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Abstract
For training fully-connected neural networks (FCNNs), we
propose a practical approximate second-order method includ-
ing: 1) an approximation of the Hessian matrix and 2) a conju-
gate gradient (CG) based method. Our proposed approximate
Hessian matrix is memory-efficient and can be applied to any
FCNNs where the activation and criterion functions are twice
differentiable. We devise a CG-based method incorporating
one-rank approximation to derive Newton directions for train-
ing FCNNs, which significantly reduces both space and time
complexity. This CG-based method can be employed to solve
any linear equation where the coefficient matrix is Kronecker-
factored, symmetric and positive definite. Empirical studies
show the efficacy and efficiency of our proposed method.

Introduction
Neural networks have been applied to solving problems in
several application domains such as computer vision (He
et al. 2016), natural language processing (Hochreiter and
Schmidhuber 1997), and disease diagnosis (Chang et al.
2017). Training a neural network requires tuning its model
parameters using Backpropagation. Stochastic gradient de-
scent (SGD), Broyden-Fletcher-Goldfarb-Shanno and one-
step secant are representative algorithms that have been em-
ployed for training in Backpropagation.

To date, SGD is widely used due to its low computational
demand. SGD minimizes a function using the function’s first
derivative, and has been proven to be effective for train-
ing large models. However, stochasticity in the gradient will
slow down convergence for any gradient method such that
none of them can be asymptotically faster than simple SGD
with Polyak averaging (Polyak and Juditsky 1992). Besides
gradients, second-order methods utilize the curvature infor-
mation of a loss function within the neighborhood of a given
point to guide the update direction. Since each update be-
comes more precise, such methods can converge faster than
first-order methods in terms of update iterations.

For solving a convex optimization problem, a second-
order method can always converge to the global minimum
in much fewer steps than SGD. However, the problem of
neural-network training can be non-convex, thereby suffer-
ing from the issue of negative curvature. To avoid this issue,
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the common practice is to use the Gauss-Newton matrix with
a convex criterion function (Schraudolph 2002) or the Fisher
matrix to measure curvature since both are guaranteed to be
positive semi-definite (PSD).

Although these two kinds of matrices can alleviate the is-
sue of negative curvature, computing either the exact Gauss-
Newton matrix or Fisher matrix even for a modestly-sized
fully-connected neural network (FCNN) is intractable. In-
tuitively, the analytic expression for the second derivative
requires O(N2) computations if O(N) complexity is re-
quired to compute the first derivative. Thus, several pioneer
works (LeCun et al. 1998; Amari, Park, and Fukumizu 2000;
Schraudolph 2002) have used different methods to approx-
imate either matrix. However, none of these methods have
been shown to be computationally feasible and fundamen-
tally more effective than first-order methods as reported
in (Martens 2010). Thus, there has been a growing trend
towards conceiving more computationally feasible second-
order methods for training FCNNs.

We outline several notable works in chronological or-
der herein. Martens proposed a truncated-Newton method
for training deep auto-encoders. In this work, Martens used
an R-operator (Pearlmutter 1994) to compute full Gauss-
Newton matrix-vector products and made good progress
within each update. Martens and Grosse developed a
block-diagonal approximation to the Fisher matrix for FC-
NNs, called Kronecker-factored Approximation Curvature
(KFAC). They derived the update directions by exploiting
the inverse property of Kronecker products. KFAC features
that its cost in storing and inverting the devised approxima-
tion does not depend on the amount of data used to estimate
the Fisher matrix. The idea is further extended to convo-
lutional nets (Grosse and Martens 2016). Recently, Botev,
Ritter, and Barber presented a block-diagonal approxima-
tion to the Gauss-Newton matrix for FCNNs, referred to
as Kronecker-Factored Recursive Approximation (KFRA).
They also utilized the inverse property of Kronecker prod-
ucts to derive the update directions. Similarly, Zhang et al.
introduced a block-diagonal approximation of the Gauss-
Newton matrix and used conjugate gradient (CG) method
to derive the update directions.

However, these prior works either impose constraints on
their applicability or require considerable computation in
terms of memory or running time. On the one hand, sev-
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eral of these notable methods relying on the Gauss-Newton
matrix face the essential limit that they cannot handle non-
convex criterion functions playing an important part in some
problems. Use robust estimation in computer vision (Stew-
art 1999) as an example. Some non-convex criterion func-
tions such as Tukey’s biweight function are robustness to
outliers and perform better than convex criterion functions
(Belagiannis et al. 2015). On the other hand, in order to de-
rive the update directions, some of the methods utilizing the
conventional CG method may take too much time, and the
others exploiting the inverse property of Kronecker products
may require excessive memory space.

