
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Efficient Online Learning for Mapping Kernels on Linguistic Structures

Giovanni Da San Martino
Qatar Computing Research Institute,

Hamad Bin Khalifa University
Doha, Qatar

gmartino@hbku.edu.qa

Alessandro Sperduti, Fabio Aiolli
Department of Mathematics,

University of Padova
via Trieste, 63, Padova, Italy
{sperduti, aiolli}@math.unipd.it

Alessandro Moschitti
Amazon

Manhattan Beach, CA, USA
amosch@amazon.com

Abstract

Kernel methods are popular and effective techniques for learn-
ing on structured data, such as trees and graphs. One of their
major drawbacks is the computational cost related to making
a prediction on an example, which manifests in the classifica-
tion phase for batch kernel methods, and especially in online
learning algorithms. In this paper, we analyze how to speed
up the prediction when the kernel function is an instance of
the Mapping Kernels, a general framework for specifying ker-
nels for structured data which extends the popular convolution
kernel framework. We theoretically study the general model,
derive various optimization strategies and show how to apply
them to popular kernels for structured data. Additionally, we
derive a reliable empirical evidence on semantic role labeling
task, which is a natural language classification task, highly
dependent on syntactic trees. The results show that our faster
approach can clearly improve on standard kernel-based SVMs,
which cannot run on very large datasets.

1 Introduction
Many data mining applications involve the processing of
structured or semi-structured objects, e.g. proteins and phylo-
genetic trees in Bioinformatics, molecular graphs in Chem-
istry, hypertextual and XML documents in Information Re-
trieval and parse trees in NLP. In all these areas, the huge
amount of available data jointly with a poor understanding
of the processes generating them, typically enforces the use
of machine learning and/or data mining techniques.

The main complexity on applying machine learning algo-
rithms to structured data resides in the design of effective
features for their representation. Kernel methods seem a valid
approach to alleviate such complexity since they allow to in-
ject background knowledge into a learning algorithm and pro-
vide an implicit object representation with the possibility to
work implicitly in very large feature spaces. These interesting
properties have triggered a lot of research on kernel methods
for structured data (Jaakkola, Diekhans, and Haussler 2000;
Haussler 1999) and kernels for Bioinformatics (Kuang et al.
2004). In particular, tree kernels have shown to be very effec-
tive for NLP tasks, e.g., parse re-ranking (Collins and Duffy
2002), Semantic Role Labeling (Kazama and Torisawa 2005;
Zhang et al. 2007), Entailment Recognition (Zanzotto and

Copyright © 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Moschitti 2006), paraphrase detection (Filice, Da San Mar-
tino, and Moschitti 2015), computational argumentation
(Wachsmuth et al. 2017).

One drawback of using tree kernels (and kernels for
structures in general) is the time complexity required both
in learning and classification. Such complexity can some-
times prevent the kernel application in scenarios involv-
ing large amount of data. Typical approaches devoted to
the solution of this problem relate to: (1) the use of fast
learning/classification algorithms, e.g. the (voted) perceptron
(Collins and Duffy 2002); (2) the reduction of the computa-
tional time required for computing a kernel (see e.g. (Shawe-
Taylor and Cristianini 2004) and references therein).

The first approach is viable since the use of a large num-
ber of training examples can fill the accuracy gap between
fast on-line algorithms, which do not explicitly maximize
margin, and more expensive algorithms like Support Vector
Machines (SVMs), which have to solve a quadratic optimiza-
tion problem. Therefore, although the latter is supported by a
solid theory and state-of-the-art accuracy on small datasets,
learning approaches able to work with much larger data can
outperform them.

The second approach relates to either the design of more
efficient algorithms based on more appropriate data structures
or the computation of kernels over set of trees, e.g., (Kazama
and Torisawa 2006), (Moschitti and Zanzotto 2007). The lat-
ter techniques allow for the factorization/reuse of previously
evaluated subparts leading to a faster overall processing.

Our proposal is in line with the second approach. How-
ever, it will be applicable to both online and batch learning
algorithms. One of the most popular approaches to the defini-
tion of kernel functions for structured data is the convolution
kernel framework (Haussler 1999). A convolution kernel can
be defined by decomposing a structured object into substruc-
tures and then summing the contributions of kernel evalua-
tions on the substructures. We exploit the idea that identical
substructures appearing in different kernel evaluations can
be factorized and thus computed only once, by postulating
a necessary condition of optimality for a data structure and
deriving results from it on an extension of the convolution
kernel framework, the Mapping Kernels (Shin and Kuboyama
2010). Besides the general theoretical result, we show how
to apply our results to a number of popular kernels for trees.
Moreover, we give empirical evidence that such optimal struc-

3421

tures yield in practice a significant speed up and reduction
of memory consumption for the learning algorithms for the
task of Semantic Role Labelling: we show that the learning
time for a perceptron on a 4-million-instances dataset reduces
from more than a week to 14 hours only. Since an SVM could
only be trained on a significantly smaller number of exam-
ples, a simple voted perceptron significantly outperforms an
SVM also with respect to classification performances.

2 Notation
A tree T is a directed and connected graph without cycles
for which every node has one incoming edge, except a single
node, i.e. the root, with no incoming edges. A leaf is a node
with no outgoing edges. A descendant of a node v is any
node connected to v by a path. A production at a node v is
the tree composed by v and its direct children. A partial tree
(PT) t is a subset of nodes in the tree T , with correspond-
ing edges, which forms a tree (Moschitti 2006). A proper
subtree (ST) rooted at a node t comprises t and all its descen-
dants (Viswanathan and Smola 2003). A subset tree (SST) of
a tree T is a structure which: i) is rooted in a node of T ; ii)
satisfies the constraint that each of its nodes contains either
all children of the original tree or none of them (Collins and
Duffy 2002). Finally, an elastic tree (ET) only requires the
nodes of the subtree to preserve the relative positioning in
the original tree (Kashima and Koyanagi 2002). This allows,
for example, to connect a node with any of its descendants
even if there is no direct edge in the original tree.

