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Abstract

In partial multi-label learning (PML), each training example
is associated with multiple candidate labels which are only
partially valid. The task of PML naturally arises in learning
scenarios with inaccurate supervision, and the goal is to in-
duce a multi-label predictor which can assign a set of proper
labels for unseen instance. To learn from PML training exam-
ples, the training procedure is prone to be misled by the false
positive labels concealed in candidate label set. In light of this
major difficulty, a novel two-stage PML approach is proposed
which works by eliciting credible labels from the candidate
label set for model induction. In this way, most false positive
labels are expected to be excluded from the training proce-
dure. Specifically, in the first stage, the labeling confidence of
candidate label for each PML training example is estimated
via iterative label propagation. In the second stage, by utiliz-
ing credible labels with high labeling confidence, multi-label
predictor is induced via pairwise label ranking with virtual la-
bel splitting or maximum a posteriori (MAP) reasoning. Ex-
tensive experiments on synthetic as well as real-world data
sets clearly validate the effectiveness of credible label elicita-
tion in learning from PML examples.

Introduction
Partial multi-label learning deals with one particular learn-
ing framework with inaccurate supervision, where multiple
candidate labels are assigned to each training example which
are only partially valid. The need to learn from PML ex-
amples naturally arises in many real-world scenarios, where
accurate supervision information is difficult to be obtained
from the collected data (Zhou 2018; Xie and Huang 2018).
For instance, in crowdsourcing image tagging (Figure 1),
among the set of candidate labels given by crowdsourcing
annotators only some of them are valid ones due to potential
unreliable annotators. The task of partial multi-label learn-
ing is to learn a multi-label predictor from PML training ex-
amples which can assign a set of proper labels for the unseen
instance.

Formally, let X = Rd denote the d-dimensional feature
space and Y = {y1, y2, . . . , yq} denote the output space
with q possible class labels. Furthermore, given the PML
training set D = {(xi, Yi) | 1 ≤ i ≤ m}, where xi ∈ X
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Figure 1: An examplar partial multi-label learning scenario.
In crowdsourcing image tagging, among the set of 7 can-
didate labels given by crowdscourcing annotators, only 4
of them are valid ones including house, tree, lavender and
France.

is a d-dimensional feature vector and Yi ⊆ Y is the set of
candidate labels associated with xi. The key assumption of
partial multi-label learning lies in that the ground-truth la-
bels Ỹi ⊆ Y for xi reside in the candidate label set, i.e.
Ỹi ⊆ Yi, and are not directly accessible to the learning al-
gorithm. Accordingly, the task of PML is to induce a multi-
label predictor f : X 7→ 2Y from D.

A straightforward strategy to learn from PML examples
is to treat all the candidate labels in Yi as ground-truth ones,
and then apply off-the-shelf multi-label learning algorithms
(Zhang and Zhou 2014; Gibaja and Ventura 2015) to induce
the desired multi-label predictor. Obviously, the resulting
multi-label training procedure will be significantly affected
by the labeling noise brought by false positive labels in Yi.
One recent attempt towards PML works by utilizing the con-
fidence of each candidate label being the ground-truth one
(Xie and Huang 2018), where confidence scores and predic-
tive model are optimized in an alternative manner by mini-
mizing the confidence-weighted ranking loss between can-
didate and non-candidate labels. Nonetheless, the estimated
confidence scores would be error-prone especially when the
proportion of false positive labels is high, which in turn will
impact the predictive model due to the alternative optimiza-
tion procedure.

To deal with the major difficulty that ground-truth labels
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are concealed in the candidate label set of PML training ex-
amples, a novel approach named PARTICLE, i.e. PARTIal
multi-label learning via Credible Label Elicitation, is pro-
posed in this paper. The basic idea of PARTICLE is to mit-
igate the negative impact of false positive labels by elicit-
ing credible labels from candidate label set, which will be
treated as reliable labeling information for subsequent model
induction. Briefly, in the first stage, credible labels with high
labeling confidence are identified via iterative label propa-
gation. In the second stage, by making use of the identified
credible labels, multi-label predictor is induced via pairwise
label ranking with virtual label splitting or maximum a pos-
teriori reasoning. Comprehensive experimental studies show
that credible label elicitation serves as an effective strategy
to solve the partial multi-label learning problem.

The rest of this paper is organized as follows. Firstly, re-
lated works on partial multi-label learning are briefly dis-
cussed. Secondly, technical details of the proposed PARTI-
CLE approach are presented. Thirdly, detailed experimental
results are reported. Finally, we conclude this paper.

Related Work
Partial multi-label learning is closely related to two popular
learning frameworks, namely multi-label learning (Zhang
and Zhou 2014; Gibaja and Ventura 2015; Zhou and Zhang
2017) and partial label learning (Cour, Sapp, and Taskar
2011; Liu and Dietterich 2012; Zhang, Yu, and Tang 2017).