To remedy the aforementioned issues, we propose a
block-diagonal approximation of the positive-curvature Hes-
sian (PCH) matrix, which is memory-efficient. Our proposed
PCH matrix can be applied to any FCNN where the acti-
vation and criterion functions are twice differentiable. Par-
ticularly, our proposed PCH matrix can handle non-convex
criterion functions, which the Gauss-Newton methods can-
not. Besides, we incorporate expectation approximation into
the CG-based method, which is dubbed EA-CG, to derive
update directions for training FCNNs in mini-batch setting.
EA-CG significantly reduces the space and time complexity
of the conventional CG method. Our experimental results
show the efficacy and efficiency of our proposed method.

In this work, we focus on deriving a second-order method
for training FCNNs since the shared weights of convolu-
tional layers lead to the difficulties in factorizing its Hes-
sian. We defer tackling convolutional layers to our future
work. We also focus on the classification problem and hence
do not consider auto-encoders. Our strategy is that once a
simpler isolated problem can be effectively handled, we can
then extend our method to address more challenging issues.

In summary, the contributions of this paper are as follows:

1. For curvature information, we propose the PCH matrix
to improve the Gauss-Newton matrix for training FCNNs
with convex criterion functions and overcome the non-
convex scenario.

2. To derive the update directions, we devise effective EA-
CG method, which does converge faster in terms of wall
clock time and enjoys better testing accuracy than com-
peting methods. Specially, the performance of EA-CG is
competitive with SGD.

Truncated-Newton Method on Non-Convex
Problems

Newton’s method is one of the second-order minimization
methods, and is generally composed of two steps: 1) com-
puting the Hessian matrix and 2) solving the system of lin-
ear equations for update directions. The truncated-Newton
method applies the CG method with restricted iterations to
the second step of Newton’s method. In this section, we first
introduce the truncated-Newton method in the context of
convex problems. Afterwards, we discuss the non-convex
scenario of the truncated-Newton method and provide an
important property that lays the foundation of our proposed
PCH matrix.

Suppose we have a minimization problem

min
θ
f(θ), (1)

where f is a convex and twice-differentiable function. Since
the global minimum is at the point that the first derivative is
zero, the solution θ∗ can be derived from the equation

∇f(θ∗) = 0. (2)

We can utilize a quadratic polynomial to approximate Prob-
lem 1 by conducting a Taylor expansion with a given point
θj . Then, the problem turns out to be

min
d
f(θj + d) ≈ f(θj) +∇f(θj)Td+

1

2
dT∇2f(θj)d,

where ∇2f(θj) is the Hessian matrix of f at θj . Af-
ter applying the aforementioned approximation, we rewrite
Eq. (2) as the linear equation

∇f(θj) +∇2f(θj)dj = 0. (3)

Therefore, the Newton direction is obtained via

dj = −∇2f(θj)−1∇f(θj),

and we can acquire θ∗ by iteratively applying the update rule

θj+1 = θj + ηdj ,

where η is the step size.
For non-convex problems, the solution to Eq. (2) reflects

one of three possibilities: a local minimum θmin, a local
maximum θmax or a saddle point θsaddle. Some previous
works such as (Dauphin et al. 2014; Goldfarb et al. 2017;
Mizutani and Dreyfus 2008) utilize negative curvature infor-
mation to converge to a local minimum. Before illustrating
how these previous works tackle the issue of negative cur-
vature, we have to introduce a crucial concept that we can
know the curvature information of f at a given point θ by
analyzing the Hessian matrix∇2f(θ). On the one hand, the
Hessian matrix of f at any θmin is positive semi-definite.
On the other hand, the Hessian matrices of f at any θmax
and θsaddle are negative semi-definite and indefinite, respec-
tively. After establishing the concept, we can use the follow-
ing property to understand how to utilize the negative curva-
ture information to resolve the issue of negative curvature.
Property 1. Let f be a non-convex and twice-differentiable
function. With a given point θj , we suppose that there ex-
ist some negative eigenvalues {λ1, . . . , λs} for ∇2f(θj).
Moreover, we take V = span({v1, . . . ,vs}), which is the
eigenspace corresponds to {λ1, . . . , λs}. If we take

g(k) = f(θj) +∇f(θj)Tv +
1

2
vT∇2f(θj)v,

where k ∈ Rs and v = k1v1 + . . . + ksvs, then g(k) is a
concave function.

According to Property 1, Eq. (3) may lead us to a lo-
cal maximum or a saddle point if ∇2f(θj) has some neg-
ative eigenvalues. In order to converge to a local mini-
mum, we substitute Pos-Eig(∇2f(θj)) for∇2f(θj), where
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Pos-Eig(A) is conceptually defined as replacing the negative
eigenvalues of A with non-negative ones. That is,

Pos-Eig(A) = QT



γλ1
. . .

γλs
λs+1

. . .
λn


Q,

where γ is a given scalar that is less than or equal to zero,
and {λ1, . . . , λs} and {λs+1, . . . , λn} are the negative and
non-negative eigenvalues ofA, respectively. This refinement
implies that the point θj+1 escapes from either local maxima
or saddle points if γ < 0. In case of γ = 0, this refinement
means that the eigenspace of the negative eigenvalues is ig-
nored. As a result, we do not converge to any saddle point
or local maximum. In addition, every real symmetric ma-
trix can be diagonalized according to the spectral theorem.
Under our assumptions, ∇2f(θj) is a real symmetric ma-
trix. Thus, ∇2f(θj) can be decomposed, and the function
“Pos-Eig” can be realized easily.