3 Background
Kernelized Perceptron
Kernel methods rely on kernel functions, which are sym-
metric positive semidefinite similarity functions defined on
pairs of input examples. The kernelized version (Kivinen,
Smola, and Williamson 2004) of the popular online learn-
ing perceptron algorithm (Rosemblatt 1958), can be de-
scribed as follows. Let X be a stream of example pairs
(xi, yi), yi ∈ {−1,+1}, then the prediction of the percep-
tron for a new example x is the sign of the score function:
S(x) =

∑n−1
i=1 αiK(xi, x), where αi ∈ {−1, 0,+1} is 0

whenever sign(Si(xi)) = yi, and yi otherwise. We consider
the set of examples M = {(xi, yi) ∈ X : αi ∈ {−1,+1}}
as the model of the perceptron and slightly redefine the kernel-
perceptron algorithm as in the following. Let M = ∅ be an
initial empty model, a new input example x is added to the
model M whenever its score

S(x) =
∑

(xi,αi)∈M

αiK(xi, x) (1)

has different sign from its classification y. Thus the update
and the insertion of the new example follow the rule:

if (yS(x) ≤ 0) then M ←M ∪ {(x, y)}.
Eq. (1), besides different definitions for the α values, is
shared among many online learning algorithms (Freund and
Schapire 1999), (Crammer et al. 2006) and it is also the
most expensive operation in the prediction phase of a batch
learning kernel method, such as the SVM (Cristianini and

Shawe-Taylor 2000). It is trivial to show that, for online learn-
ing algorithms, the cardinality of M , and consequently the
memory required for its storage, grows up linearly with the
number of examples in the input stream; thus the efficiency
in the evaluation of the function S(x) linearly decreases as
well. It is therefore of great importance to be able to speed
up the computation of eq. (1), which is our goal in this paper.
We study the case in which the input examples are structured
data, specifically trees.

Mapping Kernels (MKs)
The main idea of mapping kernels (Shin and Kuboyama
2010) is to decompose a structured object into substructures
and then sum the contributions of kernel evaluations on a
subset of the substructures. More formally, let us assume
a “local“ kernel on the subparts, k : χ′ × χ′ → R, and a
binary relation R ⊆ χ̂ × χ are available, with (x̂, x) ∈ R
if x̂ “is a substructure“ of x. The definition of χ̂, χ′ and R
varies according to the kernel and the domain, an example
of a common setting is the following: χ, χ̂ and χ′ are sets
of trees and (x̂, x) ∈ R if x̂ ∈ χ̂ is a subtree of x ∈ χ.
Let χ̂

x
= {x̂ ∈ χ̂|(x̂, x) ∈ R} be the set of substructures

associated with x and let γx : χ̂
x
→ χ′ a function mapping

a substructure of x into its representation in the input space
of the local kernel (see (Shin and Kuboyama 2010) for some
examples). Then the mapping kernel is defined as follows:

K(xi, xj) =
∑

(x̂i,x̂j)∈Mxi,xj

k(γxi(x̂i), γxj (x̂j)), (2)

whereM is part of a mapping system M defined as

M =
(
χ,
{
χ̂
x
|x ∈ χ

}
,{

Mxi,xj ⊆ χ̂xi × χ̂xj |(xi, xj) ∈ χ× χ
})

.
(3)

M is a triplet composed by the domain of the examples,
the space of the substructures, and a binary relation M
specifying for which pairs of substructures the local ker-
nel has to be computed. M is assumed to be finite and
symmetric, i.e. ∀xi, xj ∈ χ.|Mxi,xj | < ∞ and (x̂j , x̂i) ∈
Mxj ,xi if (x̂i, x̂j) ∈ Mxi,xj . The mapping kernel extends
the convolution kernel framework in two aspects: i) the pairs
of substructures on which the local kernel has to be com-
puted is restricted according toM; ii) the functions γx() are
introduced so that the space of the substructures, χ̂, and the
input space of the local kernel, χ′, do not necessarily have
to be identical. In (Shin and Kuboyama 2010) it is proved
that the kernel K of eq. (2) is positive semidefinite if and
only if the mapping systemM is transitive. A mapping sys-
tem is transitive if and only if ∀x1, x2, x3 ∈ χ.(x̂1, x̂2) ∈
Mx1,x2 ∧ (x̂2, x̂3) ∈Mx2,x3 ⇒ (x̂1, x̂3) ∈Mx1,x3 .

Note that M is assumed to be finite. Such assumption
may not hold in an on-line learning scenario. However, the
mapping kernel has been extended to the case in whichM is
countably infinite (Shin 2011).

4 Efficient Score Computation for MKs
This section describes how to speed up the computation of
eq. (1) when K() is a mapping kernel.