In multi-label learning (MLL), each example is associated
with multiple valid labels simultaneously. Based on the or-
der of correlations being exploited for model training, exist-
ing MLL approaches can be roughly categorized into three
groups including first-order approaches (Boutell et al. 2004;
Zhang et al. 2018), second-order approaches (Fürnkranz
et al. 2008; Li, Song, and Luo 2017), and high-order ap-
proaches (Read et al. 2011; Tsoumakas, Katakis, and Vla-
havas 2011; Burkhardt and Kramer 2018). Both MLL and
PML aim to induce the predictive model which can as-
sign proper label set for unseen instance. Nonetheless, the
task of PML is more challenging than MLL as the ground-
truth labeling information is not directly accessible to PML
learning algorithm. There are also studies on weak label
learning (Sun, Zhang, and Zhou 2010; Tan et al. 2018;
Wei et al. 2018) which considers the case of missing ground-
truth labels w.r.t. the associated label set. Weak label learn-
ing and PML can be viewed as dual variants of MLL with
noisy labeling, where weak label learning assumes false neg-
ative labels within irrelevant label set while PML assumes
false negative labels within candidate label set.

In partial label learning (PLL), each example is associ-
ated with multiple candidate labels among which only one is
valid. The task of partial label learning is to induce a multi-
class predictive model which can assign one proper label
for unseen instance, where existing PLL approaches work
by disambiguating the candidate label set (Cour, Sapp, and
Taskar 2011; Liu and Dietterich 2012; Yu and Zhang 2017;
Gong et al. 2018; Chen, Patel, and Chellappa 2018) or trans-
forming partial label learning problem into canonical super-
vised learning problems (Chen et al. 2014; Zhang, Yu, and
Tang 2017; Wu and Zhang 2018). Both PLL and PML learn

from training examples with labeling noise where false pos-
itive labels reside in the candidate label set. Nonetheless, the
task of PML is more challenging than PLL as a multi-label
predictor rather than single-label predictor needs to be in-
duced from PML training examples.

To solve the partial multi-label learning problem, one
most straightforward strategy is to treat all candidate labels
as ground-truth ones. In this way, any off-the-shelf multi-
label learning algorithms can be applied to induce the de-
sired multi-label predictor. Nevertheless, it is obvious that
this straightforward strategy tends to suffer from the false
positive labels concealed in candidate label set. Another re-
cent strategy (Xie and Huang 2018) learns from PML exam-
ples by estimating the ground-truth labeling confidence of
each candidate label, where the estimated confidence scores
are incorporated into an alternative optimization procedure
for model induction. Due to the alternative nature of opti-
mization, estimation errors on confidence scores will keep
impairing the coupled predictive model, especially when the
proportion of false positive labels is high.

In the next section, a two-stage partial multi-label learn-
ing strategy based on credible label elicitation will be intro-
duced, which aims to mitigate the negative impact of false
positive labels by focusing on reliable labeling information.

The PARTICLE Approach
Credible Label Elicitation
In the first stage, PARTICLE elicits credible labels from the
candidate label set via an iterative label propagation proce-
dure. Given the PML training set D = {(xi, Yi) | 1 ≤ i ≤
m}, a weighted directed graph G = (V,E,W) is instan-
tiated based on kNN minimum error reconstruction. Here,
V = {xi | 1 ≤ i ≤ m} corresponds to the set of training
instances and E = {(xi,xj) | i ∈ N (xj) , 1 ≤ j ≤ m}
with N (xj) being the index set of xj’s k nearest neighbors
in D.

For the weight matrix W = [w1,w2, . . . ,wm]>, the
weight vector wj = [w1,j , w2,j , . . . , wm,j ]

> (1 ≤ j ≤ m)
is optimized by solving the following minimum error recon-
struction problem:

minwj

∥∥∥xj −
∑m

i=1
wi,j · xi

∥∥∥2
2

(1)

s.t. wi,j ≥ 0 (i ∈ N (xj))

wi,j = 0 (i /∈ N (xj))

Conceptually, the goal of Eq.(1) is to minimize the loss of
reconstructing xj from its k nearest neighbors with non-
negative weights. Accordingly, the solution to the linear
least square problem of Eq.(1) can be obtained by applying
off-the-shelf quadratic programming (QP) solver.

