
Multistream Classification with Relative Density Ratio Estimation

Bo Dong, Yang Gao, Swarup Chandra, Latifur Khan
Department of Computer Science

University of Texas at Dallas, Richardson TX
{bxd130630, yxg122530, swarup.chandra, lkhan}@utdallas.edu

Abstract

In supervised learning, availability of sufficient labeled data is
of prime importance. Unfortunately, they are sparingly avail-
able in many real-world applications. Particularly when per-
forming classification over a non-stationary data stream, un-
availability of sufficient labeled data undermines the classi-
fier’s long-term performance by limiting its adaptability to
changes in data distribution over time. Recently, studies in
such settings have appealed to transfer learning techniques
over a data stream while detecting drifts in data distribu-
tion over time. Here, the data stream is represented by two
independent non-stationary streams, one containing labeled
data instances (called source stream) having a biased distri-
bution compared to the unlabeled data instances (called tar-
get stream). The task of label prediction under this represen-
tation is called Multistream Classification, where instances
in the two streams occur independently. While these studies
have addressed various challenges in the multistream setting,
it still suffers from large computational overhead mainly due
to frequent bias correction and drift adaptation methods em-
ployed. In this paper, we focus on utilizing an alternative bias
correction technique, called relative density-ratio estimation,
which is known to be computationally faster. Importantly, we
propose a novel mechanism to automatically learn an appro-
priate mixture of relative density that adapts to changes in the
multistream setting over time. We theoretically study its prop-
erties and empirically demonstrate its superior performance,
within a multistream framework called MSCRDR, on bench-
mark datasets by comparing with other competing methods.

Introduction
When employing a supervised machine learning model for
label prediction over a stream of data instances continuously
generated from non-stationary processes, its prediction per-
formance degrades with changes in data distribution over
time. This problem, called concept drift (Gama et al. 2004),
has been addressed in previous studies using model adap-
tation and drift detection techniques (Masud et al. 2011;
Domingos and Hulten 2000; Gama et al. 2014). However,
they assume that sufficient labeled data instances are readily
available throughout the stream (Haque, Khan, and Baron
2016; Mu et al. 2017). Unfortunately, the existence of suffi-
cient labeled instances is scarce in practice.
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For instance, consider the scenario of predicting senti-
ment of Facebook posts (Ortigosa, Martı́n, and Carro 2014).
Usually, the sentiment label is not provided along with a
user’s post. To train a classifier, true labels of a few posts
from multiple users may be requested. However, if users re-
sponding with the labels are not a good representation of the
population, then the classifier trained directly on such biased
labeled data may not generalize well to all other user posts.

To address the challenge of limited labeled data over
concept-drifting data streams, (Chandra et al. 2016) intro-
duced a framework where a subset of independent processes
continuously generate labeled data instances having a bi-
ased distribution compared to unlabeled instances generated
from the population. They represent the data as two disjoint
streams, one with biased labeled data and the other with un-
labeled data, to leverage transfer learning techniques that aid
in bias correction. This setting is called Multistream Clas-
sification, to emphasize the two-stream representation. The
labeled stream is called source and the unlabeled stream
is called target. Moreover, this representation allows for
drifts in concepts to be observed independently over the two
streams. The combination of concept drift and sampling bias
provides a variety of unique challenges, such as data shift
and asynchronous concept drifts between the source and tar-
get streams, for predicting labels of unlabeled instances in
the target stream.

However, previous approaches that address the challenges
of multistream setting suffer from lack of systematic model
selection (Chandra et al. 2016) or have large computational
time overhead (Haque et al. 2017). In a framework that per-
form label prediction over data streams, the speed of data
consumption is typically limited by its slowest component.
In existing approaches that perform multistream classifica-
tion, the data processing time is limited by the bias correc-
tion technique employed. (Haque et al. 2017) uses an opti-
mization procedure that has quadratic time complexity. This
severely limits the speed of data consumption in the two
streams, particularly in the target stream.

