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Abstract

Contextual bandit algorithms are sensitive to the estimation
method of the outcome model as well as the exploration
method used, particularly in the presence of rich heterogene-
ity or complex outcome models, which can lead to difficult
estimation problems along the path of learning. We develop
algorithms for contextual bandits with linear payoffs that in-
tegrate balancing methods from the causal inference literature
in their estimation to make it less prone to problems of esti-
mation bias. We provide the first regret bound analyses for
linear contextual bandits with balancing and show that our
algorithms match the state of the art theoretical guarantees.
We demonstrate the strong practical advantage of balanced
contextual bandits on a large number of supervised learning
datasets and on a synthetic example that simulates model mis-
specification and prejudice in the initial training data.

Introduction
Contextual bandits seek to learn a personalized treatment as-
signment policy in the presence of treatment effects that vary
with observed contextual features. In such settings, there is
a need to balance the exploration of actions for which there
is limited knowledge in order to improve performance in the
future against the exploitation of existing knowledge in or-
der to attain better performance in the present (see (Bubeck
and Cesa-Bianchi 2012) for a survey). Since large amounts
of data can be required to learn how the benefits of alter-
native treatments vary with individual characteristics, con-
textual bandits can play an important role in making exper-
imentation and learning more efficient. Several successful
contextual bandit designs have been proposed (Auer 2003),
(Li et al. 2010), (Agrawal and Goyal 2013), (Agarwal et al.
2014), (Bastani and Bayati 2015). The existing literature has
provided regret bounds (e.g., the general bounds of (Russo
and Van Roy 2014), the bounds of (Rigollet and Zeevi 2010),
(Perchet and Rigollet 2013), (Slivkins 2014) in the case of
non-parametric function of arm rewards), has demonstrated
successful applications (e.g., news article recommendations
(Li et al. 2010) or mobile health (Lei, Tewari, and Murphy
2017)), and has proposed system designs to apply these al-
gorithms in practice (Agarwal et al. 2016).
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In the contextual setting, one does not expect to see many
future observations with the same context as the current ob-
servation, and so the value of learning from pulling an arm
for this context accrues when that observation is used to es-
timate the outcome from this arm for a different context in
the future. Therefore, the performance of contextual bandit
algorithms can be sensitive to the estimation method of the
outcome model or the exploration method used. In the initial
phases of learning when samples are small, biases are likely
to arise in estimating the outcome model using data from
previous non-uniform assignments of contexts to arms. The
bias issue is aggravated in the case of a mismatch between
the generative model and the functional form used for es-
timation of the outcome model, or similarly, when the het-
erogeneity in treatment effects is too complex to estimate
well with small datasets. In that case methods that proceed
under the assumption that the functional form for the out-
come model is correct may be overly optimistic about the
extent of the learning so far, and emphasize exploitation
over exploration. Another case where biases can arise oc-
curs when training observations from certain regions of the
context space are scarce (e.g., prejudice in training data if
a non-representative set of users arrives in initial batches of
data). These problems are common in real-world settings,
such as in survey experiments in the domain of social sci-
ences or in applications to health, recommender systems, or
education. For example, early adopters of an online course
may have different characteristics than later adopters.

Reweighting or balancing methods address model mis-
specification by making the estimation “doubly-robust,”, ro-
bust against misspecification of the reward function, impor-
tant here, and robust against the specification of the propen-
sity score (not as important here because in the bandit setting
we know the propensity score). The term “doubly-robust”
comes from the extensive literature on offline policy evalu-
ation (Scharfstein, Rotnitzky, and Robins 1999); it means in
our case that when comparing two policies using historical
data, we get consistent estimates of the average difference
in outcomes for segments of the context whether we have
either a well-specified model of rewards or not, as long as
we have a good model of the arm assignment policy (i.e.,
accurate propensity scores). Because in a contextual bandit
the learner controls the arm assignment policy conditional
on the observed context, we therefore have access to accu-
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rate propensity scores even in small samples. So, even when
the reward model is severely misspecified, the learner can
use the propensity scores to obtain unbiased estimates of the
reward function for each range of values of the context.

We suggest the integration of balancing methods from the
causal inference literature (Imbens and Rubin 2015) in on-
line contextual bandits. We focus on the domain of linear
online contextual bandits with provable guarantees, such as
LinUCB (Li et al. 2010) and LinTS (Agrawal and Goyal
2013), and we propose two new algorithms, balanced lin-
ear UCB (BLUCB) and balanced linear Thompson sampling
(BLTS). BLTS and BLUCB build on LinTS and LinUCB re-
spectively and extend them in a way that makes them less
prone to problems of bias. The balancing will lead to lower
estimated precision in the reward functions, and thus will
emphasize exploration longer than the conventional linear
TS and UCB algorithms, leading to more robust estimates.