Let H = WD−1 be the propagation matrix by normaliz-
ing the columns of W, where D = diag [d1, d2, . . . , dm] is
the diagonal matrix with dj =

∑m
i=1 wi,j . Furthermore, let

F = [fi,c]m×q be an m× q matrix with non-negative entries
where fi,c ≥ 0 is assumed to represent the confidence of yc
being a valid label for xi. Based on PML training examples,
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the initial labeling confidence matrix F(0) is configured as:

∀ 1 ≤ i ≤ m : f
(0)
i,c =

{
1
|Yi| , if yc ∈ Yi
0, otherwise

(2)

Therefore, the initial labeling confidence is evenly dis-
tributed over the candidate label set. For the t-th iteration, F
is updated by propagating current labeling confidence over
H:

F̂(t) = α ·H>F(t−1) + (1− α) · F(0) (3)
Here, the parameter α ∈ [0, 1] controls the labeling infor-
mation inherited from iterative propagation and the initial
labeling confidence F(0). After that, F̂(t) will be re-scaled
into F(t) by normalizing each row w.r.t. the candidate label
set:

∀ 1 ≤ i ≤ m : f
(t)
i,c =


f̂
(t)
i,c∑

yl∈Yi
f̂
(t)
i,l

, if yc ∈ Yi

0, otherwise
(4)

Let F∗ denote the final labeling confidence matrix when the
iterative label propagation procedure terminates1, it is fea-
sible to elicit credible labels for each PML training exam-
ple by identifying candidate labels with high labeling confi-
dence w.r.t F∗.

Nonetheless, to reduce the risk of overfitting with label
propagation, PARTICLE fulfills the elicitation task by fur-
ther performing kNN aggregation. For xj and its k nearest
neighbors in N (xj), the aggregation weight vector ωj =

[ωj
1, ω

j
2, . . . , ω

j
m]> is set as:

∀ 1 ≤ i ≤ m :

wj
i =

{
1− dist(xi,xj)∑

xk∈N(xj)
dist(xk,xj)

, if xi ∈ N (xj)

0, otherwise
(5)

Here, dist(xi,xj) calculates the Euclidean distance be-
tween xj and its neighboring example xi. Then, the result-
ing labeling confidence vector λj = [λj1, λ

j
2, . . . , λ

j
q]> for

xj is obtained by aggregating F∗ with ωj :

λj = F∗> · ωj (6)

Thereafter, the credible label set Y Cj for xj is determined by
thresholding λj :2

Y Cj =

{yl | λjl ≥ thr, yl ∈ Yj}
⋃
{yl∗ | yl∗ = argmax

yl∈Yj

λjl } (7)

In other words, Y Cj ⊆ Yj is formed by credible labels whose
labeling confidence are greater than the thresholding param-
eter thr ∈ [0, 1]. The one with highest labeling confidence
(i.e. yl∗ ) also belongs to Y Cj so as to avoid the potential case
of empty credible label set.

1The iterative label propagation procedure terminates when
F(t) does not change or the maximum number of iterations (1,000
in this paper) is reached.

2To facilitate the thresholding operation, λj is further normal-

ized to [0,1] with λjl =
λ
j
l
−min1≤l≤q λ

j
l

max1≤l≤q λ
j
l
−min1≤l≤q λ

j
l

.

Table 1: The pseudo-code of PARTICLE.

Inputs:
D: PML training set {(xi, Yi) | 1 ≤ i ≤ m}

(xi ∈ X , Yi ⊆ Y,X = Rd,Y = {y1, y2, . . . , yq})
k: number of nearest neighbors considered
α: balancing parameter
thr: thresholding parameter
B: binary training algorithm
mode: virtual label splitting or MAP reasoning
x: unseen instance
Outputs:
Y : predicted label set for x
Process:

1: Instantiate the weighted graph G = (V,E,W) by solv-
ing Eq.(1) with kNN minimum error reconstruction;

2: Initialize F(0) according to Eq.(2) and obtain the final
labeling confidence matrix F∗ by conducting iterative
label propagation according to Eq.(3) and Eq.(4);

3: Identify the credible label set Y Cj for each example
xj (1 ≤ j ≤ m) according to Eq.(7) (together with
Eq.(5) and Eq.(6));

4: For each label pair (yu, yz) (1 ≤ u < z ≤ q), generate
binary training set DCuz according to Eq.(8);

5: Induce binary classifier guz ← [ B(DCuz);
6: switch mode do
7: case virtual label splitting
8: For each label yu (1 ≤ u ≤ q), generate binary

training set DCuV according to Eq.(9);
9: Induce binary classifier guV ←[ B(DCuV );

10: Return Y = f(x) according to Eq.(12) (together
with Eq.(10) and Eq.(11));

11: case MAP reasoning
12: For each label yu (1 ≤ u ≤ q), set the counting

statistic Cu according to Eq.(13);
13: Return Y = f(x) according to Eq.(14) (together

with Eqs.(15)-(18));
14: end switch

Predictive Model Induction

In the second stage, PARTICLE aims to induce the multi-
label predictive model by utilizing credible labels elicited
in the first stage.

