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Abstract

It is well-known that exploiting label correlations is crucially
important to multi-label learning. Most of the existing ap-
proaches take label correlations as prior knowledge, which
may not correctly characterize the real relationships among
labels. Besides, label correlations are normally used to regu-
larize the hypothesis space, while the final predictions are not
explicitly correlated. In this paper, we suggest that for each
individual label, the final prediction involves the collabora-
tion between its own prediction and the predictions of other
labels. Based on this assumption, we first propose a novel
method to learn the label correlations via sparse reconstruc-
tion in the label space. Then, by seamlessly integrating the
learned label correlations into model training, we propose a
novel multi-label learning approach that aims to explicitly ac-
count for the correlated predictions of labels while training
the desired model simultaneously. Extensive experimental re-
sults show that our approach outperforms the state-of-the-art
counterparts.

Introduction
Multi-label learning deals with the problem where an in-
stance can be associated with multiple labels simultane-
ously. Formally speaking, let X ∈ Rd be d-dimensional fea-
ture space and Y = {y1, y2, · · · , yq} be the label space with
q labels. Given the multi-label training set D = {xi,yi}ni=1
where xi ∈ X is a feature vector and yi ∈ {−1, 1}q is
the label vector, the goal of multi-label learning is to learn
a model f : Rd → {−1, 1}q , which maps from the space
of feature vectors to the space of label vectors. As a learn-
ing framework that handles objects with multiple seman-
tics, multi-label learning has been widely applied in many
real-world applications, such as image annotation (Yang et
al. 2016), document categorization (Li, Ouyang, and Zhou
2015), bioinformatics (Zhang and Zhou 2006), and infor-
mation retrieval (Gopal and Yang 2010).

The most straightforward multi-label learning ap-
proach (Boutell et al. 2004) is to decompose the prob-
lem into a set of independent binary classification tasks,
one for each label. Although this strategy is easy to im-
plement, it may result in degraded performance, due to
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the ignorance of correlations among labels. To compen-
sate for this deficiency, the exploitation of label correlations
has been widely accepted as a key component of effective
multi-label learning approaches (Gibaja and Ventura 2015;
Zhang and Zhou 2014).

So far, many methods have been developed to improve
the performance of multi-label learning by exploring various
types of label correlations (Tsoumakas et al. 2009; Cesa-
Bianchi, Gentile, and Zaniboni 2006; Petterson and Cae-
tano 2011; Huang, Zhou, and Zhou 2012; Huang, Yu, and
Zhou 2012; Zhu, Kwok, and Zhou 2018). There has been in-
creasing interest in exploiting the label correlations by tak-
ing the label correlation matrix as prior knowledge (Har-
iharan et al. 2010; Cai et al. 2013; Huang et al. 2016;
2018). Concretely, these methods directly calculate the la-
bel correlation matrix by the similarity between label vec-
tors using common similarity measures, and then incorpo-
rate the label correlation matrix into model training for fur-
ther enhancing the predictions of multiple label assignments.
However, the label correlations are simply obtained by com-
mon similarity measures, which may not be able to reflect
complex relationships among labels. Besides, these meth-
ods exploit label correlations by manipulating the hypothe-
sis space, while the final predictions are not explicitly corre-
lated.

To address the above limitations, we make a key as-
sumption that for each individual label, the final predic-
tion involves the collaboration between its own prediction
and the predictions of other labels. Based on this assump-
tion, a novel multi-label learning approach named CAMEL,
i.e., CollAboration based Multi-labEl Learning, is proposed.
Different from most of the existing approaches that calcu-
late the label correlation matrix simply by common similar-
ity measures, CAMEL presents a novel method to learn such
matrix and show that it is equivalent to sparse reconstruction
in the label space. The learned label correlation matrix is ca-
pable of reflecting the collaborative relationships among la-
bels regarding the final predictions. Subsequently, CAMEL
seamlessly incorporates the learned label correlations into
the desired multi-label predictive model. Specifically, label-
independent embedding is introduced, which aims to fit the
final predictions with the learned label correlations while
guiding the estimation of the model parameters simultane-
ously. The effectiveness of CAMEL is clearly demonstrated
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by experimental results on a number of datasets.

Related Work
In recent years, many algorithms have been proposed
to deal with multi-label learning tasks. In terms of
the order of label correlations being considered, these ap-
proaches can be roughly categorized into three strate-
gies (Zhang and Zhou 2014; Gibaja and Ventura 2015).