When the number of variables in f is large, the Hes-
sian matrix becomes intractable with respect to space com-
plexity. Alternatively, we can utilize the CG method to
solve Eq. (3). This alternative only requires calculating the
Hessian-vector products rather than storing the whole Hes-
sian matrix. Moreover, to save computation costs, it is desir-
able to restrict the iteration number of the CG method.

Computing the Hessian Matrix
For second-order methods we must compute the curvature
information, and we utilize the Hessian matrix to capture
the curvature information in our work. However, the Hessian
matrix for training FCNNs is intrinsically complicated and
intractable. Recently, Botev, Ritter, and Barber presented
the idea of block Hessian recursion, in which the diagonal
blocks of the Hessian matrix can be computed in a layer-
wise manner. As the basis of our proposed PCH matrix, we
first establish some notation for training FCNNs and refor-
mulate the block Hessian recursion with our notation. Then,
we present the steps to integrate the approximation concept
proposed by (Martens and Grosse 2015) into our reformula-
tion.

Fully-Connected Neural Networks
An FCNN with k layers takes an input vector h0

i = xi,
where xi is the ith instance in the training set. For the ith
instance, the activation values in the other layers can be
recursively derived from: hti = σ(W tht−1

i + bt), t =
1, . . . , k − 1, where σ is the activation function and can
be any twice differentiable function, and W t and bt are
the weights and biases in the tth layer, respectively. We
further denote nt as the number of the neurons in the tth
layer, where t = 0, . . . , k, and collect all the model param-
eters including all the weights and biases in each layer as
θ = (Vec(W 1), b1, . . . ,Vec(W k), bk), where Vec(A) =

[
[A·1]

T [A·2]
T · · · [A·n]

T
]T

. By following the nota-
tion mentioned above, we denote an FCNN output with k
layers as hki = F (θ|xi) =W khk−1

i + bk.
To train this FCNN, we must decide a loss function ξ that

can be any twice differentiable function. Training this FCNN
can therefore be interpreted as solving the following mini-
mization problem:

min
θ

l∑
i=1

ξ(hki | yi) ≡ min
θ

l∑
i=1

C(ŷi | yi),

where l is the number of the instances in the training set, yi
is the label of the ith instance, ŷi is softmax(hki ), and C is
the criterion function.

Layer-wise Equations for the Hessian Matrix
For lucid exposition of the block Hessian recursion, we start
by reformulating the equations of Backpropagation accord-
ing to the notation defined in the previous subsection. Please
note that we separate the bias terms (bt) from the weight
terms (W t) and treat each of them individually during back-
ward propagation of gradients. The gradients of ξ with re-
spect to the bias and weight terms can be derived from our
reformulated equations in a layer-wise manner, similar to the
original Backpropagation method. For the ith instance, our
reformulated equations are as follows:

∇bkξi =∇hki ξi

∇bt−1ξi =diag(h(t−1)′

i )W tT∇btξi
∇W tξi =∇btξi ⊗ h

(t−1)T
i

where ξi = ξ(hki | yi), ⊗ is the Kronecker product, and
h
(t−1)′

i = ∇zσ(z)|z=W t−1ht−2
i +bt−1 . Likewise, we strive

to propagate the Hessian matrix of ξ with respect to the bias
and weight terms backward in a layer-wise manner. This can
be achieved by utilizing the Kronecker product and follow-
ing the similar fashion above. The resultant equations for the
ith instance are as follows:

∇2
bkξi =∇

2
hki
ξi (4a)

∇2
bt−1ξi =diag(h(t−1)′

i )W tT∇2
btξiW

tdiag(h(t−1)′

i )

+ diag(h(t−1)′′

i � (W tT∇btξi)) (4b)

∇2
W tξi =(ht−1

i ⊗ h(t−1)T
i )⊗∇2

btξi, (4c)

where � is the element-wise product,
[
h
(t−1)′′

i

]
s

=[
∇2
zσ(z)

∣∣
z=W t−1ht−2

i +bt−1

]
ss

, and the derivative order of

∇2
W tξi is column-wise traversal of W t. Moreover, it is

worth noting that the original block Hessian recursion uni-
fied the bias and weight terms, which is distinct from our
separate treatment of these terms.

Expectation Approximation
Martens and Grosse propose one approximation concept that
is referred as expectation approximation in (Botev, Ritter,
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and Barber 2017). The idea behind expectation approxima-
tion is that the covariance between [ht−1

i ⊗ h(t−1)T
i ]uv and

[∇btξi ⊗ ∇btξiT ]µν with given indices (u, v) and (µ, ν) is
shown to be tiny and thus ignored due to computational ef-
ficiency, i.e.,

Ei[[ht−1
i ⊗ h(t−1)T

i ]uv · [∇btξi ⊗∇btξiT ]µν ]

≈Ei[[ht−1
i ⊗ h(t−1)T

i ]uv] · Ei[[∇btξi ⊗∇btξiT ]µν ].

