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Abstract

We propose a framework for analyzing and comparing dis-
tributions without imposing any parametric assumptions via
empirical likelihood methods. Our framework is used to study
two fundamental statistical test problems: the two-sample test
and the goodness-of-fit test. For the two-sample test, we need
to determine whether two groups of samples are from differ-
ent distributions; for the goodness-of-fit test, we examine how
likely it is that a set of samples is generated from a known
target distribution. Specifically, we propose empirical likeli-
hood ratio (ELR) statistics for the two-sample test and the
goodness-of-fit test, both of which are of linear time complex-
ity and show higher power (i.e., the probability of correctly
rejecting the null hypothesis) than the existing linear statis-
tics for high-dimensional data. We prove the nonparametric
Wilks’ theorems for the ELR statistics, which illustrate that
the limiting distributions of the proposed ELR statistics are
chi-square distributions. With these limiting distributions, we
can avoid bootstraps or simulations to determine the threshold
for rejecting the null hypothesis, which makes the ELR statis-
tics more efficient than the recently proposed linear statistic,
finite set Stein discrepancy (FSSD). We also prove the con-
sistency of the ELR statistics, which guarantees that the test
power goes to 1 as the number of samples goes to infinity.
In addition, we experimentally demonstrate and theoretically
analyze that FSSD has poor performance or even fails to test
for high-dimensional data. Finally, we conduct a series of ex-
periments to evaluate the performance of our ELR statistics
as compared to state-of-the-art linear statistics.

Introduction
Comparing samples from two probability distributions or
evaluating the goodness-of-fit of models over observed sam-
ples without imposing any parametric assumptions on their
distributions are fundamental tasks in machine learning and
statistics, and have a wide spectra of applications in var-
ious areas (Lloyd and Ghahramani 2015; Li et al. 2017;
Yang et al. 2018). The goal of the two-sample test problem
is to determine whether two distributions p and q are differ-
ent on the basis of samples Dx = {xi}ni=1 ⊂ X ⊆ Rd and
Dy = {yj}mj=1 ⊂ Y ⊆ Rd independently drawn from p and
q, respectively. The aim of the goodness-of-fit test problem
is to determine how well a given model density p fits a set of
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given samples Dx = {xi}ni=1 ⊂ X ⊆ Rd from an unknown
distribution q. Both of these two problems can be formulated
as a hypothesis test, where the null hypothesis H0 : p = q
is tested against the alternative hypothesis H1 : p 6= q. The
knowledge of p is what distinguishes the goodness-of-fit test
from the two-sample test.

The two-sample test and the goodness-of-fit test are gen-
erally difficult in practice, since the underlying distributions
(or one of the distributions) are unknown apriori. Kernel
methods provide an effective way to implicitly transform
data into a new feature space with the carefully-chosen ker-
nel functions and kernel parameters (Liu and Liao 2015;
Liu et al. 2017; Ding and Liao 2014a; 2017; Ding et al.
2019). The corresponding reproducing kernel Hilbert spaces
(RKHSs) have strong representative power (Cucker and
Smale 2002; Li et al. 2018). We adopt the unit balls in
universal RKHSs as function classes (Muandet et al. 2017;
Ding and Liao 2014b) to study these two test problems,
since these classes are rich enough to represent all bounded
continuous functions defined on a metric space (Fuku-
mizu, Bach, and Jordan 2004; Sriperumbudur et al. 2010;
Steinwart 2001; Micchelli, Xu, and Zhang 2006).

For the two-sample test problem, the popular statistic,
maximum mean discrepancy (MMD), was designed to mea-
sure two distributions by embedding them in an RKHS
(Gretton et al. 2012). MMD has been attracting much atten-
tion in two-sample test research due to its solid theoretical
foundation (Sriperumbudur et al. 2009; Gretton et al. 2012;
Song et al. 2012; Zaremba, Gretton, and Blaschko 2013;
Ding et al. 2018). The minimum variance unbiased estima-
tor MMDUnb of MMD was first proposed in (Gretton et al.
2012) on the basis of n samples being observed from each
of p and q. However, the estimation of the asymptotic dis-
tribution of MMDUnb under the null distribution requires
bootstrap or moment matching to determine the test thresh-
old, which costs at least O(n2). Later, an O(n) unbiased
estimator MMDLin was proposed (Gretton et al. 2012), us-
ing a subsampling of the terms in MMDUnb. MMDLin has
higher variance than MMDUnb, but it is computationally
much more appealing.

