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Abstract

We explore a principle method to address the weakly super-
vised detection problem. Many deep learning methods solve
weakly supervised detection by mining various object pro-
posal or pooling strategies, which may cause redundancy and
generate a coarse location. To overcome this limitation, we
propose a novel human-like active searching strategy that re-
currently ignores the background and discovers class-specific
objects by erasing undesired pixels from the image. The pro-
posed detector acts as an agent, providing guidance to erase
unremarkable regions and eventually concentrating the atten-
tion on the foreground. The proposed agents, which are com-
posed of a deep Q-network and are trained by the Q-learning
algorithm, analyze the contents of the image features to infer
the localization action according to the learned policy. To the
best of our knowledge, this is the first attempt to apply re-
inforcement learning to address weakly supervised localiza-
tion with only image-level labels. Consequently, the proposed
method is validated on the PASCAL VOC 2007 and PASCAL
VOC 2012 datasets. The experimental results show that the
proposed method is capable of locating a single object within
5 steps and has great significance to the research on weakly
supervised localization with a human-like mechanism.

Introduction
Object detection is among the most fundamental and vital
research problems in the domain of computer vision. The
main issues in object detection lie in constructing a favor-
able discriminative model and gaining a more compact area.
Due to the advancement of convolutional neural networks
(He et al. 2016), researchers have made progress on this
problem. Supervised learning relies on a large set of train-
ing examples with strong supervision. However, acquiring
large amounts of strongly supervised labels entails large la-
bor and financial expense. To alleviate the costly annota-
tion requirement, weakly supervised learning methods have
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Figure 1: Illustration of the proposed idea. A sequence of
glimpsing actions are taken in each time step to locate the
object. Undesired regions are erased recurrently. The pro-
posed agents determine which area should be attended in the
next time step, and the focusing regions are finally acquired.

been proposed to explore the exploitation of cheaper train-
ing labels to complete complex tasks. To address the weakly
supervised detection problem, several researchers integrate
bottom-up information to acquire class-specific regions of
images and treat it as a multiple instance learning (MIL)
problem (Song et al. 2014; Oquab et al. 2015). However,
although CNN-based models have demonstrated their effec-
tiveness in weakly supervised localization, they do not fol-
low the human visual mechanism, which guides humans to
focus on the irregular shapes of objects. Meanwhile, top-
down searching cues provide a promising research line, sub-
stantially reducing the searching space in detection tasks
(Lu, Javidi, and Lazebnik 2016). Attention shifts to the ob-
ject center when the viewpoint changes, which can be repre-
sented by a sequential policy routine. These methods instruct
biosystems to integrate feature maps together by combining
prior knowledge and the current target.

Accordingly, exploration of models to facilitate weakly
supervised localization in such a manner from both bio-
logical and computational perspectives is desirable. Con-
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sequently, three basic observations motivate our research.
First, humans search attentional regions according to fovea
movement. Second, during visual information processing,
the human eye’s visual system can select only a few signif-
icant information points to process. Third, the visual atten-
tional regions are always shown in an irregular shape, which
prevents border confusion with the background.

In this paper, we propose a novel human-like active
searching strategy that recurrently ignores the background
and discovers class-specific objects by erasing undesired
pixels from the image, as is shown in Fig. 1. Our proposed
method conforms to the fact that the greater the area of ob-
jects that are focused, the better the classification of the im-
age. Specifically, a CNN-based feature extractor is trained
by image-level annotation. Then, the features and a discrim-
inating heat map are extracted by the feature extractor. Our
proposed agents analyze the contents of the current features
to infer the localization action according to the learned pol-
icy, which is composed of deep Q-network. As a result, a
single object is detected in fewer than 5 steps per image.
The experimental results of the proposed method in weakly
supervised localization are comparable with those of CNN-
based methods and can generate meaningful visualization
results. In summary, our work makes the following contri-
butions:
• To the best of our knowledge, this work presents the first

deep reinforcement learning solution for weakly super-
vised object localization.

• We propose a novel human-like active searching strategy
to remove undesired regions iteratively by utilizing a deep
Q-network.