To explain this concept on our formulations, we define cov-t
as Ele-Cov((ht−1

i ⊗h(t−1)T
i )⊗1nt,nt ,1nt−1,nt−1

⊗∇2
btξi),

where ”Ele-Cov” is denoted as element-wise covariance,
and 1u,v is the matrix whose elements are 1 in Ru×v ,
t = 1, . . . , k. With the definition of cov-t and our devised
equations in the previous subsection, the approximation can
be interpreted as follows:

Ei[∇2
W tξi] =EhhTt−1 ⊗ Ei[∇2

btξi] + cov-t

≈EhhTt−1 ⊗ Ei[∇2
btξi], (5)

where EhhTt−1 = Ei[ht−1
i ⊗ h(t−1)T

i ].
Botev, Ritter, and Barber also adopted expectation ap-

proximation in their proposed method. Similarly, we inte-
grate this approximation into our proposed layer-wise Hes-
sian matrix equations, thereby resulting in the following ap-
proximation equation:

Ei[∇2
bt−1ξi]

≈Ei[diag(h(t−1)′

i )W tTEi[∇2
btξi]W

tdiag(h(t−1)′

i )

+ diag(h(t−1)′′

i � (W tT∇btξi))]

=(W tTEi[∇2
btξi]W

t)� EhhT(t−1)′

+ Ei[diag(h(t−1)′′

i � (W tT∇btξi))]. (6)

where EhhT(t−1)′ = Ei[h(t−1)′

i ⊗h(t−1)′T
i ]. The difference

between the original and the approximate Hessian matrices
in Eq. (6) is bounded by∥∥∥Ele-Cov(W tT∇2

btξiW
t,h

(t−1)′

i ⊗ h(t−1)′T
i )

∥∥∥2
F

≤L4
∑
µ,ν

Var([W tT∇2
btξiW

t]µν), (7)

whereL is the Lipschitz constant of activation functions. For
example, LReLU and Lsigmoid are 1 and 0.25, respectively.

Deriving the Newton Direction
Now we present a computationally feasible method to train
FCNNs with Newton directions. First, we explain the ways
to construct a PCH matrix. Based on PCH matrices, we pro-
pose an efficient CG-based method incorporating the expec-
tation approximation to derive Newton directions for mul-
tiple training instances, which we call EA-CG. Finally, we
provide an analysis of the space and time complexity for
EA-CG.

PCH Matrix
Based on our layer-wise equations in the previous
section and the integration of expectation approxima-
tion, we can construct block matrices that vary in size
and are located at the diagonal of the Hessian ma-
trix. We denote this block-diagonal matrix Ei[∇2

θξi] as
diag(Ei[∇2

W 1ξi],Ei[∇2
b1
ξi], . . . ,Ei[∇2

W kξi],Ei[∇2
bk
ξi]).

Please note that Ei[∇2
θξi] is a block-diagonal Hessian

matrix and not the complete Hessian matrix. According
to the explanation for the three possibilities of update
directions in aforementioned section, Ei[∇2

θξi] is re-
quired to be modified. Thus, we replace Ei[∇2

θξi] with

diag(Ei[∇̂2
W 1ξi],Ei[∇̂2

b1
ξi], . . . ,Ei[∇̂2

W kξi],Ei[∇̂2
bk
ξi])

and denote the modified result as Ei[∇̂2
θξi], where

Ei[∇̂2
bk
ξi] =Pos-Eig(Ei[∇2

hki
ξi]) (8a)

Ei[∇̂2
bt−1ξi] =(W tTEi[∇̂2

bt
ξi]W

t)� EhhT(t−1)′ (8b)

+Pos-Eig(diag(Ei[h(t−1)′′

i � (W tT∇btξi)]))

Ei[∇̂2
W tξi] =EhhTt−1 ⊗ Ei[∇̂2

bt
ξi]. (8c)

We call Ei[∇̂2
θξi] the block-diagonal approximation of pos-

itive curvature Hessian (PCH) matrix. Any PCH matrix can
be guaranteed to be PSD, which we explain in the following.

In order to show Ei[∇̂2
θξi] is PSD, we have to show that

for any t, both Ei[∇̂2
bt
ξi] and Ei[∇̂2

W tξi] are PSD. First,
we consider the block matrix Ei[∇2

hki
ξi] that is a nk by nk

square matrix in Eq. (8a). If the criterion functionC(ŷi | yi)
is convex, Ei[∇2

hki
ξi] is a PSD matrix. Otherwise, we de-

compose the matrix and replace the negative eigenvalues.
Fortunately nk is usually not very large, so Ei[∇2

hki
ξi] can

be decomposed quickly1 and modified to a PSD matrix
Ei[∇̂2

hki
ξi]. Second, suppose that Ei[∇̂2

bt
ξi] is a PSD ma-

trix, then (W tTEi[∇̂2
bt
ξi]W

t) � EhhT(t−1)′ is PSD. Con-

sequently, the negative eigenvalues of Ei[∇̂2
bt
ξi] stems form

the diagonal part diag(Ei[h(t−1)′′

i � (W tT∇btξi)]), so we
take the Pos-Eig function for this diagonal part in Eq. (8b).
Third, because the Kronecker product of two PSD matrices
is PSD, it implies Ei[∇̂2

W tξi] is PSD.