In this paper, we instead utilize a faster bias correction ap-
proach which is more suitable for multistream classification.
Particularly, distribution bias is corrected by directly esti-
mating the density ratio between source and target stream
during classifier training, where the training is performed
over a bias-corrected dataset. Recently, a technique that
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estimates density ratio using Pearson divergence was pro-
posed (Yamada et al. 2011) in a non-streaming environment.
Here, the density ratio is a weighted proportion of target to
source densities of a given fixed dataset. When applied to
a data stream setting, it can be used over a fixed-size mini-
batch to estimate density ratio as new data arrives. However,
applying a similar minibatch approach directly in a multi-
stream setting introduces two main challenges. First, con-
cept drifts in the source and target streams are asynchronous.
A drift within a minibatch on either the source or target
stream affects classification performance until the bias cor-
rection is updated. Second, more importantly, the weighted
proportion for relative density between the source and tar-
get is unknown. This weight, denoted as α, depends on the
dataset and is affected by drifts along the stream. Using a
fixed α throughout the stream may not be appropriate and
affects classification performance.

We address the above challenges by proposing a bias
correction technique using relative density ratio estimation
where weight proportion is automatically learnt and adapted
along the stream. The key idea in the paper is to design
a loss function useful for automatically learning α via an
expectation-maximization technique from data observed in
fixed-size sliding windows. We show that this technique,
when used in a multistream classification framework for
label prediction on the target stream called MSCRDR, not
only increases computational speed, but also significantly
improves prediction performance.

The main contributions are summarized as follows. (1)
We utilize the α-relative density ratio to estimate impor-
tance weights associated with source data instances. (2) We
propose an expectation-maximization technique to automat-
ically learn model parameters for relative density ratio es-
timation from available data, which significantly improves
the model performance. Moreover, we also study its theo-
retical properties useful to demonstrate its effectiveness. (3)
We present a technique for detecting asynchronous concept
drifts between source and target streams data using relative
density ratios in the multistream setting. (4) We use bench-
mark real-world and synthetic datasets to empirically eval-
uate our approach, and compare the results with baseline
methods.

Background
Covariate Shift Adaptation When the distribution of la-
beled and unlabeled data are unequal, distribution match-
ing techniques can be employed to correct such discrep-
ancy. Typically, transfer learning techniques (Dai et al. 2007;
Huang et al. 2007; Sugiyama et al. 2008; Zhu et al. 2011) are
utilized to leverage available labeled data to perform pre-
diction over unlabeled instances. Sampling bias or covariate
shift (Shimodaira 2000) is one such setting where the data
is occurring from the same domain with a bias in labeled
data distribution compared to the population. A technique to
perform distribution matching in such cases is to estimate
importance weight associated with labeled data instances,
given both labeled and unlabeled instances. Popular meth-
ods such as Kernel Mean Matching (KMM) (Huang et al.
2006), Kullback-Liebler Importance Estimation Procedure

(KLIEP) (Sugiyama et al. 2008), and unconstrained Least-
Squares Importance Fitting (uLSIF) (Kanamori, Hido, and
Sugiyama 2009) aim to compute importance weights by di-
rectly estimating density ratio between the distributions rep-
resented by the given unlabeled and labeled data instances.
Formally, if PS(x) and PT (x) denotes the distributions of
source and target instances respectively, then the importance
weight of an instance is given by β(x) = PT (x)

PS(x) . Instead of
estimating PT (x) and PS(x) individually, the density ratio
can be directly estimated from instances.

In particular, KMM performs distribution matching by
minimizing the Euclidean distance between the weighted
source and unweighted target distribution. Whereas, KLIEP
minimizes the KL distance between the distributions. How-
ever, both these approaches are known to have high degree
of fluctuation in density ratio estimates. This affects classi-
fier prediction. To smoothen out such fluctuations, (Yamada
et al. 2011) introduced Relative Density Ratio that minimize
Pearson Divergence between the distributions. Here, the rel-
ative density, denoted by rα(x), for each source instance x,
is given by rα(x) = PT (x)

αPT (x)+(1−α)PS(x) , where α ∈ (0, 1).
Applying a Gaussian kernel model, r(x) is modeled as:

r̂α (x) =
N∑
i=1

θi(α)Kσ

(
x,W (i)

T

)
(1)

where θ = {θi(α)}Ni=1 , α are the parameters to be learned
from data. W (i)

T is the ith instance in target dataset W T .