For the goodness-of-fit test, traditional methods need
to calculate the likelihoods of the models. However, for
large graphical models or deep generative models, this
is often computationally intractable due to the complex-
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(a) d = 10
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(b) d = 50
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Figure 1: Rejection rates of FSSD, MMDLin and ELR-MMD on two different normal distributions p(x) = N (x|0, Id) and
q(x) = N (x|0, vId) with the variance changed in the set v ∈ {1, 1.5, 2, 2.5} for d = 10, 50, 100. The abbreviation “opt” in
FSSD-opt means that all parameters in FSSD are optimized, including the kernel parameter and all test locations (Jitkrittum et
al. 2017). The results of FSSD-opt for the number of test locations J = 5, 10, 50 are all shown in this figure.

ity of the probabilistic models. Recently, Stein’s method
(Stein and others 1972; Oates, Girolami, and Chopin 2017)
has been introduced into the kernel domain (Gorham and
Mackey 2017), by combining Stein’s identity with the
RKHS theory, which is a likelihood-free method and de-
pends on p only through logarithmic derivatives. The pro-
posed statistic is referred to as kernel Stein discrepancy
(KSD) (Chwialkowski, Strathmann, and Gretton 2016; Liu,
Lee, and Jordan 2016). Since the null distribution of the
unbiased estimator KSDUnb of KSD does not have an an-
alytical form, the bootstrap was adopted to calculate the
approximate rejection threshold, whose time complexity is
O(n2). A linear statistic, KSDLin, was proposed using half-
sampling, which has a zero-mean Gaussian limit under the
null hypothesis (Liu, Lee, and Jordan 2016). To improve the
performance of the existing linear statistics, (Jitkrittum et al.
2017) proposed a novel statistic, the finite set Stein discrep-
ancy (FSSD), by introducing a witness function on a finite
set, which can conduct testing in linear time and show ex-
cellent performance on low-dimensional data.

In this paper, we introduce the method of empirical likeli-
hood into the domain of linear kernel tests for the first time,
and propose two novel empirical likelihood ratio (ELR)
statistics for the two-sample test and the goodness-of-fit test,
respectively. The empirical likelihood method (Owen 1990;
2001) owes its broad usage and fast research development
to a number of important advantages in statistics. Generally
speaking, it combines the reliability of nonparametric meth-
ods with the effectiveness of the likelihood approach. Taking
into consideration the asymptotic normality of the linear un-
biased estimator MMDLin (Gretton et al. 2012), we first pro-
pose an ELR statistic based on the formulation of MMDLin,
named ELR-MMD, for the two-sample test problem. We
optimize an empirical distribution on the set of the one-
dimensional pairwise discrepancies with the constraint that
the empirical mean of all discrepancies is 0. We establish the
nonparametric Wilks’ theorem for the statistic ELR-MMD,
which shows that the proposed ELR-MMD has a limiting
chi-square distribution. For the goodness-of-fit test, we pro-
pose an ELR statistic based on the linear unbiased estimator

KSDLin, called ELR-KSD, by enforcing an empirical distri-
bution on the pairwise discrepancies. We derive the nonpara-
metric Wilks’ theorem to show the limiting distribution of
ELR-KSD. The proposed ELR-MMD and ELR-KSD statis-
tics show better performance than MMDLin and KSDLin,
and remarkably higher discriminability (power) when test-
ing two distributions with subtle differences. There are two
possible reasons for the impressive performance of the ELR
statistics. First, enforcing a probability on each pairwise
discrepancy can help discriminate the subtle difference be-
tween two distributions. Second, the rejection regions of the
ELR statistics are obtained by contouring a logarithmic like-
lihood ratio in what may be the most powerful test for a
fixed significance level α by Neyman-Pearson lemma (Ney-
man and Pearson 1933). We further prove the consistency of
the proposed ELR statistics, which guarantees that the test
power (i.e., the probability of correctly rejecting H0 when
H1 holds) goes to 1, as the number of samples goes to infin-
ity.