For the first-order strategy, the multi-label learning prob-
lem is tackled in a label-by-label manner where label cor-
relations are ignored. Intuitively, one can easily decompose
the multi-label learning problem into a series of independent
binary classification problems (one for each label) (Boutell
et al. 2004). The second-order strategy takes into considera-
tion pairwise relationships between labels, such as the rank-
ing between relevant labels and irrelevant labels (Elisseeff
and Weston 2002) or the interaction of paired labels (Zhu et
al. 2005). For the third-order strategy, high-order relation-
ships among labels are considered. Following this strategy,
numerous multi-label algorithms are proposed. For exam-
ple, by modeling all other labels’ influences on each label, a
shared subspace (Ji et al. 2008) is extracted for model train-
ing. By addressing connections among random subsets of
labels, a chain of binary classifiers (Read et al. 2011) are
sequentially trained.

Recently, there has been increasing interest in second-
order approaches (Hariharan et al. 2010; Cai et al. 2013;
Huang et al. 2016; 2018) that take the label correlation
matrix as prior knowledge for model training. These ap-
proaches normally directly calculate the label correlation
matrix by the similarity between label vectors using com-
mon similarity measures, and then incorporate the label
correlation matrix into model training for further enhanc-
ing the predictions of multiple label assignments. For in-
stance, cosine similarity is widely used to calculate the la-
bel correlation matrix (Cai et al. 2013; Huang et al. 2016;
2018). Such label correlation matrix is further incorporated
into a structured sparsity-inducing norm regularization (Cai
et al. 2013) for regularizing the learning hypotheses, or
performing joint label-specific feature selection and model
training (Huang et al. 2016; 2018). In addition, there are
also some high-order approaches that exploit label corre-
lations on the hypothesis space, while they do not rely on
the label correlation matrix. For example, a boosting ap-
proach (Huang, Yu, and Zhou 2012) is proposed to exploit
label correlations with a hypothesis reuse mechanism.

Note that most of the existing approaches using label cor-
relation matrix are second-order and focus on the hypoth-
esis space. Such simple label correlations exploited in the
hypothesis space may not correctly depict the real relation-
ships among labels, and final predictions are not explicitly
correlated. In the next section, a novel high-order approach
with crafted label correlation matrix that focus on the label
space will be introduced.

The CAMEL Approach
Following the notations used in Introduction, the training set
can be alternatively represented by D = {(X,Y)} where

X = [x1,x2, · · · ,xn]> ∈ Rn×d denotes the instance ma-
trix, and Y = [y1,y2, · · · ,yn]> ∈ Rn×q denotes the label
matrix. In addition, we denote by Yj ∈ Rn the j-th column
vector of the matrix Y (versus yj ∈ Rq for the j-th row vec-
tor of Y), and Y−j = [Y1, · · · ,Yj−1,Yj+1, · · · ,Yq] ∈
Rn×(q−1) represents the matrix that excludes the j-th col-
umn vector of Y.

Label Correlation Learning
To characterize the collaborative relationships among labels
regarding the final predictions, CAMEL works by learning
a label correlation matrix S = [sij ]q×q where sij reflects
the contribution of the i-label to the j-label. Guided by the
assumption that for each individual label, the final prediction
involves the collaboration between its own prediction and
the predictions of other labels, we thus take the given label
matrix as the final prediction, and propose to learn the label
correlation matrix S in the following way:

min
sij

∥∥∥∥∥∥((1− α)Yj + α
∑

i6=j,i∈[q]

sijYi)−Yj

∥∥∥∥∥∥
2

2

(1)

where α is the tradeoff parameter that controls the collabo-
ration degree. In other words, α is used to balance the j-th
label’s own prediction and the predictions of other labels.
Since each label is normally correlated with only a few la-
bels, the collaborative relationships between one label and
other labels could be sparse. With a slight abuse of notation,
we denote by Sj = [s1j , · · · , sj−1,j , sj+1,j , · · · , sqj ]> ∈
R(q−1) the j-th column vector of S excluding sjj (sjj = 0).
Under canonical sparse representation, the coefficient vector
Sj is learned by solving the following optimization problem:

min
Sj

‖(1− α)Yj + αY−jSj −Yj‖22 + λ̂ ‖Sj‖1 (2)

where λ̂ controls the sparsity of the coefficient vector Sj . By
properly rewriting the above problem and setting λ = λ̂/α,
it is easy to derive the following equivalent optimization
problem:

min
Sj

‖Y−jSj −Yj‖22 + λ ‖Sj‖1 (3)