3422

Main Result
In order to speed up the computation of the score, we seek
for an optimal representation of the model. Note that our
purpose is to compute the exact value of the score, not to
approximate it. We postulate the following necessary condi-
tion: a representation is optimal if it avoids recomputing
the local kernel for the same substructures appearing in
different examples. More formally, let us consider the set
χ̃ =

⋃
x∈χ

{
(γx(x̂), x)|x̂ ∈ χ̂x

}
. A relationM∼ between ele-

ments of χ̃ can be defined as follows:

(x′1, x1)
M∼ (x′2, x2)⇔ ∀(x′, x) ∈ χ̃,

[k(x′1, x
′) = k(x′2, x

′)] ∧ {x̂1 ∈ χ̂x1|γx1
(x̂1) = x′1}

×{x̂2 ∈ χ̂x2 |γx2
(x̂2) = x′2} ⊆ Mx1,x2

.

(4)

Relation (4) states that two elements of χ′ are equivalent if
their contribution to the computation of the score is identical
for any x ∈ χ. Then the idea is to seek for a representa-
tion that groups together those elements of χ′ which are
equivalent according to (4) in order to satisfy our optimality
criterion.

It can be shown that (4) is in fact an equivalence relation
with the assumption that the mapping is not trivial, that is, for
any x ∈ χ, and for all x̂ ∈ χ̂

x
it exists an x̂3 ∈ χ̂x3 such that

(x̂, x̂3) ∈ Mx,x3
. In fact, while symmetry and transitivity

can be proved easily, the above assumption is a sufficient
condition to prove reflexivity: (x̂, x̂3) ∈ Mx,x3

symmetry⇒
(x̂3, x̂) ∈ Mx3,x

transitivity⇒ (x̂, x̂) ∈ Mx,x. Note that any
x̂ ∈ χ̂

x
not meeting the above assumption, could be ignored

since it will give zero contribution to any kernel computation.
Let Q = χ̃/

M∼ the quotient space, i.e. a partition of χ̃
such that each pair of elements of χ̃ belongs to the same
partition if and only if they are equivalent with respect to
M∼ . Given an equivalence class ξ ∈ Q, we denote by (ξχ̂, ξχ)
a generic (x̂, x) such that (γx(x̂), x) ∈ ξ. We call (ξχ̂, ξχ)
the representative1 of the class ξ. Note that the choice of
(x̂, x) is irrelevant since any pair (y, x) such that γx(y) =

γx(x̂) is equivalent to (x̂, x) with respect to M∼ . Moreover,
the transitivity ofM ensures that, given (γv(v̂), v) ∈ ξ, if
(x̂, v̂) ∈Mx,v ⇒ (x̂, ξχ̂) ∈Mx,ξχ . The frequency of ξ ∈ Q
in a structure x is defined as

ψ(ξ, x) =
∣∣∣{x̂ ∈ χ̂

x
|(γx(x̂), x)

M∼ (γξχ(ξχ̂), ξχ)
}∣∣∣ . (5)

If we instantiate the score function (1) for the case of mapping
kernels with respect to a model M , the following is obtained:

S(x) =
∑
xi∈M

αxi
∑

(x̂,x̂i)∈Mx,xi

k(γx(x̂), γxi(x̂i)) =
∑
xi∈M

αxi

·
∑
x̂∈χ̂

x

∑
x̂i∈χ̂xi

[[(x̂, x̂i) ∈Mx,xi]] k(γx(x̂), γxi(x̂i)), (6)

where [[t]] = 1 if t is true; 0 otherwise. At this point, by
observing that, due to the definition ofM∼ and ξ, we have that

1It should be noticed that the representative does not belong to
Q since the first element of the pair does not belong to χ′, however
this choice of a representative allows us to simplify the notation.

(x̂, x̂i) ∈Mx,xi ⇔ (x̂, ξχ̂) ∈Mx,ξχ , we can introduce into
the above equation a sum over all the equivalence classes
without modifying the score function:

S(x) =
∑
xi∈M

αxi
∑
x̂∈χ̂

x

∑
x̂i∈χ̂xi

∑
ξ∈Q

[[(x̂, x̂i) ∈Mx,xi]]

[[(γxi(x̂i), xi)
M∼ (γξχ(ξχ̂), ξχ)]]k(γx(x̂), γxi(x̂i))(7)

Such addition will allow us to further compact (7). We will
use fξ(M) =

∑
xi∈M αxiψ(ξ, xi) to simplify the notation:

S(x) =
∑
x̂∈χ̂

x

∑
ξ∈Q

k(γx(x̂), γξχ(ξχ̂)) [[(x̂, ξχ̂)∈Mx,ξχ]]∑
xi∈M

αxi
∑

x̂i∈χ̂xi

[[(γxi(x̂i), xi)
M∼ (γξχ(ξχ̂), ξχ)]]

=
∑
x̂∈χ̂

x

∑
ξ∈Q

(x̂,ξχ̂)∈Mx,ξχ

k
(
γx(x̂), γξχ(ξχ̂)

)∑
xi∈M

αxiψ(ξ, xi)

=
∑
x̂∈χ̂

x

∑
ξ∈Q

(x̂,ξχ̂)∈Mx,ξχ

k
(
γx(x̂), γξχ(ξχ̂)

)
fξ(M).

(8)
Note that in eq. (1), by looping over the equivalence classes
and by summing the contributions of all equivalent substruc-
tures with the term fξ(M) we satisfy the generic optimality
criterion for a generic mapping kernel.

The model of a kernel method is normally represented
either by a set of examples (dual representation) as in eq. (1),
or by a vector of features (primal representation). The former
can hardly be further compacted since usually the examples
tend not to be repeated in the training set; the latter groups to-
gether features belonging to different examples. However, the
size of the feature space can be exponential with respect to
the number of examples. When the kernel function involved
is part of the mapping kernel framework, an ”intermediate“
representation, i.e. in terms of the parts of the examples, can
be used to represent the model. This is an intermediate repre-
sentation since it shares features of both the primal and the
dual representation: subparts belonging to different exam-
ples can be grouped together as in the primal representation
and the size of the model, if the kernel does not have expo-
nential complexity, can not be exponential with respect to
the size of the dual representation. This last statement is a
direct consequence of the fact that ∀x1, x2.Mx1,x2

must be
less than exponential in size for the kernel to have less than
exponential complexity.