Another contribution of this paper is that we experimen-
tally demonstrate that the recently proposed FSSD has poor
performance or even fails to test for high-dimensional data.
In Figure 11, we investigate the power of FSSD as com-
pared to MMDLin and ELR-MMD, on two normal distri-
butions p(x) = N (x|0, Id) and q(x) = N (x|0, vId) with
the variance changed in the set v ∈ {1, 1.5, 2, 2.5} for d =
10, 50, 100. We find that both the existing statistic MMDLin

and the proposed ELR-MMD work well for d = 10, 50, 100,
but FSSD shows poor rejection rates for d = 10, and fails
to reject the null hypothesis for d = 50, 100, even when
the variance v is very large. We also increase an impor-
tant parameter of FSSD, the number of test locations J ,
to further verify the performance of FSSD, but the results
are almost the same (see Figure 1). We will further pro-
vide a deeper understanding of FSSD and analyze the pos-
sible reasons why FSSD shows poor performance on high-
dimensional data. Since FSSD has shown good performance
on low-dimensional data (Jitkrittum et al. 2017), the pro-
posed ELR statistics can be considered as complements to

1Comprehensive results are given in the section of experiments.
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FSSD for high-dimensional data.

Empirical Likelihood Ratio
for Two Sample Test

In this section, we will propose an empirical likelihood ra-
tio statistic for the two-sample test problem and derive its
limiting distribution by Wilks’ Theorem.

Assume that the data domain is a compact set X ∈ Rd.
Let Hκ be a reproducing kernel Hilbert space (RKHS) de-
fined on X with the reproducing kernel κ : X × X → R,
and p a Borel probability measure on X . We adopt a unit
ball in a universal RKHS Hκ as the function class F , since
this class is rich enough to show the equivalence between
the zero expectation of the statistics and the equality of two
distributions (Fukumizu, Bach, and Jordan 2004; Sriperum-
budur et al. 2010; Steinwart 2001; Micchelli, Xu, and Zhang
2006). Universality requires that κ is continuous and Hκ is
dense in the space of bounded continuous functions C(X )
with respect to the L∞ norm. Gaussian and Laplace RKHSs
are universal2 (Steinwart 2001). Kernel parameters can be
chosen via cross validation (Ding and Liao 2011; 2012;
Liu, Jiang, and Liao 2014; Liu et al. 2018).

The mean embedding of a distribution p in F , written as
µκ(p) ∈ F , is defined such that Ex∼pf(x) = 〈f, µκ(p)〉 for
all f ∈ F . The squared MMD between two distributions p
and q is the squared RKHS distance between their respective
mean embeddings,

MMD2[F , p, q] = ‖µκ(p)− µκ(q)‖2F = Ezz′h(z, z′),

where z = (x, y), z′ = (x′, y′) and h(z, z′) = κ(x, x′) +
κ(y, y′) − κ(x, y′) − κ(x′, y). It has been proved that for a
unit ball F in a universal RKHS, MMD[F , p, q] = 0 if and
only if p = q (Gretton et al. 2012).

For two sets of samplesDx = {xi}ni=1 ⊂ X ⊆ Rd, where
xi ∼ p i.i.d., and Dy = {yj}mj=1 ⊂ Y ⊆ Rd, where yi ∼ q
i.i.d., if we assume m = n, the minimum variance unbiased
estimator of MMD2[F , p, q] can be represented as

MMD2
Unb[F ,Dx,Dy] =

1

n(n− 1)

n∑
i 6=j

h(zi, zj).

MMDUnb requires O(n2) time to compute h on all interact-
ing pairs. The null distribution of MMDUnb does not have an
analytical form, so the bootstrap or moment matching are re-
quired with O(n2) time complexity. A linear time unbiased
estimator MMDLin was proposed in (Gretton et al. 2012),

MMD2
Lin[F ,Dx,Dy] =

1

bn/2c

bn/2c∑
i=1

h(z2i−1, z2i).