Here, this problem aims to estimate the collaborative re-
lationships between the j-th label and the other labels via
sparse reconstruction. The first term corresponds to the lin-
ear reconstruction error via `2 norm, and the second term
controls the sparsity of the reconstruction coefficients by us-
ing `1 norm. The relative importance of each term is bal-
anced by the tradeoff parameter λ, which is empirically
set to 1

100

∥∥Y>j Y−j∥∥∞ in the experiments. To solve prob-
lem (3), the popular Alternating Direction Method of Mul-
tiplier (ADMM) (Boyd et al. 2011) is employed, and de-
tailed information is given in Appendix A. After solving
problem (3) for each label, the weight matrix S can be ac-
cordingly constructed with all diagonal elements set to 0.
Note that for most of the existing second-order approaches
using label correlation matrix (Hariharan et al. 2010; Cai et
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al. 2013; Huang et al. 2016; 2018), only pairwise relation-
ships are considered, and the relationships between one label
and the other labels are separated. While for CAMEL, since
the final prediction of each label is determined by all the pre-
dictions of other labels and itself, the relationships among all
labels are exploited in a collaborative manner. Which means,
the relationships between one label and the other labels are
coordinated (influenced by each other). Therefore, CAMEL
is a high-order approach.

Multi-Label Classifier Training
In this section, we propose a novel multi-label learn-
ing approach by seamlessly integrating the learned la-
bel correlations into the desired predictive model. Sup-
pose the ordinary prediction matrix of X is denoted by
f(X) = [f1(X), f2(X), · · · , fq(X)] ∈ Rn×q where
f1(·), f2(·), · · · , fq(·) denotes the individual label predic-
tors respectively. In the ordinary setting, each label predictor
is only in charge of a single label, while label correlations are
fully lost. To absorb the learned label correlations into pre-
dictions, we reuse the assumption that for each individual
label, the final prediction involves the collaboration between
its own prediction and the predictions of other labels, and
propose to compute the final prediction of the j-th label as
follows:

(1− α)fj(X) + α
∑

i 6=j,i∈[q]

sijfi(X) (4)

where α is consistent with problem (1), which controls the
collaboration degree of label predictions. By considering all
the q label predictions simultaneously, we thus obtain the
following compact representation:

(1− α)f(X) + αf(X)S = f(X)((1− α)I + αS) (5)
Here, the whole multi-label learning problem could be con-
sidered as two parallel subproblems, i.e., training the ordi-
nary model and fitting the final predictions by the modeling
outputs with label correlations. Thus, we propose to learn
label-independent embedding denoted by Z ∈ Rn×q , which
works as a bridge between model training and prediction
fitting. This brings several advantages: First, the two sub-
problems can be solved via alternation, which encourages
the mutual adaption of model training and prediction fitting;
Second, the relative importance of the two subproblems can
be controlled by a tradeoff parameter; Third, closed-form
solutions and kernel extension can be easily derived. Let
G = (1 − α)I + αS, the proposed formulation is given
as follows:

min
Z,f

1

2
‖f(X)− Z‖2F +

λ1
2
‖ZG−Y‖2F +

λ2
2

Ω(f) (6)

where Ω(f) controls the complexity of the model f , λ1
and λ2 are the tradeoff parameters determining the rela-
tive importance of the above three terms. To instantiate
the above formulation, we choose to train the widely-used
model f(X) = φ(X)W + 1b> where W and b are the
model parameters, 1 = [1, · · · , 1]> denotes the column vec-
tor with all elements equal to 1, and φ(·) is a feature map-
ping that maps the feature space to some higher (maybe infi-
nite) dimensional Hilbert space. For the regularization term

Algorithm 1 The CAMEL Algorithm

Inputs:
D: the multi-label training set D = {(X,Y)}
α, λ1, λ2: the hyperparameters
x: the unseen test instance

Output:
y: the predicted label for the test instance x

1: learn the label correlation matrix S by solving problem
(3) for each label via ADMM procedure;

2: set G = (1− α)I + αS;
3: initialize Z = Y;
4: construct the kernel matrix K = [K(xi,xj)]n×n by

Gaussian kernel function;
5: repeat
6: update b and A according to (9);
7: update T = 1

λ2
KA + 1b>;

8: update Z in terms of (11);
9: until convergence.