Specifically, let DC = {(xi, Y
C
i ) | 1 ≤ i ≤ m} denote

the transformed PML training set where each training exam-
ple xi is associated with the credible label set Y Ci other than
the original candidate label set Yi. Pairwise label ranking
is tailored to learn from the transformed PML training ex-
amples with virtual label splitting or maximum a posteriori
(MAP) reasoning, where similar techniques have been suc-
cessfully applied to learn from multi-label data (Zhang and
Zhou 2007; Fürnkranz et al. 2008; Zhang and Zhou 2014;
Gibaja and Ventura 2015).

The basic idea of pairwise label ranking is to transform
the original learning problem into a number of pairwise
comparison problems, one for each label pair (yu, yz) (1 ≤
u < z ≤ q). For each transformed PML training example
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Table 2: Characteristics of the PML experimental data sets. For each PML data set, the average number of candidate labels
(avg. #CLs) and the average number of ground-truth labels (avg. #GLs) are also recorded.

Data Set #Examples #Features #Class Labels avg. #CLs avg. #GLs
music emotion 6,833 98 11 5.29 2.42

music style 6,839 98 10 6.04 1.44
mirflickr 10,433 100 7 3.35 1.77

image 2,000 294 5 2, 3, 4 1.23
emotions 593 72 6 3, 4, 5 1.86

scene 2,407 294 6 3, 4, 5 1.07
yeast 2,417 103 14 9, 10, 11, 12, 13 4.23

eurlex dc 8,636 100 15 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 1.01
eurlex sm 12,679 100 15 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 1.53

(xi, Y
C
i ) with Y Ci ⊆ Yi, let Ȳi = Y \ Yi be the complemen-

tary set of candidate label set Yi in Y .
For each label pair (yu, yz), one binary training set is gen-

erated from DC as follows:
DCuz =

{
(xi, ϕ(Y Ci , Ȳi, yu, yz)) | (8)

τ(Y Ci , Ȳi, yu, yz) = true, 1 ≤ i ≤ m
}

where

τ(Y Ci , Ȳi, yu, yz) =


true, if (yu ∈ Y Ci ) ∧ (yz ∈ Ȳi) or

(yu ∈ Ȳi) ∧ (yz ∈ Y Ci )

false, otherwise

ϕ(Y Ci , Ȳi, yu, yz) =

{
+1, if (yu ∈ Y Ci ) ∧ (yz ∈ Ȳi)
−1, if (yu ∈ Ȳi) ∧ (yz ∈ Y Ci )

In other words, xi will be regarded as one positive or nega-
tive training example when yu and yz have different assign-
ment w.r.t. Y Ci and Ȳi. Otherwise, xi will not contribute to
the generation of binary training set DCuz .

Given the binary training algorithm B, a total of
(
q
2

)
bi-

nary classifiers guz : X 7→ R can be induced from DCuz , i.e.
guz ← [ B(DCuz). Conceptually, for unseen instance x, the
binary classifier votes for yu if guz(x) > 0 and yz other-
wise. Thereafter, based on the

(
q
2

)
binary classifiers, PAR-

TICLE proceeds to predict the set of proper labels for x via
virtual label splitting or MAP reasoning.

Virtual Label Splitting In this case, one virtual label yV
is introduced to yield q extra binary training sets, one for
each class label yu (1 ≤ u ≤ q). Here, yV serves as an
artificial splitting point between credible labels and non-
candidate labels. For each label yu, one binary training set is
generated from DC as follows:
DCuV =

{
(xi, ψ(Y Ci , Ȳi, yu)) | (9)

ζ(Y Ci , Ȳi, yu) = true, 1 ≤ i ≤ m
}

where

ζ(Y Ci , Ȳi, yu) =

{
true, if yu ∈ Y Ci or yu ∈ Ȳi
false, otherwise

ψ(Y Ci , Ȳi, yu) =

{
+1, if yu ∈ Y Ci
−1, if yu ∈ Ȳi

In other words, xi will be regarded as one positive or nega-
tive training example when yu belongs to Y Ci or Ȳi. Other-
wise, xi will not contribute to the generation of binary train-
ing set DCuV .