The balancing technique is well-known in machine learn-
ing, especially in domain adaptation and studies in learning-
theoretic frameworks (Huang et al. 2007), (Zadrozny 2004),
(Cortes, Mansour, and Mohri 2010). There is a number of
recent works which approach contextual bandits through
the framework of causality (Bareinboim, Forney, and Pearl
2015), (Bareinboim and Pearl 2015), (Forney, Pearl, and
Bareinboim 2017), (Lattimore, Lattimore, and Reid 2016).
There is also a significant body of research that leverages
balancing for offline evaluation and learning of contextual
bandit or reinforcement learning policies from logged data
(Strehl et al. 2010), (Dudı́k, Langford, and Li 2011), (Li et
al. 2012), (Dudı́k et al. 2014), (Li et al. 2014), (Swaminathan
and Joachims 2015), (Jiang and Li 2016), (Thomas and
Brunskill 2016), (Athey and Wager 2017), (Kallus 2017),
(Wang, Agarwal, and Dudı́k 2017), (Deshpande et al. 2017),
(Kallus and Zhou 2018), (Zhou, Athey, and Wager 2018). In
the offline setting, the complexity of the historical assign-
ment policy is taken as given, and thus the difficulty of the
offline evaluation and learning of optimal policies is taken
as given. Therefore, these results lie at the opposite end of
the spectrum from our work, which focuses on the online
setting. Methods for reducing the bias due to adaptive data
collection have also been studied for non-contextual multi-
armed bandits (Villar, Bowden, and Wason 2015), (Nie et
al. 2018), but the nature of the estimation in contextual ban-
dits is qualitatively different. Importance weighted regres-
sion in contextual bandits was first mentioned in (Agarwal et
al. 2014), but without a systematic motivation, analysis and
evaluation. To our knowledge, our paper is the first work to
integrate balancing in the online contextual bandit setting,
to perform a large-scale evaluation of it against direct esti-
mation method baselines with theoretical guarantees and to
provide a theoretical characterization of balanced contextual
bandits that match the regret bound of their direct method
counterparts. The effect of importance weighted regression
is also evaluated in (Bietti, Agarwal, and Langford 2018),
but this is a successor to the extended version of our paper
(Dimakopoulou et al. 2017).

We prove that the regret bound of BLTS is
Õ
(
d
√
KT 1+ε/ε

)
and that the regret bound on BLUCB

is Õ
(√

TdK
)

where d is the number of features in the
context, K is the number of arms and T is the horizon. Our
regret bounds for BLTS and BLUCB match the existing
state-of-the-art regret bounds for LinTS (Agrawal and
Goyal 2013) and LinUCB (Chu et al. 2011) respectively.
We provide extensive and convincing empirical evidence
for the effectiveness of BLTS and BLUCB (in comparison
to LinTS and LinUCB) by considering the problem of
multiclass classification with bandit feedback. Specifically,
we transform a K-class classification task into a K-armed
contextual bandit (Dudı́k, Langford, and Li 2011) and we
use 300 public benchmark datasets for our evaluation. It is
important to point out that, even though BLTS and LinTS
share the same theoretical guarantee, BLTS outperforms
LinTS empirically. Similarly, BLUCB has a strong empiri-
cal advantage over LinUCB. In bandits, this phenomenon
is not uncommon. For instance, it is well-known that even
though the existing UCB bounds are often tighter than those
of Thompson sampling, Thompson sampling performs
better in practice than UCB (Chapelle and Li 2011). We
find that this is also the case for balanced linear contextual
bandits, as in our evaluation BLTS has a strong empirical
advantage over BLUCB. Overall, in this large-scale evalu-
ation, BLTS outperforms LinUCB, BLUCB and LinTS. In
our empirical evaluation, we also consider a synthetic ex-
ample that simulates in a simple way two issues of bias that
often arise in practice, training data with non-representative
contexts and model misspecification, and find again that
BLTS is the most effective in escaping these biases.

Problem Formulation & Algorithms
Contextual Bandit Setting
In the stochastic contextual bandit setting, there is a finite
set of arms, a ∈ A, with cardinality K. At every time t,
the environment produces (xt, rt) ∼ D, where xt is a d-
dimensional context vector xt and rt = (rt(1), . . . , rt(K))
is the reward associated with each arm in A. The contextual
bandit chooses arm at ∈ A for context xt and observes the
reward only for the chosen arm, rt(at). The optimal assign-
ment for context xt is a∗t = argmaxa {E[rt(a)|xt = x]}.
The expected cumulative regret over horizon T is defined
as R(T ) , E

[∑T
t=1 (rt(a

∗
t )− rt(at))

]
. At each time t =

1, . . . , T , the contextual bandit assigns arm at to context
xt based on the history of observations up to that time,
(xτ , aτ , rτ (aτ ))t−1τ=1. The goal is to find the assignment rule
that minimizes R(T ).

