26.06

58.34/80.80VQ -35.95/-36.06
DQ -57.04/-76.49

L-DNQ -17.78/-14.00

AlexNet

INQ 15 -42.82/-46.83 57.24/79.80
TRN 12.5 ≈ −1 N.A.

ExNN

9

-13.47/-10.33

58.34/80.80VQ -5.94/-4.22
DQ -7.84/-5.72

L-DNQ -0.88/-0.57

Table 2: Comparison on ImageNet. All methods use 1%
(12,800 images) training instances. AlexNet1: in TTQ, the
weights of the first and final layer remain full precision. L-
DNQ, ExNN, DQ, VQ, DistilQuant are under the same set-
ting.

Overall Experimental Results and Analysis
On CIFAR-10, we compare our method with ExNN, TTQ,
INQ, LAT, VQ, DQ, DistilQuant in Table 1. ExNN incorpo-
rated ADMM quantization in training. TTQ ternarized the
full-precision model into 3 different values: {βl, 0, αl} in
layer l. INQ converted weights into either power of two or
zero. LAT quantized weights into 3 bits. DistilQuant utilize
distillation to train quantized model. We reproduce TTQ,
INQ experiments on ResNet-20, ResNet-32, ResNet-56,
LAT experiments on CIFARNet and DistilQuant on VGG,
WRN with the source code released by (Zhu et al. 2016)
, (Zhou et al. 2017) , (Hou and Kwok 2018) and (Polino,
Pascanu, and Alistarh 2018), respectively. ExNN is reim-
plemented by us since its source code is not released. After
VQ and DQ generate quantized weights, we use limited in-
stances for retraining. As Table 1 shows, all training-based
methods (ExNN, TTQ, INQ, DistilQuant) experienced great
degradation using limited instances. VQ and DQ performed
slightly better, but still showed considerable drop. As a con-
trast, L-DNQ can preserve original performance, even under
a dramatic reduction of training data down to 1%.

On ImageNet, which is a much larger dataset than CIFAR-
10, we compare our model with ExNN, INQ, TTQ, VQ,
DQ, DistilQuant using ResNet18/34 and AlexNet, with
the results showing in Table 2. Similar to CIFAR-10, dif-
ferent methods use different pre-trained models and the
improvements are shown. When only 1% instances are
used, L-DNQ outperforms other methods by a large mar-
gin. Training-based methods suffer under-fitting problem in
limited-instance scenario. Direct quantization-based meth-
ods fail to capture data distribution for better compression.

3334

1 10 20 40 60 100
Instances Used (%)

−80

−70

−60

−50

−40

−30

−20

−10

0

Te
st

in
g

Ac
cu

ra
cy

 Im
pr

ov
em

en
t (

%
)

L-DNQ
TTQ
INQ
VQ
DQ
ExNN

(a)

1 5 10 20 40
Instances Used (%)

−70

−60

−50

−40

−30

−20

To
p

1
Ac

cu
ra

cy
 Im

pr
ov

em
en

t (
%

)

L-DNQ
TTQ
INQ
VQ
DQ
ExNN

(b)

0 2 4 6 8 10 12 14 16
Layer Output Error

20

40

60

80

100

Te
st

in
g

Er
ro

r(%
)

Top1 Error
Top5 Error

(c)

Figure 2: Fig.(a)/(b): Performance among L-DNQ, ExNN, TTQ, INQ, VQ, DQ using ResNet20/18 in CIFAR10/ImageNet
with increasing instances. X-axis presents portion of training data used, Y-axis represents performance improvement after
quantization (Higher the better). Fig.(c): Performance under different layer output error. X-axis presents final layer output error,
Y-axis represents testing error after quantization (the lower the better).