• The proposed method is validated on two datasets and is
shown to be efficient in weakly supervised localization.

Related Work
CNN-Based Weakly Supervised Learning
A beam searching approach is described in (Bency et al.
2016), leveraging local spatial information and semantic
patterns to detect multiple objects effectively. Additionally,
multiscale fully convolution streams are applied to pro-
pose possible object regions in Pronet (Sun et al. 2016).
Moreover, a multifold MIL approach is presented in (Gok-
berk Cinbis, Verbeek, and Schmid 2014) to avoid early de-
termination of the error location. (Zhang et al. 2016) pro-
poses a probabilistic WTA model along with excitation
backpropagation to generate top-down attention maps based
on a top-down signal. Additionally, (Zhou et al. 2016) ana-
lyzes the response value of the neuron instead of the gradient
to indicate the class-specific object location. Further efforts
(Selvaraju et al. 2017) use the category-aware neuron gradi-
ent, backing along convolutional layers to generate a local-
ization map. The above methods represent many inspiring
ideas in weakly supervised learning.

Active Top-Down Searching
(Kong et al. 2017a) design several different types of rever-
sion connections to select and integrate the features from

different layers. (Fu, Zheng, and Mei 2017) imitate the hu-
man principle by proposing a framework called the recurrent
attention convolutional neural network that iteratively gains
attention proposals that focus on the most distinguished area.
Meanwhile, reinforcement learning has shown competitive
performance due to its superior decision process (Mnih et
al. 2013; Silver et al. 2016). In (Cao et al. 2017), long short-
term memory is combined with a policy network to consider
the attended region recurrently to solve the face hallucina-
tion problem.

Our work has similarities with (Wei et al. 2017; Ku-
mar Singh and Jae Lee 2017), but we do not require the clas-
sification network to be retrained after each image is erased.
Additionally, instead of setting the size of the erasing area
manually, our proposed agents have the ability to learn the
erasing degree themselves.

Proposed Approach
Overview
The process of weakly supervised localization is seen as
controlling a sequence of actions to change the fixation area
and identify the target objects. Hence, we cast the challenge
of object localization as a Markov decision process (MDP)
because this setting allows the proposed agents to make a de-
cision in continuous steps. As in Fig. 2, a CNN-based feature
extractor is trained by image-level annotation and is used
to extract the feature maps of input images. Subsequently,
actions are made by deep Q-network-based agents to maxi-
mize the long-term global reward. The environment is com-
posed of the input image and the actions taken thus far, and
an action is defined to guide the next erasing regions. The
agent receives the state of the current image status and se-
ries history actions to make a decision, which then generates
a positive or negative reward and guides the agent to search
for as large of a reward as possible during the training phase.
Strictly, this MDP contains a set of components. S describes
the understanding of the current environment. A represents a
series of operations that help us to achieve the goal. R gives
agents a reward for optimizing the decision strategy.

CNN-Based Feature Extractor
The CNN-based feature extractor is initialized based on the
Resnet-50 model. Global average pooling and class-wise
pooling (Durand et al. 2017) are applied on top of the model.
We denote the training set with the image-level labels as
D={(xi, yi)}Ni=1, where xi represents the image data, and
yi is a C-dimensional label vector with C categories. The
correct loss for multi-label classification is the multi-label
cross-entropy loss function:

Loss = −
1

N

N∑
i=1

[yilog(
1

1 + e−xi
) + (1− yi)log(

e−xi

1 + e−xi
)]. (1)

Here, log(·) is the logarithmic function.

Actions
The set of actions A is different from the traditional actions
in the RL detection framework in (Caicedo and Lazebnik
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Figure 2: Pipeline of the proposed active searching strategy. We first train the feature extractor (b) using the category label.
Then, the CAM method is employed to obtain the class-specific attention map (c). Ranking the attention map (c) reveals both
of the most discriminate and undesired regions. The feature vector of the input image (a) is seen as the state of the proposed
agents (d). The proposed agents (d) erase the input image and produce the next step image, which is then fed into the feature
extractor.