Solving Linear Equation via EA-CG
After obtaining a PCH matrix Ei[∇̂2

θξi], we derive the up-
date direction by solving the linear equation

((1− α)Ei[∇̂2
θξi] + αI)dθ = −Ei[∇θξi], (9)

where 0 < α < 1 and dθ = [dTW 1 dTb1 · · ·d
T
W k d

T
bk ]

T .

Here, we use the weighted average of Ei[∇̂2
θξi] and an iden-

tity matrix I because this average turns the coefficient matrix
1In our experience, the decomposition of an 1000×1000 matrix

can be done within a few seconds in PyTorch.
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Table 1: The comparisons of second-order methods.
(Martens and Grosse 2015) (Botev, Ritter, and Barber 2017) Ours

Criterion Func. Non-Convex Convex Non-Convex
Curvature Info. Fisher Gauss-Newton PCH
Time Required O(|Batch| ×

∑k
t=1 n

2
t ) O(

∑k
t=2 n

2
t−1nt) O(

∑k
t=2 n

2
t−1nt)

Solving Scheme KFI KFI EA-CG
Space Required O(

∑k−1
t=0 n

2
t +

∑k
t=1 n

2
t ) O(

∑k−1
t=0 n

2
t +

∑k
t=1 n

2
t ) O(

∑k−1
t=0 nt +

∑k
t=1 n

2
t )

Time Required O(
∑k
t=1[n

3
t + n3t−1 + n2t−1nt O(

∑k
t=1[n

3
t + n3t−1 + n2t−1nt O(|CG| ×

∑k
t=1[n

2
t + 2ntnt−1])

+ nt−1n
2
t ]) + nt−1n

2
t ])

of Eq. (9) that is PSD to positive definite and thus makes the
solutions more stable. Due to the essence of diagonal blocks,
Eq. (9) can be decomposed as

((1− α)Ei[∇̂2
bt
ξi] + αI)dbt =− Ei[∇btξi] (10a)

((1− α)Ei[∇̂2
W tξi] + αI)dW t =− Vec(Ei[∇W tξi]),

(10b)

for t = 1, . . . , k. To solve Eq. (10a), we attain the solu-
tions by using the CG method directly. For Eq. (10b), storing
Ei[∇̂2

W tξi] is not an efficient way, so we apply the equation
(CT ⊗ A)Vec(B) = Vec(ABC) and Eq. (5) to have the
Hessian-vector product with a given vector Vec(P ):

Ei[∇̂2
W tξi]Vec(P )

=Vec(Ei[∇̂2
bt
ξi] · P · Ei[ht−1

i ⊗ h(t−1)T
i ]) (11a)

≈Vec(Ei[∇̂2
bt
ξi] · P · Ei[ht−1

i ]⊗ Ei[h(t−1)T
i ]). (11b)

Based on Eq. (11a), we derive the Hessian-vector prod-
ucts of Ei[∇̂2

W tξi] via Ei[∇̂2
bt
ξi], thereby reducing the space

complexity of storing the curvature information. Further-
more, applying the CG method becomes much more effi-
cient with Eq. (11b), which we call EA-CG. The details are
elaborated in the following subsections.

Analysis of Space Complexity
By considering the devised method in aforementioned sub-
section, we analyze the required space complexity to store
the distinct types of the curvature information. The origi-
nal Newton’s method requires space to store Ei[∇2

θξi], so
that its space complexity is O([

∑k
t=1 nt−1(nt + 1)]2). If

we consider the PCH matrix Ei[∇̂2
θξi], the space complex-

ity turns out to be O(
∑k
t=1[(nt−1nt)

2 + n2t ]). According

to Eq. (11a), it is not necessary to store Ei[∇̂2
W tξi] any-

more because Ei[∇̂2
bt
ξi] is sufficient to derive the solution

to Eq. (9) with the CG method. Thus, the space complexity
is reduced to O(

∑k
t=1 n

2
t ).

Analysis of Additional Time Complexity
In this subsection, we elaborate on the additional time com-
plexity introduced in our proposed method. In contrast to
the SGD, our method contributes more computation to the

training process of FCNNs. The extra computation mainly
originates from two portions of our method: the propa-
gation of the curvature information and the computation
of EA-CG method. To propagate the curvature informa-
tion, we are required to perform the matrix-to-matrix prod-
ucts twice, which is more computationally expensive than
propagating gradients. The time complexity of propagat-
ing the curvature information with Eq. (6) can be estimated
as O(

∑k
t=1[nt−1nt(nt−1 + nt)]). We also have the extra

cost involved in applying EA-CG method. The complexity
of EA-CG method mainly stems from the Hessian-vector
products Eq. (11b). Regarding Eq. (11b), we must conduct
the matrix-vector products twice and the vector-vector outer
products once in order to acquire the Hessian-vector prod-
uct. Thus, the time complexity pertaining to the truncated-
Newton method isO(|CG|×

∑k
t=1[nt(2nt−1+nt)]), where

|CG| is the number of iterations of EA-CG method.