Accordingly, another set of q binary classifiers guV :
X 7→ R can be induced from DCuV as well, i.e. guV ← [
B(DCuV ). Furthermore, let ruz and ruV denote the empiri-
cal accuracy of guz and guV in classifying binary training
examples in DCuz and DCuV respectively. Then, for unseen
instance x, the overall (weighted) votes yielded by

(
q
2

)
+ q

classifiers on each class label yu (1 ≤ u ≤ q) and the virtual
label yV correspond to:

Γ(x, yu) =
∑u−1

l=1
rlu · Jglu(x) ≤ 0K + (10)∑q

l=u+1
rul · Jgul(x) > 0K + ruV · JguV (x) > 0K

Γ(x, yV ) =
∑q

l=1
rlV · JglV (x) ≤ 0K (11)

Here, JπK returns 1 if predicate π holds and 0 otherwise.
Thereafter, the predicted label set for x is determined as:

f(x) = {yu | Γ(x, yu) > Γ(x, yV ), 1 ≤ u ≤ q} (12)

MAP Reasoning In this case, a simple counting statistic
is utilized to facilitate model prediction. For unseen instance
x, let Cu denote the statistic which counts the number of
binary classifiers which vote for yu on x:

Cu =
∑u−1

l=1
Jglu(x) ≤ 0K +

∑q

l=u+1
Jgul(x) > 0K (13)

Note that 0 ≤ Cu ≤ q−1 as among the
(
q
2

)
binary classifiers

generated by pairwise label ranking, q−1 of them are related
to label yu.

Let Hu denote the event that yu is a relevant label for x,
and P(Hu | Cu) represents the posteriori probability that
Hu holds given Cu. Accordingly, P(¬Hu | Cu) represents
the posteriori probability that Hu does not hold given the
same condition. Thereafter, the predicted label set for x is
determined by the MAP rule:

f(x) = (14)
{yu | P(Hu | Cu) > P(¬Hu | Cu), 1 ≤ u ≤ q}

Based on Bayes theorem, we have:

P(Hu | Cu)

P(¬Hu | Cu)
=

P(Hu) · P(Cu | Hu)

P(¬Hu) · P(Cu | ¬Hu)
(15)
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Table 3: Experimental results of each comparing approach in terms of ranking loss, where the best performance (the smaller
the better) is shown in bold face.

Data Set avg. #CLs PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP ML-KNN CLR LIFT
music emotion 5.29 .265±.008 .253±.008 .266±.006 .277±.008 .305±.004 .270±.007 .255±.007

music style 6.04 .157±.002 .164±.004 .220±.046 .148±.003 .200±.005 .153±.004 .186±.007
mirflickr 3.35 .225±.026 .115±.073 .171±.042 .160±.049 .214±.057 .198±.038 .137±.047

image
2 .193±.019 .172±.018 .224±.022 .192±.017 .211±.023 .200±.013 .156±.020
3 .200±.016 .176±.013 .286±.018 .209±.019 .247±.018 .233±.018 .201±.018
4 .262±.016 .236±.014 .436±.014 .258±.014 .314±.010 .267±.012 .341±.018

emotions
3 .181±.019 .172±.018 .214±.029 .196±.017 .203±.012 .194±.016 .166±.010
4 .188±.007 .177±.012 .209±.020 .221±.036 .255±.016 .220±.026 .230±.036
5 .269±.034 .252±.036 .268±.010 .280±.018 .332±.047 .281±.018 .345±.029

scene
3 .119±.006 .104±.010 .207±.024 .151±.011 .151±.017 .188±.013 .090±.010
4 .149±.012 .134±.005 .247±.040 .190±.010 .190±.014 .219±.008 .184±.010
5 .233±.017 .195±.013 .353±.052 .248±.020 .292±.013 .279±.020 .289±.032

yeast

9 .192±.006 .214±.008 .216±.010 .187±.008 .194±.004 .203±.008 .183±.005
10 .192±.006 .208±.012 .216±.012 .193±.008 .195±.006 .205±.010 .207±.009
11 .199±.006 .224±.009 .218±.010 .202±.007 .207±.004 .219±.007 .236±.006
12 .217±.006 .230±.005 .225±.008 .217±.008 .221±.008 .235±.008 .268±.009
13 .244±.003 .245±.007 .250±.008 .261±.004 .234±.004 .259±.006 .297±.005

eurlex dc

5 .045±.003 .050±.005 .062±.005 .062±.005 .083±.004 .067±.005 .142±.010
6 .050±.003 .058±.002 .063±.004 .063±.004 .091±.007 .066±.006 .151±.014
7 .054±.005 .063±.006 .067±.005 .067±.005 .101±.005 .078±.004 .206±.101
8 .053±.003 .067±.004 .079±.002 .079±.002 .103±.004 .085±.004 .199±.044
9 .062±.002 .071±.003 .089±.005 .089±.005 .117±.008 .098±.004 .206±.015