Kσ(x, x′) = exp

{
−‖x−x′‖2

2σ2

}
is a Gaussian kernel with

kernel width σ. This mechanism is shown to be faster than
KLIEP, and we adopt it to perform bias correction.

Multistream Classification In the case of a data stream,
the difference between training and test distribution arises
during a concept drift. Typically, concept drift over a single
data stream is detected by observing changes in prediction
behavior, i.e., either in prediction error (Gama et al. 2004)
or classifier confidence (Haque, Khan, and Baron 2016) over
the sequence of data occurring along the stream. The classi-
fier is retrained using a newly collected training data occur-
ring after the drift. However, this requires access to sufficient
labeled data soon after drift detection.

Recent studies address a scenario where the distribution
of labeled data available is biased compared to the unla-
beled data along the data stream. Particularly, (Chandra et al.
2016) demonstrates the use of KMM along with drift detec-
tion in a stream setting where labeled and unlabeled data is
represented as independent data streams. Their framework,
called MSC, performs drift detection and bias correction
over the two independent streams for data classification. Un-
fortunately, it suffers from the intrinsic limitation of KMM,
i.e., there is no good model selection approach (Sugiyama et
al. 2008). FUSION (Haque et al. 2017) addresses this issue
by utilizing a version of KLIEP for bias correction. More-
over, it combines the mechanism for bias correction and drift
detection by using a Gaussian kernel model for represent-
ing density ratio, with online updates. However, this frame-
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work suffers from large execution overhead due to the op-
timization function of bias correction having quadratic time
complexity. As mentioned earlier, recent studies have shown
that relative density ratio estimation performs equivalent to
KLIEP when the right set of parameters are known, while
achieving low execution overhead for bias correction. Un-
fortunately, its parameter α is largely unknown. Even when
naively used over a data stream, drifts along the stream
over time may cause performance degradation if it is not
appropriately adapted. Therefore, we propose a framework
that leverages the advantages of relative density ratio with a
mechanism to automatically evaluate α and adapt its value
along the stream.

Preliminaries
Problem Let x ∈ Rd be a vector representing the d-
dimensional real-valued covariates of each observed data
instance, and y ∈ Y be its class label, where Y = [1, k].
Though we observe a data stream as a sequence of data in-
stances, we only store the latest data in memory. For this
purpose, we denote an observable window of size n by W .
Particularly for the multistream setting, we denote the cur-
rent observed labeled data (xS , yS) by W S and the unla-
beled data (xT ) by W T . Here, the subscripts S and T de-
notes source and target streams respectively. Importantly, it
is assumed that instances inW S are sampled from the pop-
ulation in a biased manner, resulting in a biased data distri-
bution compared to instances inW T . Formally, let PS(x, y)
denote the probability density function of source instances,
and PT (x, y) denote that of target instances. A typical form
of sampling bias is covariate shift, i.e., PS(y|x) = PT (y|x)
and PS(x) 6= PT (x). Under this covariate shift assump-
tion, training a classifier directly on instances in S does not
generalize well on instances in T . Therefore, a bias cor-
rection mechanism is necessary. Furthermore, a concept-
drifting data stream is assumed, i.e., a drift in labeling func-
tion may occur along the stream over time. To reduce degra-
dation of prediction performance, the classifier may need
adaptation by reacting to such changes. The problem of mul-
tistream classification is to leverage the available labels in
W S to predict labels of instances in W T by addressing the
challenges of both bias correction and concept drift.