Related Works
In this section, we elaborate on the differences between our
work and two closely related works using the notation estab-
lished in the previous sections.

Martens and Grosse developed KFAC by considering the
FCNNs with the convex criterion and non-convex activa-
tion functions. KFAC utilized (Ei[F̃i] + αI) where F̃i is
the Fisher matrix (for any training instance xi) to measure
the curvature and used the Khatri-Rao product to rewrite F̃i,
which yields the following equation:

[F̃i]µν = (hµ−1
i ⊗ h(µ−1)T

i )⊗ (∇bν ξi ⊗∇bν ξTi ).

Since it is difficult to find the inverse of (Ei[F̃i]+αI), KFAC
substitutes a block-diagonal matrix F̂i for F̃i and thus has
the formulation:

Ei[F̂ ti ] =Ei[(ht−1
i ⊗ h(t−1)T

i )⊗ (∇btξi ⊗∇btξTi )]

≈Ei[ht−1
i ⊗ h(t−1)T

i ]⊗ Ei[∇btξi ⊗∇btξTi ],

where t = 1, . . . , k. To derive (Ei[F̂ ti ] + αI)−1 efficiently,
KFAC comes up with the approximation

(Ei[F̂ ti ] + αI)−1 ≈ (Ht)−1 ⊗ (Gt)−1, (12)

where (Ht)−1 = (Ei[ht−1
i ⊗ h

(t−1)T
i ] + πt

√
αI)−1,

(Gt)−1 = (Ei[∇btξi ⊗∇btξTi ] + (
√
α/πt)I)

−1. Therefore,
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Figure 1: Comparison of different curvature information and solving methods for the convex criterion function “cross-entropy”
on “Cifar-10”.
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Figure 2: Comparison of different curvature information and solving methods for the convex criterion function “cross-entropy”
on “ImageNet-10”.

the update directions of KFAC can be acquired via the fol-
lowing equation:

d̂W t =− ((Ht)−1 ⊗ (Gt)−1) · Vec(Ei[∇W tξi])

=− Vec((Gt)−1Ei[∇W tξi](Ht)−1),

and we refer this type of inverse methods as Kronecker-
Factored Inverse (KFI) methods in this paper. In contrast,
we derive the update directions by applying EA-CG method.
Moreover, KFAC uses the Fisher matrix, while we use the
PCH matrix.

Based on the discussion of the FCNNs with convex cri-
terion functions and piecewise linear activation functions,
Botev, Ritter, and Barber developed KFRA. As a result,
the diagonal term disappears in Eq. (4b). Thus, the Gauss-
Newton matrix becomes no different from the Hessian ma-
trix. KFRA also employs KFI method, and hence the update
direction of KFRA can be derived from

d̃W t = −Vec((G̃t)−1Ei[∇W tξi](Ht)−1),

where (G̃t)−1 = (Ei[GN(∇2
btξi)] + (

√
α/πt)I)

−1, and GN
stands for Gauss-Newton matrix. The method of deriving
the update directions is again different between KFRA and
our work. In addition, KFRA still works under the non-
convex activation functions, but it exists the difference be-
tween Gauss-Newton matrix and Hessian matrix.

Table 1 highlights the three main components of these two
related works and our method. As shown in Table 1, KFRA
cannot handle non-convex criterion functions due to the cur-
vature information they utilized. The Gauss-Newton matrix
becomes indefinite if the criterion function is non-convex.
Note that the difference between the original and approx-
imated matrices always exists in Eq. (12) if Ei[F̂ ti ] is not
diagonal. Moreover, the time complexity of KFI method is
similar to EA-CG method.

Experimental Evaluation

Our empirical studies aim to examine not only three dif-
ferent types of curvature information including the Fisher,
Gauss-Newton and PCH matrices, but also the two solving
methods, i.e., KFI and EA-CG methods, in terms of train-
ing loss and testing accuracy. We encompassed SGD with
momentum as the baseline and fixed its momentum to 0.9.
For better comparison, we considered FCNNs with either
convex or non-convex criterion functions and conducted our
experiments2 on the image datasets that comprise Cifar-10

2Experiments were implemented by using PyTorch libraries
and run on a GTX-1080Ti GPU.
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Figure 3: Comparison of different curvature information and solving methods for the convex criterion function “cross-entropy”
on “Cifar-10”.
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Figure 4: Comparison of different curvature information and solving methods for the convex criterion function “cross-entropy”
on “ImageNet-10”.