We will derive an empirical likelihood ratio statistic based
on MMDLin. We write hi = h(z2i−1, z2i) and N = bn/2c.
When calculating hi, i = 1, . . . , N , independent samples
are used for different i. h1, h2, . . . , hN are i.i.d observations

2Universal kernels can be used to approximate any target func-
tion in C(X ), That is, the corresponding RKHSs are dense in
C(X ).

from a univariate distribution ρ. We define an empirical like-
lihood function as

L(ρ) =

N∏
i=1

dρ(hi) =

N∏
i=1

pi,

where pi = dρ(hi) = Pr(H = hi). Only distributions with
an atom of probability on each hi have nonzero likelihood
(Owen 1988) and L(ρ) is maximized by the empirical dis-
tribution function ρN (h) = N−1

∑N
i=1 I(hi < h), where I

is an indicator function (Qin and Lawless 1994). The em-
pirical likelihood ratio (ELR) is then defined as R(ρ) =

L(ρ)/L(ρN ), and it is easy to show thatR(ρ) =
∏N
i=1Npi.

Now we define an ELR function Ψtst(µ) for the two-
sample test problem in Equation (1), in which we enforce
a probability {pi ≥ 0}Ni=1 on the pairwise discrepancies
{hi ≥ 0}Ni=1. There are two virtues of Ψtst(µ). First, the
constraint

∑N
i=1 pihi = µ forces the empirical mean to be

the expectation µ, which makes the maximum of the empir-
ical likelihood ratio more trustful. For example, in the two-
sample test, under H0 : p = q, we have E[hi] = 0 and the
constraint

∑N
i=1 pihi = 0 guarantees the empirical mean of

all discrepancies hi to be 0. Second, optimizing the probabil-
ity pi on each pairwise discrepancy hi can help discriminate
the subtle difference between two distributions.

Ψtst(µ)

= max
{pi≥0}Ni=1

{
N∏
i=1

Npi

∣∣∣∣∣
N∑
i=1

pi = 1,

N∑
i=1

pihi = µ

}
.

(1)

A unique value for the right-hand side of Equation (1)
exists, provided that µ is inside the convex hull of the points
h1, . . . , hN (Owen 1990; 2001). An explicit expression for
Ψtst(0) can be derived by a Lagrange multiplier argument:
the maximum of

∏N
i=1Npi subject to the constraints pi ≥ 0,∑N

i=1 pi = 1 and
∑N
i=1 pihi = 0 is attained when

pi =
1

N

1

1 + λhi
,

where λ is the solution to
∑N
i=1

hi

1+λhi
= 0.

Now we propose an ELR test statistic for the two-sample
test problem as

Wtst(0) = −2 log Ψtst(0) = 2

N∑
i=1

log(1 + λhi).

We derive the Wilks’ theorem (Theorem 1) for the ELR
test statistic Wtst(0), which shows that Wtst(0) has a limit-
ing chi-square distribution.

Theorem 1 (Wilks’ Theorem). Under H0 : p = q, if
Ex,x′ [κ2(x, x′)] <∞, the ELR test statistic

Wtst(0)
d−→ χ2

(1),

where χ2
(1) is the chi-square distribution with 1 degree of

freedom.
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Based on Theorem 1, we can conduct two-sample test
in this way: we will reject the null hypothesis H0, when
Wtst(0) ≥ χ2

α, where χ2
α is defined such that

Pr(χ2
(1) ≥ χ

2
α) = α.

Since the limiting distribution is χ2
(1), we can obtain the

threshold for rejection directly from the chi-square table,
without needing time-consuming bootstraps or simulations.
The main computational burden for Wtst(0) is the calcula-
tion of hi, i = 1, . . . , N . Therefore, the time complexity of
Wtst(0) is linear in the number of samples. The proposed
ELR statistic can easily be extended to B-test (Zaremba,
Gretton, and Blaschko 2013), since the statistics for different
blocks in B-test are independent from each other.

Theorem 2 guarantees the test consistency of the proposed
ELR statistic Wtst(0), that is, when the number of sam-
ples are large enough, Wtst(0) can always correctly reject
the null hypothesis. We write PrH1

for the distribution of
Wtst(0) under H1.

Theorem 2. Under H1 : p 6= q, if Ex,x′ [κ2(x, x′)] < ∞,
the test power,

Pr
H1

(
Wtst(0) ≥ χ2

α

)
→ 1,

as n→∞.