10: return the predicted label vector y according to (12).

to control the model complexity, we adopt the widely-used
squared Frobenius norm, i.e., ‖W‖2F . To further facilitate a
kernel extension for the general nonlinear case, we finally
present the formulation as a constrained optimization prob-
lem:

min
W,Z,E,b

1

2
‖E‖2F +

λ1
2
‖ZG−Y‖2F +

λ2
2
‖W‖2F (7)

s.t. Z− φ(X)W − 1b> = E

Optimization
Problem (7) is convex with respect to W and b with Z fixed,
and also convex with respect to Z with W and b fixed.
Therefore, it is a biconvex problem (Gorski, Pfeuffer, and
Klamroth 2007), and can be solved by an alternating ap-
proach.

Updating W and b with Z fixed With Z fixed, prob-
lem (7) reduces to

min
E,W,b

1

2
‖E‖2F +

λ2
2
‖W‖2F (8)

s.t. Z− φ(X)W − 1b> = E

By deriving the Lagrangian of the above constrained prob-
lem and setting the gradient with respect to W to 0, it is
easy to show W = 1

λ2
φ(X)>A where A = [aij ]n×q

is the matrix that stores the Lagrangian multipliers. Let
K = φ(X)φ(X)> be the kernel matrix with its element
kij = K(xi,xj) = φ(xi)

>φ(xj), where K(·, ·) represents
the kernel function. For CAMEL, Gaussian kernel function
K(xi,xj) = exp(−‖xi − xj‖22 /(2σ

2)) is employed with σ
set to the average Euclidean distance of all pairs of training
instances. In this way, we choose to optimize with respect to
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A and b instead, and the close-form solutions are reported
as follows:

b> =
1>H−1Z

1>H−11
(9)

A = H−1(Z− 1b>)

where H = 1
λ2
K + I. The detailed information is provided

in Appendix B.

Updating Z with W and b fixed When W and b are
fixed, the modeling output matrix T ∈ Rn×q is calculated
by T = φ(X)W + 1b> = 1

λ2
KA + 1b>. By inserting

E = Z−T, problem (7) reduces to:

min
Z

1

2
‖Z−T‖2F +

λ1
2
‖ZG−Y‖2F (10)

Setting the gradient with respect to Z to 0, we can obtain the
following closed-form solution:

Z = (T + λ1YG>)(I + λ1GG>)−1 (11)

Once the iterative process converges, the predicted label
vector y ∈ {−1, 1}l of the test instance x is given as:

y = sign(G>(

m∑
i=1

aiK(x,xi) + b)) (12)

The pseudo code of CAMEL is presented in Algorithm 1.
Since the proposed formulation is biconvex, this alternat-
ing optimization process is guaranteed to converge (Gorski,
Pfeuffer, and Klamroth 2007).

Experiments
In this section, we conduct extensive experiments on various
datasets to validate the effectiveness of CAMEL.

Experimental Setup
Datasets For comprehensive performance evaluation, we
collect sixteen benchmark multi-label datasets. For each
dataset S, we denote by |S|, dim(S), L(S), LCard(S), and
F (S) the number of examples, the number of features (di-
mensions), the number of distinct class labels, the average
number of labels associated with each example, and feature
type, respectively. Table 1 summarizes the detailed charac-
teristics of these datasets, which are organized in ascend-
ing order of |S|. According to |S|, we further roughly di-
vide these datasets into regular-size datasets (|S| < 5000)
and large-size datasets (|S| ≥ 5000). For performance
evaluation, 10-fold cross-validation is conducted on these
datasets, where mean metric values with standard deviations
are recorded.

Evaluation Metrics For performance evaluation, we use
seven widely-used evaluation metrics, including One-error,
Hamming loss, Coverage, Ranking loss, Average precision,
Macro-averaging F1, and Micro-averaging F1. Note that for
all the employed multi-label evaluation metrics, their val-
ues vary within the interval [0,1]. In addition, for the last
three metrics, the larger values indicate the better perfor-
mance, and we use the symbol ↑ to present such positive

logic. While for the first five metrics, the smaller values indi-
cate the better performance, which is represented by ↓. More
detailed information about these evaluation metrics can be
found in (Zhang and Zhou 2014).

Comparing Approaches CAMEL is compared with
three well-established and two state-of-the-art multi-label
learning algorithms, including the first-order approach
BR (Boutell et al. 2004), the second-order approaches
LLSF (Huang et al. 2016) and JFSC (Huang et al. 2018),
and the high-order approaches ECC (Read et al. 2011), and
RAKEL (Tsoumakas, Katakis, and Vlahavas 2011). Here,
LLSF and JFSC are the state-of-the-art counterparts using
label correlation matrix.