(Krizhevsky and Hinton 2009) and ImageNet-103. The net-
work structures are “3072-1024-512-256-128-64-32-16-10”
and “150528-1024-512-256-128-64-32-16-10” for Cifar-10
and ImageNet-10, respectively. For the PCH matrices, we
explored two possible scenarios of Eq.(8b): 1) taking the ab-
solute values of the diagonal part, i.e., γ = −1 and 2) ap-
plying max(x, 0) function to the diagonal part, i.e., γ = 0.
The first and second scenarios of the PCH matrices are sep-
arately dubbed PCH-1 and PCH-2. Since PCH-1 and PCH-2
produced the similar results of training loss and testing ac-
curacy, we only reported PCH-1 in the corresponding fig-
ures below for the sake of simplicity. In all of our experi-
ments, we used sigmoid as the non-convex activation func-
tion of FCNNs and trained the networks with 200 epochs,
i.e., seeing the entire training samples 200 times. Fur-
thermore, we utilized “Xavier” initialization method (Glo-
rot and Bengio 2010) and performed the grid search on
learning rate = [0.05, 0.1, 0.2], |Batch| = [100, 500, 1000]
and α = [0.01, 0.02, 0.05, 0.1]. Regarding EA-CG method,
we have to determine two hyper-parameters that control its
stopping conditions. One is the maximal iteration number,
max|CG|; the other is the constant of the related error bound,

3We randomly choose ten classes from the ImageNet (Deng et
al. 2009) dataset.

εCG. Thus, we also performed the grid search on max|CG| =
[5, 10, 20, 50] and εCG = [10−10, 10−5, 10−2, 10−1]. Fi-
nally, to further investigate the different types of curvature
information, we calculate the errors caused by approximat-
ing the true Hessian in a layer-wise fashion.

Convex Criterion
In the first type of experiments, we examined the perfor-
mance of different second-order methods. According to the
prior section, the differences between these second-order
methods originate from two parts. The first part is the curva-
ture information, e.g., the Fisher matrix F̂i in KFAC, and the
other is the solving method for the linear equations. In these
experiments, we used cross-entropy as the convex criterion
function.

It is noteworthy that the original KFI method runs out of
GPU memory for ImageNet-10 because the dimension of the
features (n0) in ImageNet-10 is too high, which conforms
with our analysis in Table 1. Thus, we utilized

H1 ≈ Ei[h0
i ]⊗ Ei[h0T

i ] + π1
√
αI (13)

and Sherman-Morrison formula to derive the update direc-
tions. Albeit this approximation worked in our ImageNet-10
experiments, we observed that this approximation is not sta-
ble for other datasets and models that we have explored.
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Figure 5: Comparison of different curvature information and solving methods for the non-convex criterion function “Eq. (14)”
on “Cifar-10”. The Gauss-Newton matrix is removed from this figure since it is not PSD in this type of experiments.
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Figure 6: Comparison of different curvature information and solving methods for the non-convex criterion function “Eq. (14)”
on “ImageNet-10”. The Gauss-Newton matrix is removed from this figure since it is not PSD in this type of experiments.

Wall Clock Time As shown in Figure 1, EA-CG method
converges faster with respect to wall clock time and has bet-
ter performance of testing accuracy than KFI method for
Cifar-10. The runtime behavior adheres to Table 1. We also
notice that the different types of curvature information with
EA-CG method have the similar performance. In contrast,
KFI method using the Fisher matrix converges faster than
using the other two types of matrices. For ImageNet-10,
Figure 2 exhibits that EA-CG and KFI methods take al-
most the same amount of time for 200 epochs. Besides, as
shown in Figure 2, KFI method has lower training loss but
may suffer from the overfitting issue. Please note that we
applied Eq (13) to the first layer of the neural network for
KFI method. Otherwise, the original KFI method ran out of
GPU memory for ImageNet-10. However, applying this ap-
proximation reduces the memory usage of KFI method but
expedites KFI method accordingly.

It is worth noting that second-order methods performed
comparable to SGD in Figure 2, but the phenomenon is com-
pletely different in Figure 1. This is because the image sizes
of Cifar-10 and ImageNet-10 are varied. The image size of
ImageNet-10 is 224 × 224 × 3, and hence propagating the
gradients of the weights backward is much more expensive
than it in Cifar-10 whose image size is 32 × 32 × 3. Based

on this premise, the extra cost of propagating our proposed
PCH where only the Hessian of the bias terms is required to
propagate is comparatively low. Similarly, the cost of solv-
ing the update directions is comparatively low.

Epoch As shown in Figure 3, KFI method provides a pre-
cise descent direction of each epoch, so the training loss
decreases faster in terms of epochs. In contrast, Figure 1
shows KFI method converges slower in terms of wall clock
time, which varied with different implementation. We argue
that we have already done our best effort to implement KFI
method by using the inverse function in PyTorch. As shown
in either Figure 1 or Figure 3, EA-CG method has the better
results of testing accuracy for Cifar-10. For ImageNet-10,
the results of Figure 4 are consistent with the results of Fig-
ure 2. Thus, we do not repeat the same narrative here.