Linear Contextual Bandits
Linear contextual bandits rely on modeling and estimating
the reward distribution corresponding to each arm a ∈ A
given context xt = x. Specifically the expected reward
is assumed to be a linear function of the context xt with
some unknown coefficient vector θa, E[rt(a)|xt = x] =
x>θa, and the variance is typically assumed to be constant
V[rt(a)|xt = x] = σ2

a. In the setting we are studying, there
K models to be estimated, as many as the arms in A. At
every time t, this estimation of θa is done separately for

3446



Algorithm 1 Balanced Linear Thompson Sampling

1: Input: Regularization parameter λ > 0, propensity
score threshold γ ∈ (0, 1), constant α (default is 1)

2: Set θ̂a ← null, Ba ← null,∀a ∈ A
3: Set Xa ← empty matrix, ra ← empty vector ∀a ∈ A
4: for t = 1, 2, . . . , T do
5: if ∃a ∈ A s.t. θ̂a = null or Ba = null then
6: Select a ∼ Uniform(A)
7: else
8: Draw θ̃a from N

(
θ̂a, α

2V(θ̂a)
)

for all a ∈ A
9: Select a = arg max

a∈A
x>t θ̃a

10: end if
11: Observe reward rt(a).
12: Set Wa ← empty matrix
13: for τ ∈ {1, . . . , t} s.t. aτ = a do
14: Compute pa(xτ ) and set w = 1

max(γ,pa(xτ ))

15: Wa ← diag(Wa, w)
16: end for
17: Xa ← [Xa : x>t ]
18: Ba ← X>a WaXa + λI
19: ra ← [ra : rt(a)]

20: θ̂a ← B−1a X>a Wara

21: V(θ̂a)← B−1a

(
(ra −X>a θ̂a)>Wa(ra −X>a θ̂a)

)
22: end for

each arm a on the history of observations corresponding to
this arm, (Xa, ra) = {(xt, rt(at)) , t : at = a}. Thomp-
son Sampling (Thompson 1933), (Scott 2010), (Agrawal
and Goyal 2012), (Russo et al. 2018) and Upper Confi-
dence Bounds (UCB) (Lai and Robbins 1985), (Auer, Cesa-
Bianchi, and Fischer 2002) are two different methods which
are highly effective in dealing with the exploration vs. ex-
ploitation trade-off in multi-armed bandits. LinTS (Agrawal
and Goyal 2013) and LinUCB (Li et al. 2010) are linear con-
textual bandit algorithms associated with Thompson sam-
pling and UCB respectively.

At time t, LinTS and LinUCB apply ridge regression with
regularization parameter λ to the history of observations
(Xa, ra) for each arm a ∈ A, in order to obtain an estimate
θ̂a and its variance Va(θ̂a). For the new context xt, θ̂a and its
variance are used by LinTS and LinUCB to obtain the con-
ditional mean µ̂a(xt) = x>t θ̂a of the reward associated with
each arm a ∈ A, and its variance V(µ̂a(xt)) = x>t V(θ̂a)xt.
LinTS assumes that the expected reward µa(xt) associ-
ated with arm a conditional on the context xt is Gaussian
N
(
µ̂a(xt), α

2V(µ̂a(xt))
)
, where α is an appropriately cho-

sen constant. LinTS draws a sample µ̃a(xt) from the distri-
bution of each arm a ∈ and context xt is then assigned to
the arm with the highest sample, at = argmaxa{µ̃a(xt)}.
LinUCB uses the estimate θ̂a and its variance to compute
upper confidence bounds for the expected reward µa(xt) of
context xt associated with each arm a ∈ A and assigns the
context to the arm with the highest upper confidence bound,

Algorithm 2 Balanced Linear UCB

1: Input: Regularization parameter λ > 0, propensity
score threshold γ ∈ (0, 1), constant α.

2: Set θ̂a ← null, Ba ← null,∀a ∈ A
3: Set Xa ← empty matrix, ra ← empty vector ∀a ∈ A
4: for t = 1, 2, . . . , T do
5: if ∃a ∈ A s.t. θ̂a = null or Ba = null then
6: Select a ∼ Uniform(A)
7: else
8: Select a = arg max

a∈A

(
x>t θ̂a + α

√
x>t V(θ̂a)xt

)
9: end if

10: Observe reward rt(a).
11: Set Wa ← empty matrix
12: for τ ∈ {1, . . . , t} s.t. aτ = a do
13: Estimate p̂a(xτ ) and set w = 1

max(γ,p̂a(xτ ))

14: Wa ← diag(Wa, w)
15: end for
16: Xa ← [Xa : x>t ]
17: Ba ← X>a WaXa + λI
18: ra ← [ra : rt(a)]

19: θ̂a ← B−1a X>a Wara

20: V(θ̂a)← B−1a

(
(ra −X>a θ̂a)>Wa(ra −X>a θ̂a)

)
21: end for

at = argmaxa

{
µ̂a(xt) + α

√
V(µ̂a(xt))

}
, where α is an

appropriately chosen constant.

Linear Contextual Bandits with Balancing
In this section, we show how to integrate balancing methods
from the causal inference literature in linear contextual ban-
dits, in order to make estimation less prone to bias issues.