10 .068±.005 .087±.007 .094±.008 .094±.008 .133±.004 .101±.005 .227±.015
11 .073±.003 .082±.004 .102±.008 .102±.008 .143±.008 .112±.009 .252±.005
12 .093±.005 .105±.006 .111±.005 .111±.005 .167±.004 .119±.005 .278±.005
13 .115±.006 .111±.007 .140±.004 .140±.004 .211±.012 .143±.005 .292±.013
14 .164±.007 .151±.006 .156±.007 .156±.007 .261±.009 .169±.008 .296±.014

eurlex sm

5 .102±.004 .102±.003 .268±.006 .133±.005 .121±.001 .144±.005 .166±.024
6 .109±.001 .111±.004 .275±.003 .141±.004 .131±.005 .158±.002 .164±.014
7 .113±.002 .112±.004 .281±.005 .150±.005 .143±.002 .173±.004 .189±.008
8 .124±.004 .124±.005 .285±.007 .160±.005 .155±.006 .178±.006 .210±.028
9 .134±.004 .133±.004 .285±.007 .172±.003 .175±.009 .195±.009 .236±.006

10 .135±.004 .132±.002 .271±.005 .172±.006 .188±.006 .194±.008 .255±.020
11 .146±.002 .145±.003 .275±.005 .171±.005 .203±.005 .198±.003 .283±.017
12 .160±.004 .148±.004 .271±.005 .196±.005 .226±.004 .212±.007 .342±.010
13 .188±.004 .170±.003 .262±.006 .199±.006 .253±.004 .212±.008 .348±.010
14 .231±.004 .204±.006 .242±.009 .227±.007 .330±.016 .240±.007 .369±.019

Therefore, to enable MAP reasoning it suffices to compute
the four terms P(Hu), P(¬Hu), P(Cu | Hu) and P(Cu |
¬Hu) in Eq.(15).

Specifically, the prior terms P(Hu) and P(¬Hu) can be
estimated via relative frequency counting with Laplacian
smoothing:

P(Hu) =
1 +

∑m
i=1Jyu ∈ YiK
2 +m

(16)

P(¬Hu) = 1− P(Hu)

Furthermore, two frequency arrays κu and κ̄u each with q
elements are defined as follows:

∀ 0 ≤ p ≤ q − 1 : (17)

κu[p] =
∑m

i=1
Jyu ∈ YiK · Jδu(xi) = pK

κ̄u[p] =
∑m

i=1
Jyu /∈ YiK · Jδu(xi) = pK

Here, δu(xi) =
∑u−1

l=1 Jglu(xi) ≤ 0K +
∑q

l=u+1Jgul(xi) >
0K counts the number of binary classifiers which vote for yu

on training example xi. Therefore, κu[p] (κ̄u[p]) records the
number of training examples which have (don’t have) label
yu and receive exactly p votes for yu from all the binary
classifiers.

Then, the likelihood terms P(Cu | Hu) and P(Cu | ¬Hu)
can be estimated via relative frequency counting with Lapla-
cian smoothing as well:

P(Cu | Hu) =
1 + κu[Cu]

q +
∑q−1

p=0 κu[p]
(18)

P(Cu | ¬Hu) =
1 + κ̄u[Cu]

q +
∑q−1

p=0 κ̄u[p]

Table 1 summarizes the complete procedure of the pro-
posed PARTICLE approach. In the first stage, credible labels
are elicited from the candidate label set for each PML train-
ing example via iterative label propagation (steps 1-3). In
the second stage, a total of

(
q
2

)
binary classifiers are gener-

ated by pairwise label ranking (steps 4-5), which are in turn
utilized to induce the multi-label predictive model via vir-
tual label splitting (steps 7-10) or MAP reasoning (steps 11-
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Table 4: Experimental results of each comparing approach in terms of average precision, where the best performance (the larger
the better) is shown in bold face.

Data Set avg. #CLs PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP ML-KNN CLR LIFT
music emotion 5.29 .607±.010 .611±.011 .574±.010 .566±.009 .553±.006 .566±.009 .592±.010

music style 6.04 .713±.004 .710±.007 .612±.096 .701±.005 .683±.001 .709±.002 .674±.002
mirflickr 3.35 .671±.027 .827±.101 .715±.040 .744±.058 .666±.052 .667±.029 .768±.059

image
2 .790±.024 .789±.024 .736±.022 .769±.013 .763±.026 .771±.012 .809±.019
3 .779±.017 .781±.014 .698±.016 .751±.018 .723±.017 .746±.017 .755±.015
4 .721±.015 .723±.018 .592±.011 .701±.014 .645±.012 .713±.012 .615±.011

emotions
3 .800±.020 .800±.027 .752±.029 .781±.021 .761±.011 .784±.013 .792±.015
4 .803±.017 .792±.022 .753±.027 .758±.039 .720±.015 .764±.029 .738±.041
5 .717±.026 .724±.041 .664±.021 .708±.025 .645±.038 .712±.020 .626±.035