Non-Convex Criterion
In order to demonstrate our capability of handling non-
convex criterion functions, we designed the second type of
experiments. In these experiments, we considered the fol-
lowing criterion function:

C(ŷi | yi) =
1

1 + eδ(y
T
i ŷi−ε)

, (14)
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Figure 7: Comparison of different curvature information and solving methods for the non-convex criterion function “Eq. (14)”
on “Cifar-10”. The Gauss-Newton matrix is removed from this figure since it is not PSD in this type of experiments.
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Figure 8: Comparison of different curvature information and solving methods for the non-convex criterion function “Eq. (14)”
on “ImageNet-10”. The Gauss-Newton matrix is removed from this figure since it is not PSD in this type of experiments.

where we fix δ = 5 and ε = 0.2. This criterion function im-
plies that the upper bound of the loss function exists. Apart
from the criterion function, we followed the same settings
as those used in the first type of experiments. Note that the
Gauss-Newton matrix is not PSD if the criterion function
of training FCNNs is non-convex. Thus, we excluded the
Gauss-Newton matrix from this comparison and focused on
comparing the other two types of matrices with either EA-
CG or KFI methods.

Wall Clock Time For Cifar-10, Figure 5 shows that EA-
CG method outperforms KFI method in terms of both train-
ing loss and testing accuracy. But the Fisher matrix with
EA-CG method has the best performance. For ImageNet-10,
Figure 6 shows that EA-CG method surpasses KFI method
regarding training loss. But the performance of EA-CG and
KFI methods is hard to distinguish by the testing accuracy.

Epoch As shown in Figure 7, for Cifar-10, the perfor-
mance of EA-CG and KFI methods is hard to distinguish by
the convergence speed of training loss in terms of epochs.
But the Fisher matrix with EA-CG method has the best
training loss in Figure 7. Regarding testing accuracy, EA-
CG method has the better performance than KFI method for
this type of experiments. For ImageNet-10, Figure 8 shows
that EA-CG method surpasses KFI method regarding train-

Table 2: Layer-wise errors between each of the approximate
Hessian matrices and the true Hessian for the convex crite-
rion function “cross-entropy” on “Cifar-10”.

Fisher GN PCH-1 PCH-2
Layer-1 0.0071 0.0057 0.0036 0.0043
Layer-2 0.0470 0.0212 0.0237 0.0228
Layer-3 0.1140 0.0220 0.0238 0.0165
Layer-4 0.0726 0.0207 0.0119 0.0085
Layer-5 0.0397 0.0130 0.0086 0.0066
Layer-6 0.0219 0.0107 0.0093 0.0071
Layer-7 0.0185 0.0176 0.0132 0.0106
Layer-8 0.0251 0.0000 0.0000 0.0000

Total 0.1535 0.0446 0.0402 0.0330

ing loss, which is consistent with Figure 6. However, the
performance of EA-CG and KFI methods is hard to distin-
guish by the testing accuracy, and the PCH matrix using KFI
method has the best testing accuracy.

Comparison with the True Hessian
In addition to the comparison of training loss and testing ac-
curacy on different criterion functions and datasets, we fur-
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ther examine the difference between the true Hessian and
the approximate Hessian matrices such as the Fisher matrix.
Here, we measure the difference in the errors that is elabo-
rated as follows. Given the tth layer and the model parame-
ters θ, the error is defined as∥∥∥Ei[∇̃2

bt
ξi]− |Ei[∇2

btξi]|
∥∥∥
F
,

where ∇̃2
bt
ξi stands for the approximate Hessian matrix, and

|Ei[∇2
btξi]| is to take the absolute values of the eigenvalues

of Ei[∇2
btξi], which we follow (Dauphin et al. 2014).

The results are shown in Table 2 where each value is de-
rived from averaging the errors of the initial parameters θ0

to the parameters θs−1 that are updated s times. Table 2 re-
flects that the errors are not accumulated with layers for any
approximate Hessian matrix. This observation is important
for KFRA and ours since both methods derive the curvature
information by approximating the Hessian layer-by-layer re-
cursively. The “Total” row of Table 2 also indicates that our
proposed PCH-1 and PCH-2 are closer to the true Hessian
than the Fisher and Gauss-Newton matrices.

Concluding Remarks
To achieve more computationally feasible second-order
methods for training FCNNs, we developed a practical ap-
proach, including our proposed PCH matrix and devised
EA-CG method. Our proposed PCH matrix overcomes the
problem of training FCNNs with non-convex criterion func-
tions. Besides, EA-CG provides another alternative to effi-
ciently derive update directions in this context. Our empiri-
cal studies show that our proposed PCH matrix can compete
with the state-of-the-art curvature approximation, and EA-
CG does converge faster and enjoys better testing accuracy
than KFI method. Specially, the performance of our pro-
posed approach is competitive with SGD. As future work,
we will extend the idea to work with convolutional nets.
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