Balanced linear Thompson sampling (BLTS) and bal-
anced linear UCB (BLUCB) are online contextual bandit
algorithms that perform balanced estimation of the model
of all arms in order to obtain a Gaussian distribution and
an upper confidence bound respectively for the reward as-
sociated with each arm conditional on the context. We fo-
cus on the method of inverse propensity weighting (Imbens
and Rubin 2015). The idea is that at every time t, the linear
contextual bandit weighs each observation (xτ , aτ , rτ (aτ )),
τ = 1, . . . , t in the history up to time t by the inverse prob-
ability of context xτ being assigned to arm aτ . This proba-
bility is called propensity score and is denoted as paτ (xτ ).
Then, for each arm a ∈ A, the linear contextual bandit
weighs each observation (xτ , a, rτ (a)) in the history of arm
a by wa = 1/pa(xτ ) and uses weighted regression to obtain
the estimate θ̂BLTS

a with variance V(θ̂BLTS
a ). In BLTS (Algo-

rithm 1), the propensity scores are known because Thomp-
son sampling performs probability matching, i.e., it assigns
a context to an arm with the probability that this arm is op-
timal. Since computing the propensity scores involves high
order integration, they can be approximated via Monte-Carlo
simulation. Each iteration draws a sample from the pos-
terior reward distribution of each arm a conditional on x,
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where the posterior is the one that the algorithm consid-
ered at the end of a randomly selected prior time period.
The propensity score pa(xτ ) is the fraction of the Monte-
Carlo iterations in which arm a has the highest sampled
reward, where the arrival time of context xτ is treated as
random. For every arm a, the history (Xa, ra, pa) is used
to obtain a balanced estimate θ̂BLTS

a of θa and its variance
V(θ̂BLTS

a ) which produce a normally distributed estimate of
µ̃a ∼ N

(
x>t θ̂

BLTS
a , α2x>t V(θ̂BLTS

a )xt

)
of the reward of arm

a for context xt, where α is a parameter of the algorithm.
In BLUCB (Algorithm 2), the observations are weighed

by the inverse of estimated propensity scores. Note that
UCB-based contextual bandits have deterministic assign-
ment rules and conditional on the context the propensity
score is either zero or one. But with the standard assumption
that the arrival of contexts is random, at every time period t
the estimated probability p̂a(xτ ) is obtained by the predic-
tion of the trained multinomial logistic regression model on
(xτ , aτ )t−1τ=1. Subsequently, (Xa, ra, p̂a) is used to obtain a
balanced estimate θ̂BLUCB

a of θa and its variance V(θ̂BLUCB
a ).

These are used to construct the upper confidence bound,

x>t θ̂a + α

√
x>t V(θ̂BLUCB

a )xt, for the reward of arm a for
context xt, where α is a constant. (For some results, e.g.,
(Auer 2002), α needs to be slowly increasing in t.)

Note that θ̂BLTS
a , V(θ̂BLTS

a ) and θ̂BLUCB
a , V(θ̂BLUCB

a ) can be
computed in closed form or via the bootstrap.

Weighting the observations by the inverse propensity
scores reduces bias, but even when the propensity scores
are known it increases variance, particularly when they
are small. Clipping the propensity scores (Crump et al.
2009) with some threshold γ, e.g. 0.1 helps control the
variance increase. This threshold γ is an additional pa-
rameter to BLTS (Algorithm 1) and BLUCB (Algorithm
2) compared to LinTS and LinUCB. Finally, note that
one could integrate in the contextual bandit estimation
other covariate balancing methods, such as the method of
approximate residual balancing (Athey, Imbens, and Wa-
ger 2018) or the method of (Kallus 2017). For instance,
with approximate residual balancing one would use as
weights wa = argminw

{
(1− ζ)‖w‖22 + ζ‖x̄− XTaw‖2∞

}
s.t.
∑
t:at=a

wt = 1 and 0 ≤ wt ≤ n
−2/3
a where ζ ∈ (0, 1)

is a tuning parameter, na =
∑T
t=1 1{at = a} and x̄ =

1
T

∑T
t=1 xt and then use wa to modify the parametric and

non-parametric model estimation as outlined before.

Theoretical Guarantees for BLTS and BLUCB
In this section, we establish theoretical guarantees of BLTS
and BLUCB that are comparable to LinTS and LinUCB. We
start with a few technical assumptions that are standard in
the contextual bandits literature.
Assumption 1. Linear Realizability: There exist parame-
ters {θa}a∈A such that given any context x, E[rt(a)|x] =
x>θa,∀a ∈ A,∀t ≥ 0.

We use the standard (frequentist) regret criterion and stan-
dard assumptions on the regularity of the distributions.

Definition 1. The instantaneous regret at iteration t is
x>t θa∗t − x>t θat , where a∗t is the optimal arm at iteration
t and at is the arm taken at iteration t. The cumulative
regret R(T ) with horizon T is the defined as R(T ) =∑>
t=1

(
x>t θa∗t − x

>
t θat

)
.

Definition 2. We denote the canonical filtration of the un-
derlying contextual bandits problem by {Ft}∞t=1, where
Ft = σ({xs}ts=1, {as}ts=1, {rs(as)}ts=1, xt+1): the sigma
algebra1 generated by all the random variables up to and
including iteration t, plus xt+1. In other words, Ft contains
all the information that is available before making the deci-
sion for iteration t+ 1.
Assumption 2. For each a ∈ A and every t ≥ 1:
1. Sub-Gaussian Noise: rt(a) − x>t θa is conditionally

sub-Gaussian: there exists some La > 0, such that
E[es(rt(a)−x

>
t θa) | Ft−1] ≤ exp(

s2L2
a

2 ),∀s,∀xt.
2. Bounded Contexts and Parameters: The contexts xt and

parameters θa are assumed to be bounded. Consequently,
without loss of generality, we can rescale them such that
‖xt‖2 ≤ 1, ‖θa‖2 ≤ 1,∀a, t.