scene
3 .830±.009 .826±.013 .718±.008 .762±.015 .792±.018 .742±.019 .853±.012
4 .792±.013 .792±.010 .658±.047 .715±.010 .739±.016 .712±.007 .725±.008
5 .703±.012 .712±.019 .546±.031 .644±.024 .605±.019 .648±.019 .590±.032

yeast

9 .744±.007 .722±.007 .713±.013 .738±.011 .733±.008 .733±.007 .737±.004
10 .743±.007 .720±.009 .708±.012 .730±.008 .728±.009 .731±.007 .713±.009
11 .738±.006 .712±.008 .699±.014 .723±.009 .719±.006 .720±.005 .690±.009
12 .726±.004 .699±.007 .686±.005 .709±.001 .705±.005 .710±.004 .659±.009
13 .704±.003 .688±.001 .654±.009 .651±.004 .687±.005 .687±.005 .628±.004

eurlex dc

5 .883±.007 .867±.009 .818±.006 .818±.006 .838±.005 .822±.003 .690±.008
6 .877±.007 .856±.007 .823±.007 .823±.007 .830±.006 .826±.007 .672±.018
7 .873±.011 .851±.013 .809±.008 .809±.008 .812±.008 .801±.010 .595±.133
8 .871±.009 .844±.004 .787±.009 .787±.009 .803±.005 .792±.009 .615±.033
9 .857±.002 .835±.006 .773±.008 .773±.008 .782±.010 .775±.010 .593±.036

10 .843±.009 .812±.009 .772±.006 .772±.006 .749±.008 .772±.008 .550±.034
11 .835±.006 .814±.007 .749±.015 .749±.015 .723±.011 .744±.013 .522±.005
12 .794±.010 .771±.010 .736±.008 .736±.008 .661±.006 .739±.010 .474±.030
13 .764±.008 .749±.008 .696±.010 .696±.010 .572±.015 .710±.011 .482±.025
14 .695±.008 .675±.011 .653±.011 .653±.011 .475±.008 .666±.011 .473±.029

eurlex sm

5 .789±.005 .779±.004 .486±.006 .707±.009 .759±.002 .704±.007 .667±.041
6 .777±.005 .762±.007 .445±.004 .695±.004 .747±.009 .676±.009 .670±.017
7 .771±.001 .759±.006 .417±.009 .690±.007 .732±.007 .667±.006 .652±.010
8 .753±.006 .742±.006 .415±.006 .675±.009 .714±.010 .655±.011 .627±.033
9 .739±.006 .729±.009 .429±.014 .661±.004 .683±.010 .636±.008 .609±.010

10 .736±.005 .728±.005 .446±.008 .658±.006 .659±.006 .634±.012 .542±.032
11 .724±.004 .710±.005 .444±.008 .653±.007 .627±.004 .634±.008 .489±.054
12 .704±.002 .699±.005 .457±.007 .637±.006 .584±.005 .629±.010 .417±.030
13 .672±.006 .665±.005 .475±.008 .607±.004 .512±.008 .612±.008 .361±.018
14 .610±.007 .606±.010 .542±.025 .563±.006 .392±.020 .575±.011 .355±.044

13). In this paper, the two variants of PARTICLE instantiated
with virtual label splitting and MAP reasoning are termed as
PARTICLE-VLS and PARTICLE-MAP respectively.

Experiments
Experimental Setup
Data Sets To thoroughly evaluate the performance of
comparing approaches, a number of synthetic as well as real-
world PML data sets have been employed for experimental
studies. Table 2 summarizes characteristics of the experi-
mental data sets used in this paper.

Specifically, a synthetic PML data set is generated from
one multi-label data set by adding random labeling noise.
For each multi-label example, some of its irrelevant la-
bels are randomly chosen to form the candidate label set
along with its relevant labels. As shown in Table 2, six
benchmark multi-label data sets (Zhang and Zhou 2014)
are used to generate synthetic PML data sets, includ-
ing image, emotions, scene, yeast, eurlex dc,
and eurlex sm. For each multi-label data set, differ-

ent settings are considered by varying the average num-
ber of candidate labels (avg. #CLs). Accordingly, a total
of thirty-four synthetic PML data sets have been gener-
ated. Furthermore, three real-world PML data sets includ-
ing music emotion, music style and mirflickr
(Huiskes and Lew 2008) are also employed in this paper. For
the real-world PML data set, candidate labels are collected
from web users which are further examined by human la-
bellers to specify the ground-truth labels.

Comparing Approaches Three well-established multi-
label learning algorithms ML-KNN (Zhang and Zhou 2007),
CLR (Fürnkranz et al. 2008), and LIFT (Zhang and Wu
2015) are employed as the comparing approaches, which are
tailored to learn from PML training examples by treating all
candidate labels as ground-truth ones. In addition, two re-
cent counterpart PML algorithms named PML-LC and PML-
FP (Xie and Huang 2018) are also employed as the compar-
ing approaches, which learn from PML training examples
by optimizing labeling confidence and predictive model al-
ternatively.
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Table 5: Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between PARTICLE and each comparing approach.