In the general case, if we want to compute eq. (8) for an
input x, we need to: keep in memory γ() to compute γx(x̂);
to represent the model, we need ξχ, ξχ̂ for each ξ ∈ Q for
computing M. However, as we will see in Sec. 6, this is
not always the case, the nature of K() may induce several
optimizations, e.g., ifM is independent from ξχ and ξχ̂, then
we can choose to directly represent γξχ(ξχ̂) for each ξχ, ξχ̂
in the model. In either case, we need to be able to correctly
associate fξ(M) values with local kernel computations.

A general algorithmic procedure to derive a model repre-
sentation is the following. Starting from a mapping kernel
function, first identify ξχ, ξχ̂, γ(),M. The analysis of eq. (4)

3423

with the current instantiations of ξχ, ξχ̂, γ(),M gives indica-
tion of the elements constituting the equivalence classes and
therefore the structures needed to represent the model.

Model Optimization For Recursive Local Kernel
Functions
Let k(x′, ξ′) = h(g(x′1, ξ

′
1) ◦ k(x′2, ξ′2) ◦ . . . ◦ k(x′n, ξ′n))

be a recursive function. Then χ′ is a well-founded set with
respect to an inclusion relation⊂, with x′1 ⊂ x′, . . . , x′n ⊂ x′
and ξ′1 ⊂ ξ′, . . . , ξ′n ⊂ ξ′. By following the same postulate
we stated at the beginning of Section 4, we can look for
a representation that avoids to recompute any k(x′j , ξ

′
j) if

x′j , ξ
′
j are subparts of multiple x′, ξ′, respectively. We can

exploit ⊂ and represent ξ′ in terms of ξ′1 plus the information
that is needed to compute the non recursive part of k(x′, ξ′).
An example of such strategy is described in Section 6.

Notice that the type of optimization described in this sec-
tion is different from the one in eq. (8). The structures ξ
appear as terms in a summation in eq. (8) and therefore ξ
elements appearing in different examples can be grouped
together. In order to get the overall contribution of such ξ
structures to the computation of the score, k(x′j , ξ

′
j) need

to be evaluated once only (and then multiplied by fξ′j (M)).
On the contrary, in a recursive definition the terms k(x′j , ξ

′
j)

may not be assumed to appear only as terms of a summa-
tion and thus the distributive property can not be applied
to group together k(x′j , ξ

′
j) terms. Therefore, while we can

cache k(x′j , ξ
′
j) values to avoid to re-evaluate them, in gen-

eral, if the same k(x′j , ξ
′
j) appear in the evaluation of two

different pairs k(x′, ξ′), k(x′, ξ′′), it still needs to be accessed
twice to be properly composed with the other terms appearing
in k(x′, ξ′) and k(x′, ξ′′), respectively.

5 Related Work
While SVMs have a high generalization capability, several
authors pointed out that one of its drawback is the time re-
quired both in learning and classification phases (Nguyen and
Ho 2006), (Anguita, Ridella, and Rivieccio 2004), (Tipping
2001), (Rieck et al. 2010). Several approaches have been
pursed to tackle this problem.

Nguyen and Ho (Nguyen and Ho 2006) describe an it-
erative process to replace two support vectors with a new
one representing both of them. The replacement operation
involves the maximization of a one-variable function in the
range [0, 1]. Anguita et al. (Anguita, Ridella, and Rivieccio
2004) replace the set of support vectors with a single one,
called archetype. However the archetype is defined in the fea-
ture space and thus it is necessary to solve a further quadratic
optimization problem to find an approximation in input space.
The approximated model, according to the authors “main-
tains the ability to classify the data with a moderate increase
of the error rate”.

Tipping (Tipping 2001) proposed the Relevance Vector
Machine, an algorithm based on Bayesian theory with a func-
tional form similar to SVM, which tries to minimize the
number of support vectors produced during learning. How-
ever the Relevance Vector Machine requires O(N3) time

and O(N2) memory to train. Relevance Vector Machines
not only bound the user to a particular learning algorithm,
but also cannot be used for on-line settings or large datasets.
Recently Croce et al. (2017) applied Nyström to obtain a
vectorial representation of trees. This way, they enable the
use of an approximated tree kernels in deep neural networks.

All previous papers reduce the computational burden of
the classification phase by finding an approximation of the
model. In most cases the approximation is found by solving
an optimization problem. The computational complexity or
the type of learning algorithm prevents their use in on-line
settings. In this paper we describe a way to speed up the
computation of the score with no approximation and without
the need to solve an optimization problem. The work closest
to ours is the one of Shin et al. (Shin, Cuturi, and Kuboyama
2011). Their idea is to cache repeated local kernel computa-
tions for small substructures. Their proposal is different from
ours because it applies to a single kernel computation and
because our theoretically guided approach helps devising an
optimal representation of the model which avoids to repeat
any local kernel computation. Our approach generalizes the
one described in (Aiolli et al. 2007) to any convolution kernel
and can be used with any kernel based algorithm.