Remark 1. Note that we make no assumption of the
underlying {xt}∞t=1 process: the contexts {xt}∞t=1 need
not to be fixed beforehand or come from some sta-
tionary process. Further, they can even be adapted to
σ({xs}ts=1, {as}ts=1, {rs(as)}ts=1), in which case they are
called adversarial contexts in the literature as the contexts
can be chosen by an adversary who chooses a context after
observing the arms played and the corresponding rewards.
If {xt}∞t=1 is an IID process, then the problem is known as
stochastic contextual bandits. From this viewpoint, adver-
sarial contextual bandits are more general, but the regret
bounds tend to be worse. Both are studied in the literature.
Theorem 1. Under Assumption 1 and Assumption 2:

1. If BLTS is run with α =

√
log 1

δ

ε in Algorithm 1, then with

probability at least 1− δ, R(T ) = Õ

(
d
√

KT 1+ε

ε

)
.

2. If BLUCB is run with α =
√

log TK
δ in Algorithm 2, then

with probability at least 1− δ, R(T ) = Õ
(√

TdK
)

.

We refer the reader to Appendix A of the supplemental ma-
terial of the extended version of this paper (Dimakopoulou
et al. 2017) for the regret bound proofs.
Remark 2. The above bound essentially matches the exist-
ing state-of-the art regret bounds for linear Thompson sam-
pling with direct model estimation (e.g. (Agrawal and Goyal
2013)). Note that in (Agrawal and Goyal 2013), an infinite
number of arms is also allowed, but all arms share the same
parameter θ. The final regret bound is Õ

(
d2
√
T 1+ε

ε

)
. Note

that even though no explicit dependence on K is present in
the regret bound (and hence our regret bound appears as a

1All the random variables xt, at, rt are defined on some com-
mon underlying probability space, which we do not write out ex-
plicitly here.
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factor of
√
K worse), this is to be expected, as we have K

parameters to estimate, one for each arm. Note that here we
do not assume any structure on the K arms; they are just K
stand-alone parameters, each of which needs to be indepen-
dently estimated. Similarly, for BLUCB, our regret bound
is Õ

(√
TdK

)
, which is a factor of

√
K worse than that

of (Chu et al. 2011), which establishes a Õ
(√

Td
)

regret
bound. Again, this is because a single true θ∗ is assumed in
(Chu et al. 2011), rather thanK arm-dependent parameters.

Of course, we also point out that our regret bounds
are not tight, nor do they achieve state-of-the-art regret
bounds in contextual bandits algorithms in general. The
lower bound Ω(

√
dT ) is established in (Chu et al. 2011)

for linear contextual bandits (again in the context of a sin-
gle parameter θ for all K arms). In general, UCB based
algorithms ((Auer 2003; Chu et al. 2011; Bubeck and
Cesa-Bianchi 2012; Abbasi-Yadkori, Pál, and Szepesvári
2011)) tend to have better (and sometimes near-optimal)
theoretical regret bounds. In particular, the state-of-the-art
bound of O(

√
dT logK) for linear contextual bandits is

given in (Bubeck and Cesa-Bianchi 2012) (optimal up to a
O(logK) factor). However, as mentioned in the introduc-
tion, Thompson sampling based algorithms tend to perform
much better in practice (even though their regret bounds
tend not to match UCB based algorithms, as is also the case
here). Hence, our objective here is not to provide state-of-
the-art regret guarantees. Rather, we are motivated to design
algorithms that have better empirical performance (com-
pared to both the existing UCB style algorithms and Thomp-
son sampling style algorithms), which also enjoy the base-
line theoretical guarantee.

Finally, we give some quick intuition for the proof. For
BLTS, we first show that estimated means concentrate
around true mean (i.e. x>t θ̂a concentrates around x>t θa).
Then, we establish that sampled means concentrate around
the estimated means (i.e. x>t θ̃a concentrates around x>t θ̂a).
These two steps together indicate that the sampled mean is
close to the true mean. A further consequence of that is we
can then bound the instantaneous regret (regret at each time
step t) in terms of the sum of two standard deviations: one
corresponds to the optimal arm at time t, the other corre-
sponds to the actual selected arm at t. The rest of the proof
then follows by giving tight characterizations of these two
standard deviations. For BLUCB, the proof again utilizes the
first concentration mentioned above: the estimated means
concentrate around true mean (note that there is no sampled
means in BLUCB). The rest of the proof adopts a similar
structure as in (Chu et al. 2011).