Empirical Likelihood Ratio
for Goodness of Fit Test

In this section, we will propose an ELR statistic for the
goodness-of-fit test problem and derive its limiting distri-
bution by Wilks’ Theorem.

We first introduce the Stein operator (Stein and others
1972; Oates, Girolami, and Chopin 2017), which depends
on the distribution p only through logarithmic derivatives.
A Stein operator Tp takes a multivariate function f(x) =
(f1(x), . . . , fd(x))T ∈ Rd as input and outputs a function
(Tpf)(x) : Rd → R. The function Tpf has the key property
that for all fs in an appropriate function class,

Ex∼q[(Tpf)(x)] = 0

if and only if p = q. Thus, this expectation can be used to
test the goodness-of-fit: how well a model density p fits a
set of given samples Dx = {xi}ni=1 ⊂ X ⊆ Rd from an
unknown distribution q.

We consider the function class Fd := F×· · ·×F , where
F is a unit-norm ball in a universal RKHS. Assume that fi ∈
F for all i = 1, . . . d so that f ∈ Fd with the inner product
〈f, f ′〉Fd :=

∑d
i=1〈fi, f ′i〉F . According to the reproducing

property of F , fi(x) = 〈fi, κ(x, ·)〉F , and that ∂κ(x,·)
∂xi

∈
F , we can define ωp(x, ·) = ∂ log p(x)

∂x κ(x, ·) + κ(x,·)
∂x . The

kernel Stein operator can be written as

(Tpf)(x) =

d∑
i=1

(
∂ log p(x)

∂xi
fi(x) +

∂fi(x)

∂xi

)
= 〈f, ωp(x, ·)〉Fd .

Kernel Stein discrepancy (KSD) is defined as

KSD[Fd,Dx, p] = sup
‖f‖Fd≤1

〈f,Ex∼qωp(x, ·)〉

:= ‖g(·)‖Fd ,
(2)

where g(·) = Ex∼qωp(x, ·). When Ex∼p‖∇x log p(x) −
∇x log q(x)‖ <∞, it can be shown that KSD[Fd,Dx, p] =
0 if and only if p = q. The squared KSD can be written as

KSD2[Fd,Dx, p] = Ex∼qEx′∼qhp(x, x
′),

where hp(x, x′) = sTp (x)sp(x
′)κ(x, x′) + sTp∇xκ(x, x′) +

sTp∇x′κ(x, x′) +
∑d
i=1

∂2κ(x,x′)
∂xi∂x′

i
, and sp(x) = ∇x log p,

which is called the score function. We denote the unbiased
empirical estimator of KSD (Liu, Lee, and Jordan 2016) as

KSD2
Unb[Fd,Dx, p] =

2

n(n− 1)

∑
i<j

hp(xi, xj).

The computational cost of KSD2
Unb is O(n2). To reduce this

cost, a linear time estimator was proposed in (Liu, Lee, and
Jordan 2016) and we write it as

KSD2
Lin[Fd,Dx, p] =

1

bn/2c

bn/2c∑
i=1

hp(x2i−1, x2i).

Now we derive an ELR statistic for the goodness-of-
fit test problem. We write hp,i = hp(x2i−1, x2i) and
N = bn/2c. When calculating hp,i, i = 1, . . . , N ,
different independent samples are used for different i.
hp,1, hp,2, . . . , hp,N are i.i.d observations from a univariate
distribution. Now we define an ELR function

Ψgoft(µ)

= sup
{pi≥0}Ni=1

{
N∏
i=1

Npi

∣∣∣∣∣
N∑
i=1

pi = 1,

N∑
i=1

pihp,i = µ

}
.

Under H0 : p = q, we have E[hp,i] = 0 and set µ = 0.
We use the Lagrange multiplier method to derive the explicit
expression of Ψgoft(0). For i = 1, . . . , N , we have

pi =
1

N

1

1 + λhp,i
,

where λ is the solution to
∑N
i=1

hp,i

1+λhp,i
= 0.

Now we define an ELR test statistic for the goodness of
test problem as follows,

Wgoft(0) = −2 log Ψgoft(0) = 2

N∑
i=1

log (1 + λhp,i) .