6 Compact Score Representation for TKs
This section discusses how eq. (8) can be instantiated to
kernels for trees. Specifically, we first introduce a few rep-
resentative convolution tree kernels, show how they can be
represented within the mapping kernel framework and then
outline the structures needed to compute the local kernel k()
and the fξ() functions in eq. (8). The challenge then becomes
to compactly represent all such structures in order to reduce
the memory and computational burdens for computing the
score.

Subset, Subtree, Partial and Elastic TKs
The evaluation of the Subtree, Subset, Partial and Elastic
tree kernels is performed by implicitly extracting a set of
tree fragments from the two input labelled ordered trees and
then counting the matching ones. The kernels differ in the
set of subtrees they match, which correspond to the ST, SST,
PT and ET as defined in Section 2. All four kernels can be
computed by the following recursive procedure:

K(T1, T2) =
∑

v1∈V (T1)

∑
v2∈V (T2)

C(v1, v2), (9)

The function C(v1, v2) computes the number of matching
subtrees (subset, partial or elastic) rooted at v1 and v2. Its
definition depends on the employed tree kernel. For example,
the C(v1, v2) for the SST kernel is defined according to the
following rules: 1) if the productions at v1 and v2 are different
then C(v1, v2) = 0; 2) if the productions at v1 and v2 are
identical, and v1 and v2 have only leaf children (i.e. they
are pre-terminals symbols) then C(v1, v2) = λ; 3) if the
productions at v1 and v2 are the same, and v1 and v2 are not
pre-terminals, then

C(v1, v2) = λ

nc(v1)∏
j=1

(σ + C(chj [v1], chj [v2])), (10)

3424

where nc(v1) is the number of children of v1, chj [v] is
the j-th child of node v and σ is set to 1. The complex-
ity of the kernel is O(|V (T1)| · |V (T2)|). Although the
Subtree kernel has O(|V (T)| log |V (T)|) complexity, where
|V (T)| = max(|V (T1)|, |V (T2)|) (Viswanathan and Smola
2003), it can also be computed by setting σ = 0 in eq. (10).
The C() functions of the other tree kernels are here omitted
for brevity (see references in section 2 for details). Let us
just note here that both kernels are computationally more
demanding than the SST kernel, but their complexity is still
quadratic with respect to the number of nodes.

The four kernels above can be represented inside the map-
ping kernel framework: χ, χ′ are sets of trees, χ̂

x
is the

set of subtrees of x, ∀x.γx() is the identity function and
M ≡ χ̂

x1
× χ̂

x2
. The relation (4) becomes: (x′1, x1) ∼

(x′2, x2)⇔ ∀x′ ∈ χ′.k(x′1, x′) = k(x′2, x
′).

In order to represent a model as in eq. (8) we need to
identify the representatives of the equivalence classes. Let
us first introduce the following definition: we say that two
ordered trees, T1 and T2, are identical if there exists an iso-
morphic mapping from T1 to T2 such that sibling ordering
is preserved in both subtrees. Then, it can be shown that
(x′1, x1) ∼ (x′2, x2) if and only if x′1 is identical to x′2.⇐)
is obvious since the evalutation of the local kernel depends
only on the structure of the subtree. ⇒) can be shown as
follows: if (x′1, x1) ∼ (x′2, x2) then C(x′1, x

′
1) = C(x′1, x

′
2)

and C(x′2, x
′
2) = C(x′2, x

′
1), thus the set of subtrees (proper,

subset, partial and elastic) rooted at x′1 and the one rooted at
x′2 are identical. Since all four kernels consider as a feature
the proper subtree rooted at x′1 and x′2, it implies that the
subtrees x′1 and x′2 are identical. The property above shows
that proper subtrees can be class representatives.

To compute the score for a model M the following is
needed: the set of subtrees appearing in at least one tree in
the model and, for each subtree, the corresponding fξ(M)
value. Fig. 1 reports an example of a model represented by
two trees, T1 and T2 (Fig. 1-a), their decomposition into
subtrees (Fig. 1-b), and the corresponding set of subtrees and
fξ(M) values (Fig. 1-c). The recursive nature of the eq. (10)
implies the following inclusion relation between subtrees:
t1 ⊂ t2 if t1 is identical to the subtree formed by a child node
of t2 and all of its descendants. As a consequence, if two
class representatives are in an inclusion relationship, ξ′ ⊂ ξ′′,
then representing both two equivalence classes independently
is redundant. Taking as an example ξ′′, what is needed is
only the information that is not in common with ξ′ and then
a reference to ξ′ for the information in common between ξ′
and ξ′′. This is exemplified in Fig. 1: the equivalence class
ξ2 is included in ξ1, ξ1 ⊂ ξ3, ξ1 ⊂ ξ4, ξ2 ⊂ ξ3 (Fig. 1-c);
for example the equivalence class ξ3 is represented by the
node labelled as a, together with its frequency 1, and by links
to the representatives of the classes ξ1, ξ2 (Fig. 1-d). Such
compact representation results in a forest of annotated DAGs.

7 Experiments
Semantic Role Labelling (SRL) is the task of automatically
extracting a predicate along with its argument from a natural
language sentence. Previous work has shown that Semantic

a

b
c c

c

T1

b

b
c c

T2
a

b
c c

c

b
c c

cc
c

χ̂
T1

b

b
c c

b
c c

c c

χ̂
T2

b
c c

2
ξ1

c
5

ξ2

a

b
c c

c

1
ξ3

b

b
c c

1ξ4

a) b)

c)

→

a

b

c

b

1

1

2

5

d)

ξ2

ξ1

ξ3

ξ4

Figure 1: a) a model formed by two trees, T1 and T2; b) the
decomposition into parts of the two trees; c) the set of equiv-
alence classes formed according to eq. (4); each class ξ is
described by a representative subtree (ξχ̂), and the frequency
of the subtree in the model (fξ(M)); d) an inclusion rela-
tionship between subtrees is exploited to avoid redundancies
when representing the same subtrees in different equivalence
classes.