BR, ECC, and RAKEL are implemented under the MU-
LAN multi-label learning package (Tsoumakas et al. 2011)
by using the logistic regression model as the base classifier.
Furthermore, parameters suggested in the corresponding lit-
eratures are used, i.e., ECC: ensemble size 30; RAKEL:
ensemble size 2q with k = 3. For LLSF, parameters α, β
are chosen from {2−10, 2−9, · · · , 210}, and ρ chosen from
{0.1, 1, 10}. For JFSC, parameters α, β, and γ are chosen
from {4−5, 4−4, · · · , 45}, and η is chosen from {0.1, 1, 10}.
For the proposed approach CAMEL, λ1 is empirically
set to 1, λ2 is chosen from {10−3, 2 × 10−3, 10−2, 2 ×
10−2, · · · , 100}, and α is chosen from {0, 0.1, · · · , 1}. All
of these parameters are decided by conducting 5-fold cross-
validation on training set.

Table 1: Characteristics of the benchmark multi-label
datasets.

Dataset |S| dim(S) L(S) LCard(S) F (S)
cal500 502 68 174 26.04 numeric
emotions 593 72 6 1.87 numeric
genbase 662 1185 27 1.25 nominal
medical 978 1449 45 1.25 nominal
enron 1702 1001 53 3.38 nominal
image 2000 294 5 1.24 numeric
scene 2407 294 5 1.07 numeric
yeast 2417 103 14 4.24 numeric
science 5000 743 40 1.45 numeric
arts 5000 462 26 1.64 numeric
business 5000 438 30 1.59 numeric
rcv1-s1 6000 944 101 2.88 nominal
rcv1-s2 6000 944 101 2.63 nominal
rcv1-s3 6000 944 101 2.61 nominal
rcv1-s4 6000 944 101 2.48 nominal
rcv1-s5 6000 944 101 2.64 nominal

Experimental Results
Table 2 and 3 report the detailed experimental results on the
regular-scale and large-scale datasets respectively, where the
best performance among all the algorithms is shown in bold-
face. From the two result tables, we can see that CAMEL
outperforms other comparing algorithms in most cases.
Specifically, on the regular-size datasets (Table 2), across all
the evaluation metrics, CAMEL ranks first in 80.4% (45/56)
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Table 2: Predictive performance of each algorithm (mean±std. deviation) on the regular-scale datasets.

Comparing
algorithms

One-error↓
cal500 emotions genbase medical enron image scene yeast

CAMEL 0.129±0.053 0.292±0.052 0.001±0.001 0.110±0.021 0.207±0.038 0.242±0.033 0.175±0.027 0.218±0.027
BR 0.893±0.038 0.284±0.077 0.017±0.016 0.322±0.055 0.646±0.023 0.387±0.027 0.361±0.036 0.244±0.028

ECC 0.295±0.036 0.296±0.074 0.010±0.013 0.156±0.037 0.421±0.034 0.406±0.023 0.306±0.020 0.238±0.030
RAKEL 0.634±0.039 0.300±0.070 0.009±0.007 0.243±0.055 0.532±0.007 0.402±0.024 0.280±0.031 0.244±0.027
LLSF 0.138±0.050 0.412±0.051 0.002±0.005 0.120±0.020 0.250±0.042 0.327±0.030 0.259±0.020 0.394±0.029
JFSC 0.116±0.051 0.438±0.086 0.002±0.005 0.128±0.024 0.278±0.041 0.346±0.023 0.266±0.022 0.242±0.021

Comparing
algorithms

Hamming loss↓
cal500 emotions genbase medical enron image scene yeast

CAMEL 0.136±0.005 0.203±0.021 0.001±0.001 0.011±0.001 0.045±0.003 0.144±0.012 0.072±0.009 0.190±0.005
BR 0.189±0.005 0.216±0.028 0.002±0.002 0.026±0.003 0.111±0.006 0.210±0.014 0.139±0.009 0.205±0.007

ECC 0.154±0.005 0.214±0.027 0.009±0.004 0.011±0.002 0.067±0.002 0.210±0.016 0.112±0.006 0.204±0.010
RAKEL 0.195±0.004 0.238±0.025 0.002±0.001 0.020±0.002 0.092±0.004 0.223±0.013 0.139±0.008 0.224±0.009
LLSF 0.138±0.006 0.267±0.022 0.001±0.001 0.010±0.002 0.048±0.002 0.180±0.010 0.109±0.003 0.278±0.009
JFSC 0.191±0.004 0.295±0.019 0.001±0.001 0.010±0.001 0.051±0.003 0.188±0.012 0.110±0.007 0.206±0.006