2015; Lan et al. 2017; Kong et al. 2017b), which are com-
posed of several transformations on the bounding box. Fur-
thermore, our actions are close to operating on a pixel-level
rather than a bounding box. First, the class activation maps
(CAMs) (Zhou et al. 2016) are obtained from the current
step image xit with category c. In this way, we define the ac-
tivation maps Mc(u, v) in the localization (u, v) as category
c, which is given by formulation:

Mc(u, v) =

K∑
k=1

wckfk(u, v), (2)

where k is the kth neuron from the last convolutional layer,
and wck represents the weights amounting to category c for
neuron k. Given a spatial location (u, v), fk(u, v) indicates
the activation of neuron k in the last convolutional layer
from the feature extractor. Mc(u, v) represents the impor-
tance guiding the classification of image to category c.

Second, the activation values from Mc(u, v) are sorted
in descending order to obtain rankMc(u,v). We define
the action set A to enable the agent to decide the
location and size of the erasing region according to
rankMc(u,v). Formally, the action set is composed of six ac-
tions, A={5%,10%,15%,20%,25%,terminate}, which repre-
sent different degrees of increments for erasing. Therefore,
the terminate action is performed when the entire region is
erased, which is not expected to occur in our experiments.
Compared with moving a fixed degree in each step, our pro-
posed dynamic strategy improves the efficiency in detecting
different sizes of objects through a process of “brushing” us-
ing different sized brushes.

States

We denote a two-tuple as S=(e, h), the feature vectors of the
current input image eit ∈ R512∗7∗7 and the history vector
representing taken actions in last few steps h ∈ R24. The
feature extractor f : RW 7→ R512∗7∗7 forward propagates
the image xit ∈ RW of W pixels at step t and extracts the
image information eit of the ith images of the tth step. We
propose to erase the input image xit by replacing the pixel
values in a given mask of the image Maskit ∈ RW with
the 3-dimensional vector g. Vector g is learned from a train-
ing set as the mean value of the channels of each image.
The function that erases image xit given mask Maskit us-
ing vector g as hgis : RW 7→ RW . Note that the output of
the function is again the image, and the masks Maskit are
generated by our proposed actions. We define the state tran-
sition of image xit subject to maskMaskit as the value of the
function δf (xit,Maskit) : RW × RW ∈ RW given by

δf (x
i
t,Maskit) = f(hg(x

i
t,Maskit)). (3)

Rewards

The reward function R(s, a) is the critical factor in guiding
which action to encourage in the decision-making process.
We define image xit at step t and obtain image xit+1 after
taking action a. The current classification confidence is rep-
resented as clsx

i

t , and classification confidence of the next
step is defined as clsx

i

t+1. Denote states s and s′ in step t and
step t + 1. The reward function of the classification is then
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Figure 3: Architecture of the proposed Q-network.

defined as follows:

Rcl
a (s, s′) =

{
+ σ, if cls

xi
t

t+1 − cls
xi
t

t < τ and cls
xi
t

t+1 > ξ

− σ, otherwise
. (4)

Eq. 4 shows that the proposed agent will receive the reward
if the change in classification confidence is less than τ , and
the agent will be penalized otherwise. σ is the classification
reward, which we set to 3.2 in our experiments. We constrain
the classification confidence to not less than ξ = 0.4. Con-
sidering some of the situations that may occur in Fig. 9, we
set the difference in the classification confidence of the cur-
rent step and next step τ as -0.1 in Eq. 4. This setting avoids
the insufficiency of the CNN model when the objects of fo-
cus have irregular borders. The agent is penalized when the
discriminate region of the object is erased and is rewarded
when the target object is retained in the current state.

We design a reward function to restrict the degree of the
erasing region to a feasible range. For ease of explanation,
we define erasex

i

t as step t of the accumulative erasing de-
gree. The reward function of the degree of the erased region
can be written as follows:

Rerasea (s, s′) =

{
+ β, if µ < erasex

i

t < ψ

− β, otherwise
, (5)

where we set µ to 0.5 and ψ to 0.8. The erasing degree re-
ward β is set to 0.5 in our experiments.