Challenges As mentioned above, we assume that at time
t, data distributions of S and T are related by a covariate
shift, i.e., P (t)

S (y | x) = P
(t)
T (y | x) and P (t)

S (x) 6= P
(t)
T (x).

However, this assumption may not be hold at time r > t
due to the non-stationary nature of data streams. In addition,
conditional probability distribution may change over time
due to concept drift, i.e. P (t)(y | x) 6= P (r)(y | x).

The efficiency of the framework is critical for stream set-
ting problem. Current multistream classification methods
mainly suffer from expensive computation while handling
covariate shift. Moreover, directly employing a faster bias
correction technique such as relative density ratio estimation
would not be appropriate since its unknown model parame-
ters will have to be fixed initial. However, an adaptive model
to concept drifts is more desirable for better prediction per-
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Figure 1: Overview of MSCRDR

formance. We address the above challenges using our pro-
posed framework.

The Proposed Approach
An overview of our framework, called MultiStream Classifi-
cation using Relative Density Ratio (MSCRDR), is shown in
Figure 1. Since the data instances occur continuously along
the stream, we use an initial warm-up phase to begin classi-
fication, and the classifier model is subsequently adapted to
changes in data distribution throughout its lifetime.

The warm-up phase consists of an initial set of instances
in the source and target stream. Due to the assumption of co-
variate shift, we estimate α-relative density ratio associated
with the source instances. Since the instance weights aid in
correcting the distribution bias of source data instances, a
classifier trained using the weighted labeled instances can
generalize well on target instances. As a result, MSCRDR
trains a classifier using the initial set of weighted source in-
stances for label prediction on future target instances. How-
ever, concept drifts may occur along the stream. This may
degrade the classifier performance over time. MSCRDR de-
tects drifts by evaluating change points at which there ex-
ists significant difference between the relative density ratios
across disjoint sequential time periods. Once a change point
is detected, MSCRDR updates the bias correction model and
retrains the classification model.

At the subsequent occurrence of every new instance along
the target stream, the classifier prediction is used. As il-
lustrated in Figure 1, we use an ensemble of classifiers to
perform label prediction. This follows from previous stud-
ies (Street and Kim 2001; Min and Lin 2018) that demon-
strate the variance reduction ability of ensemble classifiers
to improve classification performance. Likewise, MSCRDR
uses a fixed-size ensemble by maintaining the best perform-
ing classifiers. Consequent to drift detection, we update the
ensemble by choosing the top E models based on perfor-
mance. Since the labels of W T are unavailable, the perfor-
mance is measured by average confidence on W T where
the confidence score for each instance is evaluated using the
probability output of SVM. If the ensemble contains less
than E models currently, the new model is simply added to
the ensemble. Otherwise, the least-performing model is re-
placed by the new model to maintain memory usage of the
ensemble. These top E models employ majority voting to
predict labels of instances.

3480



Algorithm 1 Multistream Classification
Require: Labeled source stream S, unlabeled target stream

T , the size ofW S andW T , N .
Ensure: Labels for target stream T .

1: W S ,W T ← readData(S, T, 1)

2: Learn θ = {θi}Ni=1 , α by using Algorithm 2.
3: Estimate rα (W S) by using Eq. 1.
4: Build initial model using rα (W S) andW S .
5: while T exists do
6: Receive a new instance x
7: if x comes from T then
8: Predict Label(x) by ensemble classifiers.
9: end if

10: SlidingW S orW T to include x.
11: Check concept drift in stream using Eq.(9).
12: if There is concept drift in data stream then
13: Update θ = {θi}Ni=1 , α by Algorithm 2.
14: Update training model and ensemble classifiers.
15: Predict Label(x) by ensemble classifiers.
16: end if
17: end while

Relative Density Ratio Estimation
The Relative Density Ratio Estimation module (RDRE) of
MSCRDR uses the Gaussian kernel model for density esti-
mation, similar to Eq. 1. This is updated as concept drift oc-
curs along the stream. In this section, we describe the RDRE
and its parameter learning procedure.