Role Labeling (SRL) can be carried out by applying machine
learning techniques, e.g., (Gildea and Jurasfky 2002). The
model proposed in (Moschitti 2004) applies tree kernels to
subtrees enclosing the predicate/argument relation. More pre-
cisely, each predicate and argument pair is associated with
the minimal subtree that dominates the words contained in
both pair members. For example, in Fig. 2, the subtrees in-
side the three frames are the semantic/syntactic structures
associated with the three arguments of the verb to bring, i.e.
SArg0, SArg1 and SArgM .

Unfortunately, the large size of the PropBank corpus makes
learning via tree kernels rather expensive in terms of execu-
tion time, which becomes prohibitive when all the data is
used. Consequently, the algorithms presented in the previous
sections are very useful to speed up the learning/classification
processes and make the kernel based approaches more appli-
cable. The next section empirically shows the benefit of our
DAG-based algorithms.

Space and Time Comparisons We measured the compu-
tation time and the memory allocation (in terms of input tree
nodes belonging to the model) for both the traditional Per-
ceptron algorithm and the voted Perceptron based on DAGs.
The target learning tasks were those involved in Semantic
Role Labelling, specifically argument boundary detection,
i.e., all the nodes of the sentence parse tree are classified in
correct or incorrect boundaries. The correct label means that
the leaves (i.e., words) of the tree rooted in the target node
are all and only those constituting an argument. As a refer-

3425

S

N

NP

D N

VP

V Mary

 to

brought

a cat

PP

IN N

school

Arg. 0

Arg. M Arg. 1

Predicate

NP

D N

VP

V

brought

a cat

SArg1 VP

V

 to

brought

PP

IN N

school

S

N

V Mary

brought

VP

SArg0 SArgM

Figure 2: Parse tree of the sentence ”Mary brought a cat to school” along with the PAF trees for Arg0, Arg1 and ArgM.

Training Validation Test
Num. of trees 4,079,510 234,416 149,140
Num. of nodes 63,465,630 3,653,344 2,354,371
Avg num. nodes
in a tree

15.56 15.58 15.79

Avg maximum
outdegree

2.53 2.29 2.24

Max outdegree 59 13 15

Table 1: Statistics of syntactic trees in the boundary detection
dataset.

ring dataset, we used PropBank along with PennTree bank 2
(Marcus, Santorini, and Marcinkiewicz 1993). Specifically,
we used all the sections of the PennTree bank for a total of
276,039 positive and 4,187,027 negative tree examples.

The DAG performance is affected by node distribution
within trees along with their maximum and average out-
degree. Table 1 reports statistics about the data derived from
the boundary detection dataset. Note that there is a large
number of relatively small trees, which can have a large out-
degree. The total amount of nodes to be processed is almost
70 millions, thus, the dataset can demonstrate the computa-
tional efficiency of our approach.

This dataset is almost prohibitive for computational expen-
sive approaches such as SVM. It took 10,705 minutes just
for processing 1 million examples with the faster SST ker-
nel, e.g., about 7.5 days of computation. Thus we report the
results obtained on the same experimental setting for the stan-
dard and voted dag perceptrons. Fig. 3 shows the execution
time for the standard perceptron and the voted dag percep-
tron when using SST kernel combined with the polynomial
kernel. In the case of the TKs and combination, we used the
following parameters: λ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1.0} (TKs decay factor) and γ ∈ {0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9} (weighting the linear combination between tree
and polynomial kernels). Only the values related to the faster
and slower parameter settings are plotted.

Learning with the combination of kernels requires in the
worst case (λ = 1.0 and γ = 0.9) 15, 814.09 seconds for the
voted dag perceptron and 22, 892.62 seconds for the standard
perceptron in the most favorable case (λ = 0.6 and γ = 0.9).
Note that the voted perceptron, even in this unfavorable com-
parison, is 7078.53 seconds faster (a bit less than 2 hours).
Fig. 4 shows the memory usage of standard perceptron and

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 200000 400000 600000 800000 1e+06

T
im

e
 i
n
 s

e
c
.

Number of tree examples

Execution Time for Poly3 + Tk

Voted Dag Perceptron (λ=0.6 γ=0.7)
Voted Dag Perceptron (λ=1.0 γ=0.9)

Standard Perceptron (λ=0.6 γ=0.9)
Standard Perceptron (λ=1.0 γ=0.9)

Figure 3: Execution time in seconds for the Standard Percep-
tron and the Voted DAG Perceptron over the training set with
1 million examples using a combination of Tk with different
λ values and a polynomial kernel with degree 3 according
to a parameter γ (Poly3+Tk). Only the slowest and fastest
executions are reported.

voted dag perceptron algorithms.
The model created by the voted dag perceptron, when

a combination of kernels is employed (Fig. 4), comprises
from 124, 333 to 145, 928 nodes, while the model created by
the standard perceptron comprises from 391, 240 to 625, 501
nodes. The amount of nodes used by the standard perceptron
can be more than 4.2 times higher than the one employed by
the voted dag perceptron.