We derive the Wilks’ theorem for Wgoft(0), which shows
a limiting chi-square distribution of Wgoft(0).

Theorem 3 (Wilks’ Theorem). Under H0 : p = q, if
Ex,x′ [κ2(x, x′)] <∞, the ELR test statistic

Wgoft(0)
d−→ χ2

(1).
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Based on Theorem 3, we will rejectH0, whenWgoft(0) ≥
χ2
α with χ2

α satisfying Pr(χ2
(1) ≥ χ2

α) = α. The main com-
putational burden for Wgoft(0) is the calculation of hp,i,
i = 1, . . . , N . Therefore, the time complexity of Wgoft(0)
is linear in the number of samples.

Theorem 4 guarantees the test consistency of Wgoft(0).

Theorem 4. Under H1 : p 6= q, if Ex,x′ [κ2(x, x′)] < ∞,
the test power,

Pr
H1

(
Wgoft(0) ≥ χ2

α

)
→ 1,

as n→∞.

Comparisons with FSSD
In this section, we compare FSSD (Jitkrittum et al. 2017)
with existing linear statistics and our ELR statistics, and an-
alyze the possible reasons why FSSD shows poor perfor-
mance or even fails for high-dimensional data.

We first briefly introduce FSSD. Let V = {v1, . . . , vJ} ⊂
Rd be random vectors drawn from a distribution. The statis-
tic of FSSD is defined as

FSSD2
p(q) =

1

dJ

d∑
i=1

J∑
j=1

g2i (vj),

where g(·) is referred to as the Stein witness function, given
in Equation (2). It has been proved (Jitkrittum et al. 2017)
that if the following conditions are satisfied, 1) κ is a uni-
versal and analytic function; 2) Ex∼qEx′∼php(x, x

′) <
∞; 3) Ex∼q‖∇x log p(x) − ∇x log q(x)‖2 < ∞; and 4)
lim‖x‖→∞ p(x)g(x) = 0; for any J ≥ 1, almost surely
FSSD2

p(q) = 0 if and only if p = q. Let Ω(x) ∈ Rd×J such
that [Ω(x)]i,j = ωp,i(x, vj)/

√
dJ, τ(x) = vec(Ω(x)) ∈

RdJ , where vec(·) denotes the vectorization, and ∆(x, y) =
τ(x)Tτ(y). The unbiased estimator of FSSD2

p(q) is

F̂SSD
2

=
2

n(n− 1)

∑
i<j

∆(xi, xj).

In the following, we explain why FSSD is different from
MMDLin, KSDLin, ELR-MMD and ELR-KSD and why
FSSD shows poor performance on high-dimensional data.

For MMDLin, KSDLin, ELR-MMD and ELR-KSD, one
data point xi only corresponds to a one-dimensional statisti-

cal value, such as hi or hp,i, but for F̂SSD
2
, one data point xi

corresponds to a d×J matrix Ω(x) or a dJ-dimensional vec-
tor τ(x). The underlying reason for the higher dimensional
correspondence of FSSD is the introduction of the finite set.
The finite set makes the kernel function κ(x, ·) no longer
only appear in the dot product form with another function
f ∈ F , which is different from the forms in MMDLin,
KSDLin, ELR-MMD and ELR-KSD. In a word, this makes
FSSD more closely related to the dimension d of data than
other linear statistics. In addition, the higher dimensional
correspondence makes the empirical likelihood difficult to
be applied in FSSD. The elements in τ(x) for FSSD are not
independent, so if we enforce a probability distribution on

the set of τ(xi), i = 1, . . . , n, the empirical likelihood ratio
does not have a limiting χ2

dJ distribution.
According to Proposition 2 in (Jitkrittum et al. 2017), un-

der the H1 : p 6= q,

nF̂SSD
2
∼
√
nN (0, σH1

) + nFSSD2,

if σH1
= 4µTΣqµ > 0, where µ = Ex∼q[τ(x)] and

Σq = covx∼q[τ(x)] ∈ RdJ×dJ . From the above equa-

tion, we know that nF̂SSD
2

is highly dependent on the di-
mension of the data: when the dimension d increases, the
dimension of Σq will increase, and then the variance σH1

becomes larger. When the variance becomes larger, the re-
sulting values of the statistic will become unstable. For
MMDLin, KSDLin, ELR-MMD and ELR-KSD, the kernel
function κ(x, ·) only appears in the dot product form, and
thus the statistics are less dependent on the dimension d of
data.