Parameter Learning We now describe our method for
automatically learning the model parameter based on an
expectation-maximization procedure. The parameters θ and
α in Eq. 1 are learnt so that Pearson divergence from rα (x)
to r̂α (x) would be minimized. This is defined as:

PE[rα (x) , r̂α (x)] =
1

2

∫
(
rα (x)
r̂α (x)

− 1)2r̂α (x) dx (2)

Algorithm 2 describes the procedure for learning the pa-
rameters θ and α. In order to ensure α ∈ (0, 1) during the
expectation-maximization procedure, we design a soft con-
straint for α in loss as follows:

[α− 1]+ + [−α]+ =


−α α ≤ 0

α α ≥ 1

0 0 < α < 1

(3)

When we take the derivative with respect to α in loss during
expectation-maximization procedure. This constraint gives
penalty when α /∈ (0, 1). As indicated in Algorithm 2, in
each iteration, if α out of range (0, 1), α is assigned to its
previous value and the learning rate decreases correspond-
ingly. This ensures α converges in range (0, 1). These lead
to the objective function as follows.

[α− 1]+ + [−α]+ + λ1(
1

2
θT Ĥθ − ĥ

T
θ +

λ2
2
θTθ) (4)

where θ ∈ Rn, and λ2

2 θ
Tθ is the penalty term for the reg-

ularization. For each iteration, the parameter θ is computed

Algorithm 2 Learn Parameter
Require: Source instances W S , target instances W T , the

size ofW S andW T , N .
Ensure: RDRM parameters θ = {θi}Ni=1 , α.

1: Initialize α, the learning rate ε, the learning rate param-
eter k, the iteration step i

2: Learn θ = {θi}Ni=1 by using Eq. 5.

3: loss = [α−1]++[−α]++λ1( 12θ
T Ĥθ−ĥ

T
θ+λ2

2 θ
Tθ)

4: repeat
5: Learn θ = {θi}Ni=1 by using Eq. 5.
6: αold = α
7: ε = ε exp {−ki}
8: α = α− ε∂loss∂α
9: if α /∈ (0, 1) then

10: k = 2k
11: α = αold
12: end if
13: i = i+ 1
14: until loss converges
15: Return θ = {θi}Ni=1 , α

based on currant α. It yields an analytical solution, given by,

θ =
(
Ĥ + λIn

)−1
ĥ (5)

where Ĥ and ĥ are arrays whose elements are computed as
follows. HereW (i)

T is the ith instance in target windowW T

andW (j)
S is the jth instance in source windowW S .

Ĥm,m′ =
α

N

N∑
i=1

K
(
W

(i)
T ,W

(m)
T

)
K
(
W

(i)
T ,W

(m′)
T

)

+
1− α

N

N∑
j=1

K
(
W

(j)
S ,W

(m)
T

)
K
(
W

(j)
S ,W

(m′)
T

) (6)

ĥm =
1

N

N∑
i=1

K
(
W

(i)
T ,W

(m)
T

)
(7)

For the whole EM procedure, we first initialize α and
compute θ by Eq. 5 based on instances in W S and W T .
Next, for each iteration, we recompute θ based on current
α. Then α is adjusted using the gradient of the loss function.
We repeat this until convergence. Once the set of parameters
θ and α are learned from data instances, importance weight
for any instance x is calculated using Eq. 1. By estimating
the optimum parameter values, the α-relative density ratio
estimate r̂α (x) can be obtained. We utilize this methodol-
ogy for bias correction in multistream classification.