The terminating action acts as a penalty in our setting.
Therefore, the termination reward function is presented as
follows:

Rtermia (s, s′) = ζ, (6)

where ζ is -0.5 in our experiments. In other words, the re-
ward function aims to force the proposed agent to not stop
until the final step. The total number of steps T is set to 5.

Deep Q-Learning
A policy π(s) is specified to learn the optimal action for the
current state in each time step. We apply a deep Q-learning
framework to build the relation between state and action. In
the training phase, the agent randomly selects an action from
the action container with probability ε and chooses the max-
imum activation value action with probability 1− ε. Starting
from 0.9, ε decreases by 0.1 in each epoch until ε = 0.1. To

overcome the unstable and useless learning in traditional Q
learning, a memory replay scheme is applied in the training
stage. Moreover, the Bellman equation is adopted to itera-

Algorithm 1 Training process of the proposed method
Require: Training data D={(xi, yi)}Ni=1, replay counter,

class num, max epoch, T ;
1: Train the feature extractor f with D;
2: for c = 1, class num do
3: Initialize agent DQNc with param θc;
4: for epoch=1,max epoch do
5: for xi,yi in D and c in yi do
6: Set status=1;
7: Get state sxi

t , current step confidence clsxi
t ;

8: while t < T and status==1 do
9: Calculate M c

i,t(u, v) by CAM(xit, CLS, yi);
10: Select action axi

t with ε-greedy;
11: if a==6 do
12: status=0;
13: Obtain Maskcxi,t and erasexi

t ;
14: Do erase xci,t+1 = xci,t ⊗Maskcxi,t;
15: Get sxi

t+1 and clsxi
t+1;

16: Calculate reward rxi
t by Eq. 4,5;

17: Store transition(sxi
t , a

xi
t , r

xi
t , s

xi
t+1);

18: Update confidence clsxi
t = clsxi

t+1;
19: Do memory replay;
20: end for
Ensure: Trained DQN DQN = {DQNc}class numc=1

Figure 4: Examples of the post-processing refined bound-
ing box. The first row of each sample represents the bi-
nary mask (A) and its segmentation cues (B) generated by
saliency technology. The second row of each sample shows
the erased image (C) and the selected bounding box pro-
posed by the agents (D). (E) shows the refined results.

tively update the selection of the action policy, where s and a
are the current state and action, respectively. r is the reward,
andmaxa′Q(s′, a′) represents the future reward. The action
a chosen at state s determines the corresponding reward of
the agent via the function Q(s, a), where the highest reward
is acquired through the selected action:

Q(s, a) = r + γmaxa′Q(s′, a′), (7)
where γ represents a discount factor to balance future and
current rewards. We set γ to 0.9 in our experiments. The
weights of the deep Q-network θt at time step t with transi-
tion quadruple (s, a, r, s′) update as follows:
θt+ = θt+α(r+Q(s′, a′; θt)−Q(s, a; θt))∇θtQ(s, a; θt).

(8)
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Table 1: Quantitative comparison of the detection task on the PASCAL VOC 2007 test set. The average precision of our method
is computed by detecting one object of the same category per image. The average detection precision is compared for common
detection tasks in the same dataset. Hence, we consider a horizontal comparison in this section.
Method plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP
Cinbis et al. 35.8 40.6 8.1 7.6 3.1 35.9 41.8 16.8 1.4 23.0 4.9 14.1 31.9 41.9 19.3 11.1 27.6 12.1 31.0 40.6 22.4
Wang et al. 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6
LocNet 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3
OICR-VGG 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2
Ours-H 52.5 34.0 32.0 16.9 5.1 55.3 46.1 54.5 12.6 29.0 49.0 41.0 49.6 54.1 28.4 15.4 26.5 42.8 44.1 10.0 34.9
Ours-M 57.5 35.6 39.9 25.6 6.1 58.0 50.0 56.7 13.6 29.0 49.4 48.0 62.5 58.2 29.3 15.4 27.1 45.4 51.4 10.0 38.4
Ours-M-D 57.5 42.0 39.9 31.2 10.0 58.8 50.0 57.2 13.6 35.6 49.4 49.0 62.5 58.2 30.4 15.5 33.8 45.4 57.0 28.4 41.2