Evaluation Metric PARTICLE-VLS against PARTICLE-MAP against
PML-LC PML-FP ML-KNN CLR LIFT PML-LC PML-FP ML-KNN CLR LIFT

Hamming loss 27/0/10 26/0/11 30/0/7 34/3/0 34/3/0 30/1/6 19/2/16 36/0/1 37/0/0 37/0/0
One-error 36/1/0 37/0/0 37/0/0 36/1/0 35/0/2 36/1/0 37/0/0 33/1/3 30/2/5 32/1/4
Coverage 35/1/1 36/0/1 36/1/0 37/0/0 32/0/5 31/1/5 31/1/5 32/0/5 31/1/5 31/0/6

Ranking loss 34/2/1 31/1/5 35/0/2 35/0/2 30/1/6 35/0/2 32/0/5 32/0/5 33/1/3 32/1/4
Average precision 35/1/1 36/0/1 37/0/0 37/0/0 33/0/4 36/1/0 33/0/4 33/1/3 33/0/4 33/0/4

Total 167/5/13 166/1/18 175/1/9 179/4/2 164/4/17 168/4/13 152/3/30 166/2/17 164/4/17 165/2/18

Parameters suggested in respective literatures are used
for the comparing approaches, and Libsvm (Chang and Lin
2011) is used as the base learner to instantiate CLR and
LIFT. As shown in Table 1, parameters k (number of near-
est neighbors considered), α (balancing parameter) and thr
(credible label elicitation threshold) for PARTICLE are set
to be 10, 0.95 and 0.9 respectively. Furthermore, Libsvm
(Chang and Lin 2011) is also utilized to serve as the binary
training algorithm B for PARTICLE.

Five popular multi-label metrics hamming loss, one-error,
coverage, ranking loss and average precision are employed
for performance evaluation, whose detailed definitions can
be found in (Zhang and Zhou 2014; Gibaja and Ventura
2015). On each data set, five-fold cross-validation is per-
formed where the mean metric value as well as standard de-
viation are recorded for each comparing approach.

Experimental Results
Tables 3 and 4 report the detailed experimental results of
each comparing algorithm in terms of ranking loss and av-
erage precision, while similar observations can be made in
terms of other evaluation metrics. For each data set and
evaluation metric, pairwise t-test based on five-fold cross-
validation (at 0.05 significance level) is conducted to show
whether the performance of PARTICLE is significantly dif-
ferent to the comparing approach. Accordingly, Table 5 sum-
marizes the resulting win/tie/loss counts over 37 data sets
and 5 evaluation metrics.

Based on the experimental results of comparative studies,
it is impressive to observe that:
• Out of 185 statistical tests (37 data sets × 5 evalua-

tion metrics), PARTICLE-VLS significantly outperforms
the counterpart PML approaches PML-LC and PML-FP
in 90.2% and 89.7% cases, and significantly outperforms
the tailored MLL approaches ML-KNN, CLR and LIFT in
94.6%, 96.7% and 94.5% cases.

• Similarly, PARTICLE-MAP significantly outperforms
PML-LC and PML-FP in 90.8% and 82.1% cases, and sig-
nificantly outperforms ML-KNN, CLR and LIFT in 89.7%,
88.6% and 89.1% cases.

• On the real-world PML data sets music emotion,
music style and mirflickr, the two variants of
PARTICLE achieve optimal performance in almost all
cases (except on music style where CLR outperforms

Figure 2: Performance of PARTICLE-VLS changes as param-
eter thr varies from 1 to 0.5 with an interval of 0.1 (in terms
of average precision).

PARTICLE in terms of ranking loss). Furthermore, the per-
formance advantage of PARTICLE is more pronounced on
synthetic PML data sets with large avg. #CLs (yeast,
eurlex dc, and eurlex sm).

As shown in Table 1, thr serves as a crucial parameter
which controls the amount of credible labels elicited in the
first phase. Figure 2 gives an illustrative example on how the
performance of PARTICLE (the virtual label splitting variant)
changes as the value of parameter thr varies. It is shown that
the performance of PARTICLE becomes relatively stable as
thr decrease to 0.9, which is the value used in this paper.

Conclusion

The problem of partial multi-label learning is investigated
in this paper, where a novel strategy based on credible la-
bel elicitation is proposed to mitigating the negative impact
of false positive labels. Based on the elicited labeling infor-
mation, multi-label predictive model is induced by adapting
pairwise label ranking. Extensive experiments over a range
of PML data sets clearly validate the effectiveness of credi-
ble label elicitation for partial multi-label learning.
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