Concept Drift Detection
We now present a technique for detecting asynchronous con-
cept drifts between source and target streams data using rel-
ative density ratios in the multistream setting. The classifier
is updated following a concept drift, i.e. when there is a sig-
nificant difference between PT (x) and r̂α(αPT (x) + (1 −
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α)PS(x)). Let r̂0α and r̂tα be relative density ratios at initial
time and time t respectively. Following Eq. 1, we can get,

r̂0α(W
(i)
T ) =

N∑
j=1

θ0jKσ(W
(i)
T ,W

(j)
T ) (8)

where i = 1, . . . , N . Similarly, we can compute r̂tα(W
(i)
T )

by using current parameters
{
θtj
}N
j=1

at time t. Follow-
ing likelihood ratio measures the deviation of the weighted
source distribution from the target distribution at time t. We
calculate the sum of log likelihood ratios as follows

S =

N∑
i=1

ln
PT

r̂0α(αPT + (1− α)PS)
=

N∑
i=1

ln
r̂tα(W

(i)
T )

r̂0α(W
(i)
T )

(9)

Using Eq.9, the maximum score S can be calculated. Then
S is compared with threshold (defined as−ln(τ), τ is a user
defined parameter). If S is equal or larger than this threshold,
a change point is detected. Otherwise, there is no concept
drift in data stream.

Theoretical Analysis
In this section, we analyze the convergence rate of Algo-
rithm 2, and the overall time complexity of MSCRDR.

Convergence Rate
Lemma 1. loss is a convex function, i.e., loss((α1 +
α2)/2) ≤ 1

2 (loss(α1)+loss(α2)) for all α on interval (0,1).

Proof. For any α ∈ (0, 1), [α − 1]+ + [−α]+ = 0 as we
defined in Eq. 3. Then, the function loss is given by

loss = λ1(
1

2
θT Ĥθ − ĥ

T
θ +

λ2
2
θTθ) (10)

The first derivative with respect to α, results in the follow-
ing:

∂loss

∂α
=

1

2
λ1θ

T ∂Ĥ

∂α
(11)

From Eq. 6, we can see, the first derivative ∂Ĥ
∂α is a con-

stant with respect to α. Thus, the second derivative ∂2loss
∂α2

becomes to 0 in each iteration. Thus, loss is convex.

Theorem 1. Let the gradient of loss function be Lips-
chitz continuous with constant L > 0, i.e. we have that
||∇loss(α1) − ∇loss(α2)||2 ≤ L||α1 − α2||2 for any α1,
α2. Then if we run EM for l iterations with adaptive gradi-
ent step size of εl ≤ 1

L , it will yield a solution lossl which
satisfies

loss(αl)− loss(α∗) ≤
||α0 − α∗||22

2εminl
(12)

where loss(α∗) is the optimal value.

Proof. In our approach, when α ∈ (0, 1), loss function is
convex and differentiable, as shown in Lemma 1. In ith iter-
ation of the gradient process, let

α′ = α− εi∇loss(α) (13)

Combining the Taylor expansion of loss with Eq. 13 we
have:

loss(α′) ≤ loss(α) +∇loss(α)(α′ − α) + 1

2
L||α′ − α||22

= loss(α)− (1− 1

2
Lεi)εi||∇loss(α)||22

(14)

Since we assume εi ≤ 1
L , we have

−(1− 1

2
Lεi) ≤ −

1

2
(15)

Using Eq. 15 and Eq. 14, we can get

loss(α′) ≤ loss(α)− 1

2
εi||∇loss(α)||22 (16)

We can bound loss(α′), i.e. the objective value at the next
iteration, in terms of loss(α∗), i.e., the optimal objective
value.

loss(α′)−loss(α∗) ≤ 1

2εi
(||α−α∗||22−||α′−α∗||22) (17)

This inequality holds for α′ on every iteration of gradient
descent. Summing over iterations, we have,

l∑
i=0

(loss(αi)− loss(α∗)) ≤
1

2εmin
(||α0 − α∗||22) (18)

where εi = ε0e
− i(i+1)

2 k and εmin = min{εi}, i = 0, 1, ..., l.
Since loss function decreases on every iteration, we can get,

loss(αl)− loss(α∗) ≤
1

l

l∑
i=1

(loss(αi)− loss(α∗))

≤ ||α0 − α∗||22
2εminl

(19)

Therefore, based on above derivation, the convergence rate
for Algorithm 2 is O( 1

εminl
).