Network 3-bit 5-bit 7-bit 9-bit Full Precision
ResNet18 -16.43/-10.67 -8.61/-4.92 -4.67/-2.40 -2.73/-0.90 69.76/89.02
ResNet34 -29.31/-18.37 -11.22/-6.10 -3.69/-1.88 -2.10/-0.87 73.30/91.42
ResNet50 -19.66/-11.32 -7.55/-4.10 -2.79/-1.24 -1.71/-0.53 76.15/92.87

Table 3: Overall experimental results of L-DNQ in various models using 1% of ImageNet dataset. Column 2-5 represent the
quantization improvement (Top1/Top5) under different bits quantization. The last column represents full precision accuracy.

Dataset Network Method kbits TopK Improvement Full Precision (%)

CIFAR10 ResNet20 L-DNQ− 3 1 -13.66 91.5L-DNQ 3 1 -4.3

ImageNet AlexNet L-DNQ− 3 1/5 -56.80/-79.30 58.34/80.80L-DNQ 3 1/5 -17.78/-14.00

Table 4: Comparison between L-DNQ and L-DNQ−.

For TRN, since it doesn’t release the source code, we com-
pare with its reported result using AlexNet. As Table 2
shows, L-DNQ achieves much better performance compared
with other methods using 3 bits. In practice, DQ uses more
bits in quantization, hence we also compare our model us-
ing 9 bits with DQ using more bits from 8 to 32 in ResNet18
and other baselines with more bits in AlexNet. Clearly, the
baseline models retrieve better performances as the number
of bits increases, but still hardly achieve comparable per-
formances as L-DNQ, which almost approximates the full-
precision model with 9 bits.

We also compare L-DNQ, ExNN, TTQ, INQ, VQ and
DQ in ResNet20/18 using increasing number of training in-
stances on CIFAR-10 and ImageNet. As Fig 2(a) and 2(b)
show, L-DNQ maintains high performances even when only
a few training instances are used, while training-based meth-
ods degrade severely if data is scarce. We conjecture that L-
DNQ minimizes the divergence from original network under
quantized constraints instead of regenerating a new network
given label supervisions, which enables L-DNQ to utilize
much less data to preserve the original performance.

Analysis of L-DNQ
Bits’ Effect Towards Performance We conduct experi-
ments on various quantization levels on ImageNet using 1%
instances. As Table 3 shows, the prediction accuracy in-
creases as the number of bits increases. It can be observed
that L-DNQ approximately recovers the original accuracy
under 9-bit quantization.

Layer Output Error V.S. Performance L-DNQ aims at
minimizing the final layer output error between original and
quantized networks. It is interesting to explore the relation-
ship between layer output error and performance of quan-
tized network. We measure the performance of quantized
ResNet18 network on ImageNet dataset under different final
output errors. As Fig. 2(c) shows, testing error increases as
the final output error increases. Empirically, testing error is
positively correlated with final output error. Hence, by mini-
mizing the final output error, L-DNQ is capable of attaining
good performance.

Effectiveness of Weights Update To verify the effective-
ness of weights update, we generate another baseline called
L-DNQ− by removing weights update in L-DNQ, which can

3335

be considered as a reduction of the proposed L-DNQ. Com-
parison results between L-DNQ and L-DNQ− are shown in
Table 4: weights update in L-DNQ brings significant perfor-
mance gain by narrowing the divergence between quantized
network and the unquantized one.

Conclusion
In this paper, we propose a novel layer-wise quantization
framework, L-DNQ, and provide a theoretical guarantee on
the overall error. We conduct extensive experiments on two
benchmark datasets to demonstrate that L-DNQ is able to
quantize deep models without big performance drop using
only limited training data Therefore, L-DNQ is very effec-
tive in the cases where training instances are difficult to at-
tain because of data privacy issue and when quantization is
deployed in edge devices with limited storage space.

Acknowledgements
This work is supported by NTU Singapore Nanyang Assis-
tant Professorship (NAP) grant M4081532.020, Singapore
MOE AcRF Tier-1 grant 2016-T1-001-159 and Singapore
MOE AcRF Tier-2 grant MOE2016-T2-2-060.