Computational Results
In this section, we present computational results that com-
pare the performance of our balanced linear contextual ban-
dits, BLTS and BLUCB, with the direct method linear con-
textual bandit algorithms that have theoretical guarantees,
LinTS and LinUCB. Our evaluation focuses on contextual
bandits with linear realizability assumption and strong theo-
retical guarantees. First, we present a simple synthetic ex-

ample that simulates bias in the training data by under-
representation or over-representation of certain regions of
the context space and investigates the performance of the
considered linear contextual bandits both when the outcome
model of the arms matches the true reward generative pro-
cess and when it does not match the true reward generative
process. Second, we conduct an experiment by leveraging
300 public, supervised cost-sensitive classification datasets
to obtain contextual bandit problems, treating the features as
the context, the labels as the actions and revealing only the
reward for the chosen label. We show that BLTS performs
better than LinTS and that BLUCB performs better than
LinUCB. The randomized assignment nature of Thompson
sampling facilitates the estimation of the arms’ outcomes
models compared to UCB, and as a result LinTS outper-
forms LinUCB and BLTS outperforms BLUCB. Overall,
BLTS has the best performance. In the supplemental ma-
terial, we include experiments against the policy-based con-
textual bandit from (Agarwal et al. 2014) which is statisti-
cally optimal but it is also outperformed by BLTS.

A Synthetic Example
This simulated example aims to reflect in a simple way two
issues that often arise in practice. The first issue is the pres-
ence of bias in the training data by under-representation or
over-representation of certain regions. A personalized policy
that is trained based on such data and is applied to the en-
tire context space will result in biased decisions for certain
contexts. The second issue is the problem of mismatch be-
tween the true reward generative process and the functional
form used for estimation of the outcome model of the arms,
which is common in applications with complex generative
models. Model misspecification aggravates the presence of
bias in the learned policies.

We use this simple example to present in an intuitive man-
ner why balancing and randomized assignment rule help
with these issues, before moving on to a large-scale eval-
uation of the algorithms in real datasets in the next section.

Consider a simulation design where there is a warm-start
batch of training observations, but it consists of contexts fo-
cused on one region of the context space. There are three
arms A = {0, 1, 2} and the contexts xt = (xt,0, xt,1) are
two-dimensional with xt,j ∼ N (0, 1), j ∈ {0, 1}. The re-
wards corresponding to each arm a ∈ A are generated as
follows; rt(0) = 0.5(xt,0+1)2+0.5(xt,1+1)2+εt, rt(1) =
1 + εt, and rt(2) = 2− 0.5(xt,0 + 1)2− 0.5(xt,1 + 1)2 + εt,
where εt ∼ N (0, σ2), σ2 = 0.01. The expected values of
the three arms’ rewards are shown in Figure 1.

Figure 1: Expectation of each arm’s reward, E[rt(0)] =
0.5(xt,0 + 1)2 + 0.5(xt,1 + 1)2 (red), E[rt(1)] = 1 (yel-
low), E[rt(2)] = 2− 0.5(xt,0 + 1)2− 0.5(xt,1 + 1)2 (blue).
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(a) Well-specified LinTS

(b) Well-specified LinUCB

(c) Well-specified BLTS

(d) Well-specified BLUCB

Figure 2: Evolution of the arm assignment in the context
space for well-specified LinTS, LinUCB, BLTS, BLUCB.

In the warm-start data, xt,0 and xt,1 are generated from
a truncated normal distribution N (0, 1) on the interval
(−1.15,−0.85), while in subsequent data xt,0 and xt,1 are
drawn from N (0, 1) without the truncation. Each one of the
50 warm-start contexts is assigned to one of the three arms
at random with equal probability. Note that the warm-start
contexts belong to a region of the context space where the
reward surfaces do not change much with the context. There-
fore, when training the reward model for the first time, the
estimated reward of arm a = 2 (blue) is the highest, the one
of arm a = 1 (yellow) is the second highest and the one of
arm a = 0 (red) is the lowest across the context space.

We run our experiment with a learning horizon T =
10000. The regularization parameter λ, which is present in
all algorithms, is chosen via cross-validation every time the
model is updated. The constant α, which is present in all
algorithms, is optimized among values 0.25, 0.5, 1 in the
Thompson sampling bandits (the value α = 1 corresponds
to standard Thompson sampling, (Chapelle and Li 2011)
suggest that smaller values may lower regret) and among
values 1, 2, 4 in the UCB bandits (Chapelle and Li 2011).
The propensity threshold γ for BLTS and BLUCB is opti-
mized among the values 0.01, 0.05, 0.1, 0.2.

Well-Specified Outcome Models In this section, we com-
pare the behavior of LinTS, LinUCB, BLTS and BLUCB
when the outcome model of the contextual bandits is well-
specified, i.e., it includes both linear and quadratic terms.
Note that this is still in the domain of linear contextual ban-
dits, if we treat the quadratic terms as part of the context.

(a) Mis-specified LinTS

(b) Mis-specified LinUCB

(c) Mis-specified BLTS

(d) Mis-specified BLUCB

Figure 3: Evolution of the arm assignment in the context
space for misspecified LinTS, LinUCB, BLTS, BLUCB.