Time Complexity
Time complexity of MSCRDR mainly depends on RDRE
and CDD components. RDRE aids in learning the parame-
ters of α relative density ratio (Algorithm 2). N is denoted
as source (and target) window size. For each iteration of EM
process in Algorithm 2, the running time is O(N2) due to
the computation of the Gaussian kernel matrix which is cen-
tered by instances in target window. The running time of
the whole EM procedure is O(lN2), where l is the iteration
times of EM procedure. Time complexity of CDD is O(N).
Time complexity of classification and update depends on
the learning algorithm used as the base model. Therefore,
MSCRDR has a total time complexity of O(lN2) + f(N),
where f(N) is the time complexity for training a new model.
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Figure 2: Accuracy along T for datasets by competing methods on multistream classification.

Table 1: Characteristics of Data Sets
Dataset #features #classes #instances

Forest Cover 54 7 150,000
Yelp@Hotel 300 5 109,548

Yelp@Restaurant 300 5 80,938
Amazon@Music 300 5 29,877
Amazon@Dvd 300 5 31,411

Amazon@Electronics 300 5 11,667
SynRBF@002 70 7 100,000
SynRBF@003 70 7 100,000

Experimental Evaluation
Datasets
Table 1 lists the real-world and synthetic datasets used to
evaluate our approach.

Real World Datasets Forest Cover is a benchmark dataset
from the UCI repository1 containing geospatial descriptions
of different forest types. The labeling task is to predict the
actual forest cover type for each given instance. Yelp@X,
Amazon@X are real-word datasets containing customer re-
views taken from Yelp.com and Amazon.com. Here, X de-
notes the category of the dataset. Yelp@X dataset (Shrestha,
Mukherjee, and Solorio 2018) contains the customer id, re-
views and ratings for different Hotel/Restaurant on Yelp
website. Amazon@X dataset (Blitzer, Dredze, and Pereira
2007) contains the timestamps, reviews and ratings for dif-
ferent Music/Dvd/Electronics products on Amazon website.
The task is to predict ratings of each review.

To extract features from raw review text data, we use
word2vec (Mikolov et al. 2013) model that was pre-trained

1http://archive.ics.uci.edu/ml/datasets/covertype

Figure 3: Execution time of multistream classification.

on 100 billion words from Google to convert the words to
vectors with size 300. For each text, we follow sentence em-
bedding (Arora, Liang, and Ma 2017) to perform a weighted
sum of word vectors generated by word2vec, and remove
principal components from the weighted vector computed
in previous step to yield the corresponding sentence vector.

Synthetic Datasets SynRBF@X are synthetic datasets
generated using RandomRBFGeneratorDrift of MOA (Bifet
et al. 2010) framework, where X is the speed of change of
centroids in the model. We generate two such datasets using
X = {0.002, 0.003} to evaluate the approaches on concept
drifts having various intensities and frequencies. We normal-
ize all the datasets used, and reshuffle the instances from dif-
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Figure 4: Accuracy comparison.

Figure 5: Parameter sensitivity of MSCRDR on Syn-
RBF@002 dataset as an example.

ferent classes randomly to remove novel classes from them.

Generating Stream For each dataset, we assume that each
feature follows a beta distribution. For all features, the dis-
tribution is evaluated by a joint beta distribution. We divide
the data with a ratio of 1:9, into two disjoint sets of instances
based on the value of probability density function (pdf). One
set with relatively smaller pdf is considered as the source
stream, the other is the target stream. Thus, the source and
target streams have covariate shift caused by sampling bias.

Baseline Methods
The first two baseline methods include the multistream clas-
sification frameworks (MSC (Chandra et al. 2016) and FU-
SION (Haque et al. 2017)). Concretely, MSC and FUSION
are competing multistream classification frameworks that
leverages KMM (Huang et al. 2006) and KLIEP (Sugiyama
et al. 2008) for bias correction and drift detection. These are
useful to show the effectiveness of using α-relative density
ratio estimation to handle covariate shift and concept drift.