Comparing
algorithms

Coverage↓
cal500 emotions genbase medical enron image scene yeast

CAMEL 0.752±0.019 0.312±0.031 0.012±0.005 0.028±0.012 0.239±0.028 0.156±0.016 0.062±0.006 0.446±0.010
BR 0.786±0.015 0.319±0.026 0.014±0.006 0.113±0.030 0.580±0.023 0.216±0.018 0.168±0.015 0.463±0.011

ECC 0.796±0.019 0.310±0.029 0.013±0.003 0.034±0.012 0.291±0.020 0.233±0.022 0.135±0.010 0.460±0.010
RAKEL 0.962±0.016 0.362±0.027 0.014±0.005 0.095±0.018 0.513±0.019 0.253±0.017 0.169±0.013 0.544±0.013
LLSF 0.778±0.025 0.362±0.032 0.021±0.006 0.031±0.014 0.283±0.023 0.192±0.007 0.092±0.006 0.601±0.020
JFSC 0.730±0.026 0.392±0.046 0.014±0.007 0.030±0.012 0.314±0.024 0.200±0.009 0.102±0.007 0.455±0.011

Comparing
algorithms

Ranking loss↓
cal500 emotions genbase medical enron image scene yeast

CAMEL 0.177±0.009 0.180±0.032 0.001±0.001 0.016±0.008 0.079 ±0.028 0.128±0.013 0.058±0.005 0.162±0.007
BR 0.233±0.007 0.182±0.030 0.003±0.004 0.091±0.027 0.304±0.014 0.204±0.017 0.151±0.015 0.176±0.008

ECC 0.219±0.007 0.172±0.031 0.002±0.002 0.022±0.010 0.118±0.008 0.225±0.023 0.117±0.010 0.179±0.009
RAKEL 0.366±0.008 0.225±0.029 0.002±0.001 0.073±0.018 0.244±0.017 0.221±0.018 0.131±0.014 0.240±0.009
LLSF 0.184±0.012 0.245±0.033 0.002±0.003 0.019±0.010 0.107±0.009 0.174±0.006 0.093±0.005 0.346±0.017
JFSC 0.188±0.010 0.271±0.041 0.003±0.003 0.017±0.008 0.118±0.013 0.183±0.007 0.105±0.007 0.179±0.009

Comparing
algorithms

Average precision↑
cal500 emotions genbase medical enron image scene yeast

CAMEL 0.515±0.018 0.788±0.035 0.997±0.003 0.917±0.017 0.718±0.025 0.843±0.018 0.897±0.012 0.775±0.013
BR 0.345±0.018 0.783±0.040 0.988±0.008 0.750±0.036 0.388±0.016 0.753±0.016 0.771±0.021 0.754±0.013

ECC 0.442±0.014 0.789±0.036 0.991±0.008 0.884±0.023 0.557±0.015 0.738±0.020 0.811±0.012 0.756±0.014
RAKEL 0.329±0.016 0.763±0.039 0.993±0.006 0.800±0.032 0.456±0.019 0.735±0.017 0.804±0.022 0.720±0.014
LLSF 0.507±0.021 0.716±0.035 0.997±0.005 0.912±0.015 0.682±0.028 0.790±0.014 0.843±0.008 0.601±0.015
JFSC 0.492±0.020 0.691±0.040 0.997±0.004 0.908±0.016 0.655±0.025 0.779±0.011 0.835±0.010 0.746±0.012

Comparing
algorithms

Macro-averaging F1↑
cal500 emotions genbase medical enron image scene yeast

CAMEL 0.180±0.032 0.625±0.052 0.971±0.030 0.779±0.043 0.325±0.044 0.660±0.030 0.787±0.023 0.411±0.018
BR 0.167±0.019 0.620±0.044 0.951±0.029 0.640±0.060 0.236±0.016 0.553±0.027 0.623±0.026 0.391±0.021

ECC 0.236±0.027 0.622±0.043 0.928±0.037 0.755±0.054 0.303±0.030 0.540±0.030 0.662±0.026 0.395±0.015
RAKEL 0.187±0.020 0.614±0.044 0.958±0.030 0.689±0.051 0.256±0.017 0.540±0.028 0.644±0.024 0.381±0.020
LLSF 0.180±0.031 0.615±0.056 0.971±0.031 0.769±0.057 0.292±0.043 0.554±0.031 0.615±0.007 0.235±0.016
JFSC 0.239±0.031 0.345±0.023 0.971±0.031 0.772±0.043 0.339±0.048 0.559±0.035 0.705±0.019 0.300±0.007