Table 2: Quantitative comparison of localization on the PASCAL VOC 2012 val set. Note that RCNN and Fast-RCNN are
supervised with a bounding box label, while the other methods have only category labels.
Method plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP
RCNN 92.0 80.0 80.0 73.0 49.9 86.8 77.7 87.6 50.4 72.1 57.6 82.9 79.1 89.8 88.1 56.1 83.5 50.1 82.0 76.6 74.8
Fast-RCNN 79.2 74.7 74.7 65.8 39.4 82.3 64.8 85.7 54.5 77.2 58.8 85.1 86.1 80.5 76.6 46.7 79.5 68.3 85.0 60.0 71.3
Oquab et al. 90.3 77.4 77.4 79.2 41.1 87.8 66.4 91.0 47.3 83.7 55.1 88.8 93.6 85.2 87.4 43.5 86.2 50.8 86.8 66.5 74.5
ProNet-P 91.6 82.0 85.1 78.6 45.9 87.9 67.1 92.2 51.0 72.9 60.8 89.3 85.1 85.3 86.4 45.6 83.5 55.1 85.6 65.9 74.8
Ben et al. 90.0 81.2 81.2 82.2 47.5 86.7 64.9 85.7 53.9 75.8 67.9 82.2 84.1 83.4 83.9 71.7 83.1 63.7 89.4 78.2 77.1
Ours 91.5 87.0 77.6 65.7 54.3 85.1 68.1 94.0 55.9 78.3 87.0 90.0 86.1 89.3 68.0 59.7 68.2 81.2 83.0 79.3 77.5

The training process of the proposed method is described
in Algorithm 1.

Experiments
In the following sections, the details of the experiments with
the proposed method are discussed.

Experimental Settings
We evaluate the proposed method on the PASCAL VOC
2007 and 2012 datasets. Average precision (AP) and correct
localization CorLoc are used to evaluate the performance
of our method. For both metrics, the true positive bound-
ing box is determined as correct only if it has an at least
50% intersection-over-union (IoU) ratio with the ground-
truth object instance annotation. To compare the state-of-
the-art weakly supervised localization methods, we also ap-
ply the localization metrics proposed in (Oquab et al. 2015)
and (Zhu et al. 2017).

Implementation details. First, for the feature extractor,
we use Resnet-50, pretrained on the ImageNet dataset and
fine-tuned on the corresponding training sets, for the back-
bone architecture. We train the network with stochastic gra-
dient descent (SGD) with momentum at a learning rate of
0.01 for 20 epochs. Second, the image descriptor and the
history vector are the inputs of the deep Q-network, whose
structure is composed of two fully connected layers with
1024 neurons and an action layer with 6 neurons. The archi-
tecture of the deep Q-network is shown in Fig. 3. Further-
more, we train each deep Q-network model for 50 epochs,
apply an experience replay of 1000 memory capacity, and set
the target parameter update step to 100. In post-processing,
we adopt saliency detection technology (Jiang et al. 2013) to
refine the detected results, as shown in Fig. 4. “Ours-H” indi-
cates the hard threshold post-processing, and “Ours-M” rep-

resents the mean value threshold. “Ours-M-D” uses the di-
lation CNN to obtain the heat maps (Wei et al. 2018), which
demonstrates the flexibility of our proposed method.

Detection Results
In Table 1, compare the object detection results on the PAS-
CAL VOC 2007 test set with those of (Gokberk Cinbis, Ver-
beek, and Schmid 2014; Wang et al. 2014; Kantorov et al.
2016; Tang et al. 2017). The proposed method achieves a
higher average detection precision in the conveyance cate-
gories i.e., plane, bus, motorbike and train, reaching 57.5%,
58.0%, 58.2% and 51.4%, respectively. First, the proposed
reward function forces the agent to consider both the clas-
sification confidence and the area when focusing on only a
specific part of an object. Second, the irregular shape, such
as “cat” and “horse”, is the difference with respect to the
conveyance category. CNN-based weakly supervised meth-
ods often propose rectangle bounding boxes, and the pro-
posed method retains more of the original shapes of objects.