Finally, in Fig. 5 we report the training times for the voted
dag perceptron on the full training set (i.e., up to 4,079,510
trees) when using the parameters selected on the validation
set after training 1 million of tree examples. It can be noticed
that the training is completed after 129, 163.98 seconds (less
than 36 hours) by using the polynomial kernel of degree 3,
51, 235.9 seconds (a bit more than 14 hours) by using the
SST kernel (λ = 0.4), and 178, 826.19 seconds (less than 50
hours) when using a linear combination of the two previous
kernels (λ = 0.6 and γ = 0.9). In any case, the training
for the voted dag perceptron on the full training set is much
faster than training an SVM on 1 million examples. We finally
point out that using the entire dataset is also prohibitive for
the perceptron so we could not report its running time, which
is larger than one week.

3426

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0 200000 400000 600000 800000 1e+06

N
um

be
r

of
 n

od
es

 in
 m

em
or

y

Number of tree examples

Memory Usage for Poly3+Tk

Voted Dag Perceptron λ=0.4, γ=0.6
Voted Dag Perceptron λ=1.0, γ=0.6

Standard Perceptron λ=0.4, γ=0.4
Standard Perceptron λ=1.0, γ=0.6

Figure 4: Evolution of the number of tree nodes stored in
memory and belonging to the model developed by the Stan-
dard Perceptron and the Voted DAG Perceptron during train-
ing on the training set with 1 million examples using the
SST kernel combined with polynomial kernel. Only kernel
parameters with largest and lower number of nodes stored
are plotted.

Accuracy Comparisons In Fig. 6 we report the accuracy
measured by the F1, for the voted dag perceptron when using
the kernels described above and the full training set. The
figure also reports the F1 on the test set for SVM using the
SST kernel (with λ = 0.4) and trained on the first million of
tree examples. As expected, the voted (dag) perceptron us-
ing the SST kernel trained on 1 million examples gets lower
performance (0.805) than SVM. However, the performance
steadily increases with the number of training examples. With
2 millions examples the voted perceptron gets a better accu-
racy (0.814) in a much shorter training time, i.e., less than
4.3 hours versus about 7.5 days of computation required for
training SVM. When the full training set is used, the voted
perceptron takes a bit more than 14 hours to learn a model
able to reach an F1 of 0.822, significantly improving the accu-
racy over the SVM. Just using a degree 3 polynomial kernel
for numerical features improves performance (up to 0.818)
as well (at the cost of a larger training time: see Fig. 5). The
best performance is obtained by combining the two kernels:
the training time still remains reasonable (on the full training
set is less than 50 hours), while F1 increases up to 0.831. In
summary, the adoption of the dag-based approach allows to
improve accuracy by using more examples at a fraction of
the time needed by an SVM trained on 1 million examples.

8 Conclusions
In this paper, we have proposed a general approach to speed
up the computation of the score function of classifiers based
on kernel methods for structured data. Our methods avoid
the re-computation of kernels over identical substructures
appearing in different examples. We theoretically analyzed
the formulation of the score, eq. (1), for Mapping Kernels,
the most comprehensive framework for specifying kernel
functions for structured data, and derived various strategies
to find an optimal representation of the model: this allows

 0

 50000

 100000

 150000

 200000

 1e+06 2e+06 3e+06 4e+06

T
im

e
 i
n
 s

e
c
.

Number of tree examples

Execution Time for Voted Dag Perceptron

Poly3
Tk (λ=0.4)

Tk+Poly3 (λ=0.6 γ=0.9)

Figure 5: Execution times of voted dag perceptron when
using the full training set for polynomial kernel of degree
3 (Poly3), SST kernel (Tk), and a combination of the two
(Tk+Poly3).

 0.8

 0.805

 0.81

 0.815

 0.82

 0.825

 0.83

 0.835

 1e+06 2e+06 3e+06 4e+06

F
1

Number of tree examples

Performance of Voted Dag Perceptron

Poly3
Tk (λ=0.4)

Tk+Poly3 (λ=0.6 γ=0.9)
SVM Tk (λ=0.4) trained on 1M trees

Figure 6: Accuracy performance on the test set, as measured
by the F1 measure, for polynomial kernel of degree 3 (Poly3),
the SST kernel (Tk), a combination of the two (Tk+Poly3)
and an SVM trained on 1 million examples using the SST
kernel (SVM Tk).

to reduce its memory consumption and speed up the score
computation. We showed that our findings apply to most pop-
ular tree kernels. Finally, we provided empirical evidence of
the benefit of our approach on Semantic Role Labelling task.
We showed that the learning time of a perceptron algorithm
on a large dataset of 4-million-instance decreases from more
than a week to 14 hours only. It should be noted that our
SVM-based model could only be trained on a significantly
smaller number of examples. Thus, a simple voted percep-
tron could outperform the SVM models also with respect to
classification accuracy.

Acknowledgments
We would like to thank the anonymous reviewers for pro-
viding us with suggestions and insights on how to further
develop the ideas of the paper.