First, we compare LinTS and LinUCB. Figure 2a shows
that the uncertainty and the stochastic nature of LinTS leads
to a “dispersed” assignment of arms a = 1 and a = 2 and to
the crucial assignment of a few contexts to arm a = 0. This
allows LinTS to start decreasing the bias in the estimation
of all three arms. Within the first few learning observations,
LinTS estimates the outcome models of all three arms cor-
rectly and finds the optimal assignment. On the other hand,
Figure 2b, shows that the deterministic nature of LinUCB
assigns entire regions of the context space to the same arm.
As a result not enough contexts are assigned to a = 0 and
LinUCB delays the correction of bias in the estimation of
this arm. Another way to understand the problem is that the
outcome model in the LinUCB bandit has biased coefficients
combined with estimated uncertainty that is too low to in-
centivize the exploration of arm a = 0 initially. LinUCB
finds the correct assignment after 240 observations.

Second, we study the performance of BLTS and BLUCB.
In Figure 2d, we observe that balancing has a significant im-
pact on the performance of UCB, since BLUCB finds the
optimal assignment after 110 observations, much faster than
LinUCB. This is because the few observations of arm a = 0
outside of the context region of the warm-start batch are
weighted more heavily by BLUCB. As a result, BLUCB,
despite its deterministic nature which complicates estima-
tion, is able to reduce its bias more quickly via balancing
Figure 2c shows that BLTS is also able to find the optimal
assignment a few observations earlier than LinTS.

The first column of Table 1 shows the percentage of sim-
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ulations in which LinTS, LinUCB, BLTS and BLUCB find
the optimal assignment within T = 10000 contexts for the
well-specified case. BLTS outperforms all other algorithms
by a large margin.

Mis-Specified Outcome Models We now study the be-
havior of LinTS, LinUCB, BLTS and BLUCB when the out-
come models include only linear terms of the context and
therefore are misspecified. In real-world domains, the true
data generative process is complex and very difficult to cap-
ture by the simpler outcome models assumed by the learning
algorithms. Hence, model mismatch is very likely.

We first compare LinTS and LinUCB. In Figures 3a, 3b,
we see that during the first time periods, both bandits as-
sign most contexts to arm a = 2 and a few contexts to arm
a = 1. LinTS finds faster than LinUCB the linearly approx-
imated area in which arm a = 2 is suboptimal. However,
both LinTS and LinUCB have trouble identifying that the
optimal arm is a = 0. Due to the low estimate of a = 0
from the mis-representative warm-start observations, Lin-
UCB does not assign contexts to arm a = 0 for a long
time and therefore, delays to estimate the model of a = 0
correctly. LinTS does assign a few contexts to arm a = 0,
but they are not enough to quickly correct the estimation
bias of arm a = 0 either. On the other hand, BLTS is able
to harness the advantages of the stochastic assignment rule
of Thompson sampling. The few contexts assigned to arm
a = 0 are weighted more heavily by BLTS. Therefore, as
shown in Figure 3c, BLTS corrects the estimation error of
arm a = 0 and finds the (constrained) optimal assignment
already after 20 observations. On the other hand, BLUCB
does not handle better than LinUCB the estimation problem
created by the deterministic nature of the assignment in the
misspecified case, as shown in Figure 3d. The second col-
umn of table 1 shows the percentage of simulations in which
LinTS, LinUCB, BLTS and BLUCB find the optimal assign-
ment within T = 10000 contexts for the misspecified case.
Again, BLTS has a strong advantage.

This simple synthetic example allowed us to explain
transparently where the benefits of balancing in linear ban-
dits stem from. Balancing helps escape biases in the training
data and can be more robust in the case of model misspecifi-
cation. While, as we proved, balanced linear contextual ban-
dits share the same strong theoretical guarantees, this indi-
cates towards their better performance in practice compared
to other contextual bandits with linear realizability assump-
tion. We investigate this further in the next section with an
extensive evaluation on real classification datasets.

Well-Specified Mis-Specified
LinTS 84% 39%
LinUCB 51% 29%
BLTS 92% 58%
BLUCB 79% 30%

Table 1: Percentage of simulations in which LinTS, Lin-
UCB, BLTS and BLUCB find the optimal assignment within
learning horizon of 10000 contexts

Multiclass Classification with Bandit Feedback
Adapting a classification task to a bandit problem is a com-
mon method for comparing contextual bandit algorithms
(Dudı́k, Langford, and Li 2011), (Agarwal et al. 2014),
(Bietti, Agarwal, and Langford 2018). In a classification
task, we assume data are drawn IID from a fixed distri-
bution: (x, c) ∼ D, where x ∈ X is the context and
c ∈ 1, 2, . . . ,K is the class. The goal is to find a classi-
fier π : X → {1, 2, . . . ,K} that minimizes the classifica-
tion error E(x,c)∼D1 {π(x) 6= c}. The classifier can be seen
as an arm-selection policy and the classification error is the
policy’s expected regret. Further, if only the loss associated
with the policy’s chosen arm is revealed, this becomes a
contextual bandit setting. So, at time t, context xt is sam-
pled from the dataset, the contextual bandit selects arm at ∈
{1, 2, . . . ,K} and observes reward rt(at) = 1 {at = ct},
where ct is the unknown, true class of xt. The performance
of a contextual bandit algorithm on a dataset with n observa-
tions is measured with respect to the normalized cumulative
regret, 1

n

∑n
t=1 (1− rt(at)).