In addition, the proposed method achieves a CorLoc
of 32.7%, outperforming the compared transfer learning
(32.1%) and mining (30.2%) methods in Table 3. We com-
pare two pre-deep learning methods in Table 3, mainly be-
cause we do not extract and classify proposals in the training
stage so poorer performance occurs in the trainval set.

Localization Results
As shown in Table 2, the proposed method achieves compa-
rable performance to that of the CNN methods (Girshick et
al. 2014; Girshick 2015; Oquab et al. 2015; Sun et al. 2016;
Bency et al. 2016), achieving 77.5%. The proposed method
produces the best results on the categories “bike”, “bottle”,
“chair”, “table”, “sofa” and “tv”. Specifically, for “table”,
the proposed method outperforms (Bency et al. 2016) by
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Table 3: Quantitative comparison of Corloc on the PASCAL VOC 2007 trainval set. The method Ours-top3* is the percentage
of positive images in which an object is correctly located by at least one of the top-3 proposals.
Method plane bike bird boat btl bus car cat chair cow table dog horse moto pers plant sheep sofa train tv mAP
Siva et al. 45.8 21.8 30.9 20.4 5.3 37.6 40.8 51.6 7.0 29.8 27.5 41.3 41.8 47.3 24.1 12.2 28.1 32.8 48.7 9.4 30.2
Shi et al. 54.7 22.7 33.7 24.5 4.6 33.9 42.5 57.0 7.3 39.1 24.1 43.3 41.3 51.5 25.3 13.3 28.0 29.5 54.6 11.8 32.1
Ours-H 41.1 24.2 39.0 15.8 9.4 42.0 42.0 52.0 10.1 29.7 37.5 41.4 42.8 49.3 28.1 14.7 31.2 45.2 49.5 9.8 32.7
Ours-M 42.3 25.5 39.2 19.1 9.4 42.0 43.7 53.3 10.3 30.4 37.5 41.7 49.0 50.6 28.3 16.3 31.2 45.2 55.6 9.8 34.7
Ours-top3* 53.3 30.5 48.5 21.0 9.8 49.5 49.5 63.2 10.8 34.8 46.5 57.5 59.2 60.4 35.9 19.6 35.4 54.1 63.2 10.2 40.6

Table 4: Pointing localization accuracy (%) on the PASCAL
VOC 2007 test set. Center is a baseline method that uses the
image center as the estimate of the object center.

Method localization accuracy(%)
Center 69.5
Deconv(Zeiler and Fergus 2014) 73.1
LRP(Bach et al. 2015) 68.1
MWP(Zhang et al. 2016) 73.7
Ours-H 76.0
Ours-M 76.7

Figure 5: Detection performance with respect to the total
number of steps T on the PASCAL VOC2007 test set. The
histogram represents the categories (x-axis) and the corre-
sponding average precision (y-axis) for different total num-
ber of steps T .

19.1% (87% vs 67.9%), and for “sofa”, the proposed method
outperforms Fast-RCNN by 12.9% (81.2% vs 68.3%), illus-
trating the substantial improvement on furniture categories.
Furniture class objects are usually located in complicated
scene, often overlapping each other, as shown in the second
row of Fig. 7. Therefore, furniture class objects are often dif-
ficult to identify separately. Our proposed method is able to
separate the main objects to produce good results because
the overlapping regions are erased correctly. Moreover, the
proposed method has comparable localization accuracy re-
sults, as shown in Table 4. The proposed method achieves
a localization accuracy of 34.7%, outperforming the com-
pared transfer learning (32.1%) and mining (30.2%) meth-
ods. When considering the top-3 condition, the localization
accuracy of the proposed method increases 8%, reaching
40.6%.
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Figure 6: Sample detection results. Red boxes represent the
ground-truth annotation. Green boxes indicate correct detec-
tion results. “BG” represents samples that are easily con-
fused with the background. “OTH” indicates samples that
are easily confused with other categories. “MC” shows sam-
ples that are located in messy surroundings. “PO” denotes
samples that are shown partially.