In addition, under H0 : p = q, the asymptotic distribu-

tion of nF̂SSD
2

is not an analytical form, but the existing
linear statistics MMDLin and KSDLin, and the ELR statis-
tics ELR-MMD and ELR-KSD all have analytical limiting
distributions.

Experiments
Here we conduct a series of experiments to evaluate the per-
formance of the proposed ELR statistics and exploit the con-
ditions under which the proposed statistics can perform well.

We compare the ELR statistics, ELR-MMD and ELR-
KSD, with three existing linear nonparametric statistics, in-
cluding MMDLin (Lin-MMD) (Gretton et al. 2012), KSDLin

(Lin-KSD) (Liu, Lee, and Jordan 2016) and FSSD (FSSD-
opt)3 (Jitkrittum et al. 2017). Because Gaussian kernels
are universal (Steinwart 2001), we adopt Gaussian kernels
κ(x, x′) = exp

(
−γ‖x− x′‖22

)
with variable width γ ∈

{2−10, 2−9, . . . , 210} as our candidate kernel set. For all
evaluations, we set the significance level α = 0.05. All ex-
periments are repeated 100 times. All implementations are
in Python and R.

We investigate the power of Lin-MMD, Lin-KSD, ELR-
MMD, ELR-KSD and FSSD, and provide deep insights into
the proposed statistics.

The first set of experiments are conducted on two Gaus-
sians p(x) = N (x|0, Id) and q(x) = N (x|0, vId), with
variable variance v ∈ {1.1, 1.3, . . . , 2.3}. We adopt a fixed
dimension d = 100. To investigate the influence of the num-
ber of samples on the gap between the ELR statistics (ELR-
MMD and ELR-KSD) and the existing linear statistics (Lin-
MMD and Lin-KSD), we observe the rejection rates of the
statistics for different numbers of samples. The results are
shown in Figure 2. We can find that the gap between Lin-
MMD and ELR-MMD or between Lin-KSD and ELR-KSD
becomes smaller as the number of samples becomes larger.

3The abbreviation “opt” in FSSD-opt means that all parameters
in FSSD are optimized, including the kernel parameter and all test
locations. We set the number of test locations J = 5 as in (Jitkrit-
tum et al. 2017)
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Figure 2: Rejection rates of Lin-MMD, ELR-MMD, Lin-KSD, ELR-KSD and FSSD on two different normal distributions
p(x) = N (x|0, Id) and q(x) = N (x|0, vId) with the variance changed in the set v ∈ {1.1, 1.3, . . . , 2.3} for d = 100.
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(b) n = 400
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(c) n = 2000
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(d) n = 10000
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(c) n = 2000
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Figure 3: Rejection rates of Lin-MMD, ELR-MMD, Lin-KSD, ELR-KSD and FSSD on Gaussian p(x) = N (x|0, Id) and
Laplacian q(x) =

∏d
i=1 Laplace(xi|0, 1/

√
2) with variable dimension d ∈ {10, 40, 70, 100} for n = 80, 400, 2000, 10000.

The possible reason is that, under H0 : p = q, the influ-
ence of the enforced constraint

∑N
i=1 pihi = 0 will become

smaller as number of samples increases, since the expecta-
tion of the discrepancy hi is 0. We can also see that the re-
jection rates of Lin-MMD and ELR-MMD are higher than
those of Lin-KSD and ELR-KSD. In this experiment, FSSD
shows low rejection rates or fails to test nearly in all cases,
while the existing linear statistics Lin-MMD and Lin-KSD
and the proposed statistics ELR-MMD and ELR-KSD can
perform normally. These results are in agreement with the
analyses given in the last section.