References
Aghasi, A.; Abdi, A.; Nguyen, N.; and Romberg, J. 2017.
Net-trim: Convex pruning of deep neural networks with per-
formance guarantee. In NIPS. 3180–3189.
Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; and Eckstein,
J. 2011. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1):1–122.
Courbariaux, M.; Bengio, Y.; and David, J. 2015. Bi-
naryconnect: Training deep neural networks with binary
weights during propagations. CoRR abs/1511.00363.
Dong, X.; Chen, S.; and Pan, S. 2017. Learning to prune
deep neural networks via layer-wise optimal brain surgeon.
In NIPS. 4860–4874.
Gong, Y.; Liu, L.; Yang, M.; and Bourdev, L. 2014. Com-
pressing deep convolutional networks using vector quantiza-
tion. arXiv preprint arXiv:1412.6115.
Han, S.; Pool, J.; Tran, J.; and Dally, W. 2015. Learning
both weights and connections for efficient neural network.
In NIPS, 1135–1143.
Hassibi, B., and Stork, D. G. 1993. Second order derivatives
for network pruning: Optimal brain surgeon. In NIPS, 164–
171.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In CVPR, 770–778.
Hou, L., and Kwok, J. T. 2018. Loss-aware weight quanti-
zation of deep networks.
Hou, L.; Yao, Q.; and Kwok, J. T. 2016. Loss-aware bina-
rization of deep networks. arXiv preprint arXiv:1611.01600.
Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; and
Bengio, Y. 2016. Binarized neural networks. In NIPS, 4107–
4115.

Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard,
A.; Adam, H.; and Kalenichenko, D. 2017. Quantization and
training of neural networks for efficient integer-arithmetic-
only inference. arXiv preprint arXiv:1712.05877.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 1097–1105.
Kundu, A.; Banerjee, K.; Mellempudi, N.; Mudigere, D.;
Das, D.; Kaul, B.; and Dubey, P. 2017. Ternary residual
networks. arXiv preprint arXiv:1707.04679.
LeCun, Y.; Denker, J. S.; and Solla, S. A. 1990. Optimal
brain damage. In NIPS. 598–605.
Leng, C.; Li, H.; Zhu, S.; and Jin, R. 2017. Extremely low
bit neural network: Squeeze the last bit out with admm. In
AAAI.
Li, H.; De, S.; Xu, Z.; Studer, C.; Samet, H.; and Goldstein,
T. 2017. Training quantized nets: A deeper understanding.
In NIPS, 5811–5821.
Li, F.; Zhang, B.; and Liu, B. 2016. Ternary weight net-
works. arXiv preprint arXiv:1605.04711.
Lin, D.; Talathi, S.; and Annapureddy, S. 2016. Fixed
point quantization of deep convolutional networks. In ICML,
2849–2858.
Lin, X.; Zhao, C.; and Pan, W. 2017. Towards accurate
binary convolutional neural network. In NIPS, 344–352.
Polino, A.; Pascanu, R.; and Alistarh, D. 2018. Model com-
pression via distillation and quantization.
Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A.
2016. Xnor-net: Imagenet classification using binary con-
volutional neural networks. In ECCV, 525–542. Springer.
Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Takapoui, R.; Moehle, N.; Boyd, S.; and Bemporad, A.
2017. A simple effective heuristic for embedded mixed-
integer quadratic programming. International Journal of
Control 1–11.
Vanhoucke, V.; Senior, A.; and Mao, M. Z. 2011. Improving
the speed of neural networks on cpus. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning.
Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; and Cheng, J. 2016.
Quantized convolutional neural networks for mobile de-
vices. In CVPR, 4820–4828.
Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; and Chen, Y. 2017. In-
cremental network quantization: Towards lossless cnns with
low-precision weights. arXiv preprint arXiv:1702.03044.
Zhu, C.; Han, S.; Mao, H.; and Dally, W. J. 2016. Trained
ternary quantization. arXiv preprint arXiv:1612.01064.

3336