Further Analysis
Impact of the total number of steps T . To validate the
choice of the total number of steps T , we evaluate various
values, as displayed in Fig. 5. This comparison demonstrates
that the detection precision may be influenced by changing
T from 3 to 7. For most of the compared categories, except
“horse”, “moto” and “sofa”, the greater the number of steps
is, the higher the average precision. These three categories
always appear with overlap, indicating that the erasing ac-
tion may damage the structural information.

Impact of hyperparameters. We investigate the effect of
the parameters ξ, σ, β and ζ on the detection performance.
The results in Fig. 8 show that a lower classification confi-
dence, i.e., ξ = 0.4, is beneficial for detection. We further
note that a higher classification reward, i.e., σ = 3.2, yields
the best results. Moreover, the erasing degree β also affects
the performance and is set to β = 0.5 to achieves the best re-
sults. Another important parameter is the termination reward
ζ, which penalizes the agents when the terminate action is
triggered. ζ = −0.5 leads to the highest precision.

Analysis of visualization. Fig. 6 shows the sample detec-
tion results. Our proposed method can detect the object un-
der conditions where it is difficult to discriminate between
the object and the background. Our method can also handle
cases of multiple categories or overlap among the same cat-
egory. Moreover, problems with messy surroundings and the
appearance of only parts of objects are solved, as shown in
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Figure 7: Examples of the erased object regions produced by the proposed method. The third to seventh and the tenth to
fourteenth columns show the erasing procedure. The second and ninth columns present the produced heat maps.

（A） （B）

（C） （D）

Figure 8: Detection results of category “aeroplane” with dif-
ferent parameters on the PASCAL VOC 2007 test set. (A)
Impact of ξ. (B) Impact of σ. (C) Impact of β. (D) Impact
of ζ. Each histogram represents the value of the parameter
(x-axis) and the corresponding average precision (y-axis).

the third and fourth rows. The heat maps and the correspond-
ing erasing action are visualized to help us to understand
the proposed method in Fig. 7. In the last erasing step, key
components of people are retained, which demonstrates the
meaningful procedure of the proposed method. The ideal re-
sults shown in the second row and the appearance of overlap-
ping areas indicates that our proposed method has the abil-
ity to distinguish class-specific regions of interest in regions
of overlap. Certain relations exist among different objects
in the training sets. Therefore, searching for a class-specific
object in an image is unreasonable when the areas of correl-
ative objects have responses. However, our proposed method
can effectively avoid this situation by fully utilizing top-
down information. Clearly, the hard-to-interpret appearance,
which often occurs in CNN models, has been overcome to
some extent.

Analysis of classification confidence. As is commonly
believed, the more focused an object is, the better the classi-

Classification confidence:0.44 Classification confidence:0.97

Figure 9: Red frame images, which indicate more fo-
cused objects, have lower classification confidence, and the
blue frame images have higher confidence under conditions
where a limited region is erased.

fication accuracy of the neural network. However, the oppo-
site phenomenon may occasionally occur, as shown in Fig.
9. CNN always acts as a black box to some extent, but the
proposed method provides an explanation of the reason why
each action is taken. From another perspective, it is reason-
able that the background is related to the object during train-
ing on large amounts of data. Nonetheless, the background
information would affect the performance in some extent.
Hence, a sufficient amount of data is the only way to cope
with the adequate condition for CNN models. This problem
can be solved by ignoring the background and focusing on
only the area where the object has a higher possibility of
appearing, as is done with our method.

Conclusions
We present a novel human-like delicate region erasing strat-
egy to solve the weakly supervised object localization prob-
lem. The difference between the proposed method and pre-
vious works is that a top-down scene analysis is performed
by agents to erase pixel-level regions of the background via
a human visual mechanism. A deep Q-network, acting as an
agent, is applied to learn the localization policy and to op-
timize the policy to iteratively determine the location of an
object. The experimental results demonstrate that the weakly
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supervised localization performance of the proposed model
is comparable to that of CNN-based methods and that the
efficiency is improved simultaneously. We conclude that the
proposed method with a human-like mechanism is applica-
ble to weakly supervised localization.
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