Comparing
algorithms

Micro-averaging F1↑
cal500 emotions genbase medical enron image scene yeast

CAMEL 0.337±0.017 0.649±0.041 0.988±0.012 0.835±0.019 0.580±0.023 0.659±0.031 0.780±0.026 0.655±0.010
BR 0.339±0.016 0.639±0.050 0.978±0.014 0.611±0.032 0.359±0.015 0.558±0.028 0.619±0.023 0.633±0.013

ECC 0.364±0.015 0.642±0.046 0.907±0.035 0.796±0.023 0.452±0.015 0.541±0.030 0.653±0.023 0.643±0.017
RAKEL 0.351±0.018 0.629±0.049 0.983±0.011 0.678±0.042 0.392±0.014 0.541±0.031 0.629±0.026 0.632±0.016
LLSF 0.325±0.015 0.637±0.049 0.992±0.003 0.823±0.027 0.534±0.025 0.557±0.032 0.618±0.008 0.280±0.018
JFSC 0.473±0.013 0.406±0.022 0.995±0.006 0.818±0.018 0.555±0.026 0.565±0.033 0.695±0.022 0.609±0.012

cases, and on the large-scale datasets (Table 3), across all
the evaluation metrics, CAMEL ranks first in 69.6% (39/56)
cases. Compared with the three well-established algorithms
BR, ECC, and RAKEL, CAMEL introduces a new type of
label correlations, i.e., collaborative relationships among la-
bels, and achieves superior performance in 93.8% (315/336)
cases. Compared with the two state-of-the-art algorithms
LLSF and JFSC, instead of employing simple similarity
measures to regularize the hypothesis space, CAMEL intro-
duces a novel method to learn label correlations for explic-
itly correlating the final predictions, and achieves superior

performance in 80.4% (180/224) cases. These comparative
results clearly demonstrate the effectiveness of the collabo-
ration based multi-label learning approach.

Sensitivity Analysis In this section, we first investigate
the sensitivity of CAMEL with respect to the two tradeoff
parameters λ1 and λ2, and the parameter α that controls the
degree of collaboration, then illustrate the convergence of
CAMEL. Due to page limit, we only report the experimental
results on the enron dataset using the Coverage (↓) metric.
Concretely, we study the performance of CAMEL when we
vary one parameter while keeping other parameters fixed at

3554



Table 3: Predictive performance of each algorithm (mean±std. deviation) on the large-scale datasets.

Comparing
algorithms

One-error↓
science arts rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 business

CAMEL 0.457±0.021 0.462±0.024 0.404±0.019 0.403±0.018 0.413±0.019 0.331±0.016 0.404±0.010 0.101±0.009
BR 0.760±0.015 0.642±0.022 0.742±0.019 0.723±0.024 0.718±0.021 0.662±0.021 0.715±0.015 0.417±0.016

ECC 0.574±0.022 0.526±0.023 0.471±0.020 0.441±0.021 0.448±0.021 0.378±0.019 0.425±0.016 0.153±0.008
RAKEL 0.623±0.014 0.543±0.024 0.613±0.019 0.592±0.022 0.578±0.020 0.552±0.020 0.575±0.014 0.201±0.009
LLSF 0.486±0.013 0.454±0.027 0.409±0.015 0.406±0.016 0.415±0.021 0.333±0.016 0.399±0.018 0.122±0.016
JFSC 0.489±0.027 0.447±0.027 0.418±0.016 0.407±0.014 0.418±0.025 0.337±0.015 0.407±0.023 0.122±0.019

Comparing
algorithms

Hamming loss↓
science arts rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 business

CAMEL 0.030±0.001 0.055±0.002 0.026±0.008 0.023±0.001 0.023±0.001 0.018±0.001 0.022±0.001 0.024±0.001
BR 0.072±0.002 0.079±0.003 0.056±0.001 0.053±0.001 0.053±0.001 0.041±0.001 0.051±0.002 0.049±0.001

ECC 0.036±0.002 0.063±0.002 0.028±0.001 0.024±0.001 0.024±0.001 0.019±0.001 0.024±0.001 0.030±0.001
RAKEL 0.042±0.002 0.075±0.002 0.046±0.001 0.039±0.001 0.035±0.001 0.035±0.001 0.036±0.003 0.035±0.002
LLSF 0.036±0.002 0.054±0.002 0.027±0.001 0.025±0.001 0.025±0.001 0.019±0.001 0.023±0.001 0.048±0.007
JFSC 0.035±0.002 0.057±0.002 0.029±0.001 0.025±0.001 0.025±0.001 0.019±0.001 0.025±0.001 0.027±0.002