3427

References
Aiolli, F.; Da San Martino, G.; Sperduti, A.; and Moschitti, A.
2007. Efficient Kernel-based Learning for Trees. In CIDM
2007, 308–315.
Anguita, D.; Ridella, S.; and Rivieccio, F. 2004. An algorithm
for reducing the number of support vectors. In Proceedings
of the WIRN04 XV Italian Workshop on Neural Networks.
Perugia, Italy.
Collins, M., and Duffy, N. 2002. New ranking algorithms
for parsing and tagging: Kernels over discrete structures, and
the voted perceptron. In ACL02.
Crammer, K.; Dekel, O.; Keshet, J.; Shalev-shwartz, S.; and
Singer, Y. 2006. Online Passive-Aggressive Algorithms.
Journal of Machine Learning Research 7:551–585.
Cristianini, N., and Shawe-Taylor, J. 2000. An introduction
to support vector machines and other kernel-based learning
methods. Cambridge University Press, 1 edition.
Croce, D.; Filice, S.; Castellucci, G.; and Basili, R. 2017.
Deep Learning in Semantic Kernel Spaces. In ACL’17 (Vol-
ume 1: Long Papers), 345–354. Stroudsburg, PA, USA:
Association for Computational Linguistics.
Filice, S.; Da San Martino, G.; and Moschitti, A. 2015.
Structural Representations for Learning Relations between
Pairs of Texts. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics (Volume 1:
Long Papers), 1003–1013. Beijing, China: Association for
Computational Linguistics.
Freund, Y., and Schapire, R. E. 1999. Large Margin Classifi-
cation Using the Perceptron Algorithm. Machine Learning
37(3):277–296.
Gildea, D., and Jurasfky, D. 2002. Automatic labeling of
semantic roles. Computational Linguistic 28(3):496–530.
Haussler, D. 1999. Convolution kernels on discrete struc-
tures. Technical Report UCSC-CRL-99-10, University of
California, Santa Cruz.
Jaakkola, T.; Diekhans, M.; and Haussler, D. 2000. A discrim-
inative framework for detecting remote protein homologies.
Journal of Computational Biology 7(1,2):95–114.
Kashima, H., and Koyanagi, T. 2002. Kernels for {Semi-
Structured} Data. In Proceedings of the Nineteenth Interna-
tional Conference on Machine Learning, 291–298. Morgan
Kaufmann Publishers Inc.
Kazama, J., and Torisawa, K. 2005. Speeding up training
with tree kernels for node relation labeling. In HLT/EMNLP.
Kazama, J., and Torisawa, K. 2006. Semantic role recog-
nition using kernels on weighted marked ordered labeled
trees. In Proceedings of CoNLL-X, 53–60. New York City:
Association for Computational Linguistics.
Kivinen, J.; Smola, A. J.; and Williamson, R. C. 2004. Online
learning with kernels. Signal Processing, IEEE Transactions
on 52(8):2165–2176.
Kuang, R.; Ie, E.; Wang, K.; Wang, K.; Siddiqi, M.; Freund,
Y.; and Leslie, C. S. 2004. Profile-based string kernels
for remote homology detection and motif extraction. In

3rd International IEEE Computer Society Computational
Systems Bioinformatics Conference (CSB 2004), 152–160.
Marcus, M. P.; Santorini, B.; and Marcinkiewicz, M. A. 1993.
Building a large annotated corpus of english: The Penn Tree-
bank. Computational Linguistics 19:313–330.
Moschitti, A., and Zanzotto, F. 2007. Fast and effective
kernels for relational learning from texts. In Ghahramani, Z.,
ed., Proceedings of the 24th Annual International Conference
on Machine Learning (ICML 2007), 649–656. Omnipress.
Moschitti, A. 2004. A study on convolution kernels for
shallow semantic parsing. In Proceedings of ACL’04.
Moschitti, A. 2006. Efficient convolution kernels for de-
pendency and constituent syntactic trees. In Fürnkranz, J.;
Scheffer, T.; and Spiliopoulou, M., eds., ECML, volume 4212
of Lecture Notes in Computer Science, 318–329. Springer.
Nguyen, D., and Ho, T. 2006. A bottom-up method for
simplifying support vector solutions. IEEE transactions on
neural networks 17(3):792–796.
Rieck, K.; Krueger, T.; Brefeld, U.; and Mueller, K.-R. 2010.
Approximate tree kernels. Journal of Machine Learning
Research 11:555–580.
Rosemblatt, F. 1958. A probabilistic model for information
storage and organization in the brain. Psychological Review
65:386–408.
Shawe-Taylor, J., and Cristianini, N. 2004. Kernel Methods
for Pattern Analysis. Cambridge University Press.
Shin, K., and Kuboyama, T. 2010. A Generalization of
Haussler’ s Convolution Kernel — Mapping Kernel and Its
Application to Tree Kernels. Journal of Computer Science
and Technology 25(5):1040–1054.
Shin, K.; Cuturi, M.; and Kuboyama, T. 2011. Mapping
kernels for trees. In Lise Getoor and Scheffer, T., ed., Pro-
ceedings of ICML 2011, Bellevue, Washington, USA, June 28
- July 2, 2011, 961 – 968. Omnipress.
Shin, K. 2011. Mapping kernels defined over countably
infinite mapping systems and their application. Journal of
Machine Learning Research 20:367–382.
Tipping, M. E. 2001. Sparse bayesian learning and the
relevance vector machine. Journal of Machine Learning
Research 1:211–244.
Viswanathan, S., and Smola, A. J. 2003. Fast kernels for
string and tree matching. In S. Becker, S. T., and Obermayer,
K., eds., NIPS 15. Cambridge, MA: MIT Press. 569–576.
Wachsmuth, H.; Da San Martino, G.; Kiesel, D.; and Stein, B.
2017. The Impact of Modeling Overall Argumentation with
Tree Kernels. In EMNLP 2017, 2369–2379. Copenhagen,
Denmark: Association for Computational Linguistics.
Zanzotto, F. M., and Moschitti, A. 2006. Automatic learning
of textual entailments with cross-pair similarities. In ACL.
The Association for Computer Linguistics.
Zhang, M.; Che, W.; Aw, A.; Tan, C. L.; Zhou, G.; Liu, T.; and
Li, S. 2007. A grammar-driven convolution tree kernel for
semantic role classification. In Proceedings of ACL’07, 200–
207. Prague, Czech Republic: Association for Computational
Linguistics.

3428