In the second experiment, we adopt the distributions
Gaussian p(x) = N (x|0, Id) and Laplacian q(x) =

∏d
i=1 Laplace(xi|0, 1/

√
2), in which the parameters are set

to make p and q have the same mean and variance. We
change the dimension d from 10 to 100 to observe the in-
fluence of the dimension on different statistics. The results
for different sample sizes n ∈ {80, 400, 2000, 10000} are
shown in Figure 3. We observe that the power of FSSD
quickly drops as the dimension increases. When the dimen-
sion d = 40, FSSD has poor performance (the power is
less than 0.5), and when the dimension d > 40, FSSD
fails to reject the null hypothesis. In this experiment, the
difference between p and q is subtle, because they have
the same mean and variance. In the first experiment, Lin-
MMD and Lin-KSD work well for the two Gaussian distri-
butions, but they nearly fail to detect the subtle difference
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Figure 4: Running time of FSSD, Lin-MMD, ELR-MMD,
Lin-KSD and ELR-KSD on Gaussian p(x) = N (x|0, Id)
and Laplacian q(x) =

∏d
i=1 Laplace(xi|0, 1/

√
2) with d =

100 with variable size n ∈ {1000, 2000, . . . , 14000}.

in this experiment even with a large sample size, whereas
ELR-MMD and ELR-KSD show remarkably good perfor-
mance. There are two reasons for the impressive perfor-
mance of the ELR statistics. First, enforcing a probabil-
ity on each pairwise discrepancy can help discriminate the
subtle difference between two distributions. Second, the re-
jection thresholds of the ELR statistics are determined by
contouring a logarithmic likelihood ratio, which may be the
most powerful test for a fixed α. This point still needs to be
theoretically supported by proving the empirical version of
the Neyman-Pearson lemma (Neyman and Pearson 1933). It
is known that FSSD has shown good performance on low-
dimensional data (Jitkrittum et al. 2017). The proposed ELR
statistics can be considered as complements to FSSD for
high-dimensional data, since they have shown higher power
than the existing linear statistics.

In the third experiment, we compare the running time of
all linear statistics. The results are shown in Figure 4. We
observe that the running time of the ELR statistics ELR-
MMD and ELR-KSD are almost the same as that of the lin-
ear statistics Lin-MMD and Lin-KSD, and all these linear
statistics are much faster than FSSD. There are two reasons
for the low efficiency of FSSD. First, under the null hypoth-
esis, the asymptotic distribution of FSSD is not an analytical
form, so it requires bootstraps or simulations to calculate the
threshold for rejecting the null hypothesis (Jitkrittum et al.
2017), which is time-consuming. Second, FSSD optimizes
the test locations V = {v1, . . . , vJ} ⊂ Rd via gradient as-
cent to get better performance than FSSD-rand4(Jitkrittum
et al. 2017).

In the fourth experiment, we check the Type I errors (false
rejection rates) of all linear statistics. We consider a 10-
dimensional Gaussian distribution and a Gaussian-Bernoulli
restricted Boltzmann machine (RBM) (Liu, Lee, and Jordan
2016), which is a hidden variable graphical model consist-
ing of a continuous observable variable x ∈ Rd and a binary
hidden variable r ∈ {±1}dh , with joint probability

p(x, r) =
1

Z
exp(xTBr + bTx+ cTx− 1

2
‖x‖2).

4In FSSD-rand, the test locations are set to random draws from
a multivariate normal distribution (Jitkrittum et al. 2017).
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Figure 5: Type I errors (false rejection rates) of all linear
tests with variable size n ∈ {1000, 2000, 3000, 4000}. The
first one is for the 10-dimensional Gaussian distribution and
the second one is for RBM.

The results are shown in Figure 5, which shows the rejection
rates of all the tests as the sample size increases when p and
q are the same Gaussian or RBM distribution. We find that
all the tests have roughly the right false rejection rates at the
set significance level α = 0.05

Conclusions
In this paper, we established the first connection between
the empirical likelihood and nonparametric kernel tests, and
derived novel empirical likelihood ratio (ELR) statistics for
the two-sample test and the goodness-of-fit test. We pro-
vided theoretical insights indicating that the ERL statistics
have limiting chi-square distributions under the null hypoth-
esis, and that their test consistencies hold under the alter-
native hypothesis. The new ELR statistics have empirically
shown stronger test power than the existing linear statistics
for high-dimensional data while preserving high computa-
tional efficiency. In the near future, we will develop ELR
statistics for other nonparametric statistical test problems,
including the independence test and the conditional indepen-
dence test.
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