We use 300 multiclass datasets from the Open Media Li-
brary (OpenML). The datasets vary in number of observa-
tions, number of classes and number of features. Table 2
summarizes the characteristics of these benchmark datasets.
Each dataset is randomly shuffled.

Observations Datasets
≤ 100 58

> 100 and ≤ 1000 152
> 1000 and ≤ 10000 57

> 10000 33

Classes Count
2 243

> 2 and 10 48
> 10 9

Features Count
≤ 10 154

> 10 and ≤ 100 106
> 100 40

Table 2: Characteristics of the 300 datasets used for the ex-
periments of multiclass classification with bandit feedback.

We evaluate LinTS, BLTS, LinUCB and BLUCB on these
300 benchmark datasets. We run each contextual bandit on
every dataset for different choices of input parameters. The
regularization parameter λ, which is present in all algo-
rithms, is chosen via cross-validation every time the model
is updated. The constant α, which is present in all algo-
rithms, is optimized among values 0.25, 0.5, 1 in the Thomp-
son sampling bandits (Chapelle and Li 2011) and among val-
ues 1, 2, 4 in the UCB bandits (Chapelle and Li 2011). The
propensity threshold γ for BLTS and BLUCB is optimized
among the values 0.01, 0.05, 0.1, 0.2. Apart from baselines
that belong in the family of contextual bandits with linear
realizability assumption and have strong theoretical guar-
antees, we also evaluate the policy-based ILOVETOCON-
BANDITS (ILTCB) from (Agarwal et al. 2014) that does
not estimate a model, but instead it assumes access to an or-
acle for solving fully supervised cost-sensitive classification
problems and achieves the statistically optimal regret.

Figure 4 shows the pairwise comparison of LinTS, BLTS,
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Figure 4: Comparing LinTS, BLTS, LinUCB, BLUCB,
ILTCB on 300 datasets. BLUCB outperforms LinUCB.
BLTS outperforms LinTS, LinUCB, BLUCB, ILTCB.

LinUCB, BLUCB and ILTCB on the 300 classification
datasets. Each point corresponds to a dataset. The x coordi-
nate is the normalized cumulative regret of the column ban-
dit and the y coordinate is the normalized cumulative regret
of the row bandit. The point is blue when the row bandit has
smaller normalized cumulative regret and wins over the col-
umn bandit. The point is red when the row bandit loses from
the column bandit. The point’s size grows with the signifi-
cance of the win or loss.

The first important observation is that the improved model
estimation achieved via balancing leads to better practical
performance across a large number of contextual bandit in-
stances. Specifically, BLTS outperforms LinTS and BLUCB
outperforms LinUCB. The second important observation is
that deterministic assignment rule bandits are at a disadvan-
tage compared to randomized assignment rule bandits. The
improvement in estimation via balancing is not enough to
outweigh the fact that estimation is more difficult when the
assignment is deterministic and BLUCB is outperformed by
LinTS. Overall, BLTS which has both balancing and a ran-
domized assignment rule, outperforms all other linear con-
textual bandits with strong theoretical guarantees. BLTS also
outperforms the model-agnostic ILTCB algorithm. We refer
the reader to Appendix B of the supplemental material of the
extended version of this paper (Dimakopoulou et al. 2017)
for details on the datasets.

Closing Remarks
Contextual bandits are poised to play an important role in a
wide range of applications: content recommendation in web-
services, where the learner wants to personalize recommen-
dations (arm) to the profile of a user (context) to maximize

engagement (reward); online education platforms, where the
learner wants to select a teaching method (arm) based on
the characteristics of a student (context) in order to maxi-
mize the student’s scores (reward); and survey experiments,
where the learner wants to learn what information or persua-
sion (arm) influences the responses (reward) of subjects as
a function of their demographics, political beliefs, or other
characteristics (context). In these settings, there are many
potential sources of bias in estimation of outcome models,
not only due to the inherent adaptive data collection, but also
due to mismatch between the true data generating process
and the outcome model assumptions, and due to prejudice
in the training data in form of under-representation or over-
representation of certain regions of the context space. To re-
duce bias, we have proposed new contextual bandit algo-
rithms, BLTS and BLUCB, which build on linear contextual
bandits LinTS and LinUCB respectively and improve them
with balancing methods from the causal inference literature.

We derived the first regret bound analysis for linear con-
textual bandits with balancing and we showed linear contex-
tual bandits with balancing match the theoretical guarantees
of the linear contextual bandits with direct model estimation;
namely that BLTS matches the regret bound of LinTS and
BLUCB matches the regret bound of LinUCB. A synthetic
example simulating covariate shift and model misspecifica-
tion and a large-scale experiment with real multiclass classi-
fication datasets demonstrated the effectiveness of balanc-
ing in contextual bandits, particularly when coupled with
Thompson sampling.
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