Since we propose an algorithm which performs parame-
ter learning while computing the relative density ratio, we
design the third baseline, denoted as MSCRDRX , where
X ∈ [0.05, 0.5, 0.95]. Here we remove the learning param-
eter algorithm in our approach and fix the parameter α with
values 0.05, 0.5, 0.95 respectively. It is designed for showing
the effectiveness of Algorithm 2.

All the above baseline methods and our method use
weighted SVM for classification since it provides confidence

value for each prediction. In addition, all methods are de-
signed with ensemble models. Therefore, we use an ensem-
ble of Support Vector Machines (SVM) as the fourth base-
line method where training is performed over unweighted
source instances. Denoted as EnsSVM. It demonstrates the
effects of bias in limited labeled data and concept drift with
regard to classification performance. Parameters of all base-
lines were set based on cross validation on the initialization
set (warm up phase) of each dataset.

Results
Performance As shown in Figure 2, our proposed ap-
proach MSCRDR has the highest accuracy compared to
other four baseline methods on all datasets. Meanwhile,
EnsSVM have relatively low accuracy both on real world
and synthetic datasets. For example, the accuracy of En-
sSVM on ForestCover dataset is 70.77%. Whereas the ac-
curacy of MSCRDR, MSCRDR0.05, FUSION and MSC are
91.04%, 87.69%, 82.73% and 85.98% respectively. This
clearly shows that covariate shift correction is necessary for
better label prediction under sampling bias. Since EnsSVM
do not consider covariate shift and concept drift in data
stream, its classification performance is directly affected.
MSC lacks good model selection process which affect the
classification performance. FUSION apply direct density ra-
tio for bias correction which may not converge to global
maximum. MSCRDR has better performance since it over-
come the above limitations.

Figure 4 shows that MSCRDR performs better on all
datasets compared to MSCRDRX , X ∈ [0.05, 0.5, 0.95].
This is due to the parameter learning method (Algorithm
2), which is superior to a method that used a fixed param-
eter value. When updating the classification model, we learn
the optimum value of parameter α each time, which en-
sure classification performance. Thus, for overall evaluation,
MSCRDR out performs MSCRDRX with fixed parameter.

Importantly, Figure 3 indicates that MSCRDR requires
less execution time compared to FUSION and MSC. FU-
SION takes the longest execution time on all datasets com-
pare to other methods in Figure 3 due to (1) the optimization
procedures for FUSION have high non-linearity of the ob-
jective functions to be optimized. (2) when FUSION build
the Gaussian kernel model, it uses cross validation to search
the optimal parameters, which make the procedure slow.
MSC suffers from its concept drift detection component
which has cubic time complexity. Our proposed approach
is competitive to FUSION and MSC. Since the optimization
procedure not only introduce non-linearity of the objective
function compare with FUSION, but also largely reduces the
time complexity of bias correction. We utilize relative den-
sity ratios for drift detection which has linear time complex-
ity. The result indicates that MSCRDR adapts to covariate
shift and data drifts more efficiently than all baselines.

Parameter Sensitivity Figure 5 indicates that the accu-
racy increases with the window size. However, the execution
time also increases with increasing maximum window size.
This is expected since the execution time of MSCRDR is re-
lated to window size N . Figure 5 demonstrates the number
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of classifiers in ensemble E affect the accuracy and execu-
tion time on SynRBF@002 dataset. When E = 2, the accu-
racy achieves the highest value. After that, the accuracy does
not change much. The execution time increases when the en-
semble size increases. For this dataset, we choose E = 2.

Conclusion
We propose an efficient approach to perform data classifica-
tion over a multistream setting. Particularly, we propose an
algorithm which automatically learn parameters for relative
density ratio estimation to address covariate shift and asyn-
chronous concept drift in source and target streams. Further,
we study its theoretical properties. Empirical results indicate
MSCRDR performs significantly better than the baselines.
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