Comparing
algorithms

Coverage↓
science arts rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 business

CAMEL 0.189±0.010 0.205±0.009 0.151±0.008 0.142±0.012 0.131±0.006 0.143±0.003 0.132±0.005 0.082±0.006
BR 0.303±0.011 0.204±0.009 0.393±0.011 0.341±0.013 0.351±0.018 0.294±0.015 0.336±0.013 0.141±0.002

ECC 0.196±0.009 0.229±0.009 0.166±0.011 0.154±0.007 0.154±0.008 0.108±0.003 0.145±0.001 0.104±0.001
RAKEL 0.209±0.012 0.214±0.008 0.273±0.011 0.329±0.012 0.293±0.017 0.273±0.012 0.246±0.012 0.107±0.003
LLSF 0.197±0.014 0.195±0.011 0.141±0.009 0.146±0.008 0.133±0.008 0.109±0.006 0.133±0.006 0.086±0.013
JFSC 0.196±0.011 0.233±0.018 0.140±0.006 0.143±0.009 0.136±0.010 0.106±0.005 0.139±0.006 0.086±0.011

Comparing
algorithms

Ranking loss↓
science arts rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 business

CAMEL 0.139±0.007 0.135±0.008 0.058±0.003 0.077±0.005 0.047±0.003 0.057±0.002 0.073±0.002 0.040±0.004
BR 0.245±0.009 0.145±0.006 0.197±0.006 0.190±0.008 0.198±0.010 0.173±0.009 0.181±0.006 0.088±0.006

ECC 0.151±0.006 0.164±0.007 0.074±0.005 0.069±0.003 0.070±0.002 0.047±0.004 0.063±0.003 0.055±0.002
RAKEL 0.195±0.007 0.156±0.008 0.183±0.006 0.153±0.008 0.178±0.010 0.112±0.009 0.123±0.006 0.067±0.005
LLSF 0.149±0.009 0.141±0.009 0.060±0.003 0.060±0.004 0.048±0.003 0.034±0.003 0.045±0.003 0.045±0.009
JFSC 0.147±0.008 0.159±0.009 0.061±0.003 0.062±0.006 0.061±0.004 0.047±0.003 0.060±0.003 0.045±0.008

Comparing
algorithms

Average precision↑
science arts rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 business

CAMEL 0.624±0.016 0.607±0.018 0.615±0.009 0.644±0.012 0.635±0.010 0.717±0.008 0.626±0.009 0.891±0.009
BR 0.383±0.011 0.514±0.013 0.353±0.011 0.382±0.015 0.382±0.015 0.443±0.013 0.390±0.009 0.709±0.008

ECC 0.516±0.020 0.553±0.018 0.545±0.016 0.587±0.015 0.585±0.016 0.677±0.017 0.600±0.009 0.844±0.005
RAKEL 0.487±0.012 0.526±0.015 0.424±0.012 0.489±0.016 0.459±0.014 0.479±0.012 0.432±0.009 0.858±0.007
LLSF 0.594±0.021 0.631±0.016 0.627±0.009 0.637±0.008 0.632±0.013 0.714±0.010 0.625±0.013 0.867±0.013
JFSC 0.595±0.020 0.621±0.020 0.606±0.008 0.630±0.009 0.624±0.014 0.700±0.012 0.624±0.013 0.874±0.018

Comparing
algorithms

Macro-averaging F1↑
science arts rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 business

CAMEL 0.310±0.038 0.312±0.029 0.250±0.023 0.258±0.022 0.247±0.025 0.340±0.031 0.253±0.016 0.326±0.046
BR 0.215±0.048 0.257±0.020 0.232±0.018 0.210±0.017 0.221±0.019 0.313±0.016 0.236±0.019 0.249±0.017

ECC 0.285±0.024 0.282±0.021 0.271±0.023 0.257±0.022 0.266±0.012 0.334±0.018 0.285±0.014 0.326±0.032
RAKEL 0.267±0.028 0.275±0.019 0.266±0.019 0.237±0.023 0.243±0.017 0.322±0.017 0.255±0.018 0.307±0.024
LLSF 0.312±0.038 0.219±0.032 0.261±0.022 0.257±0.025 0.270±0.027 0.334±0.031 0.217±0.018 0.325±0.028
JFSC 0.308±0.039 0.305±0.032 0.308±0.026 0.249±0.019 0.258±0.024 0.337±0.032 0.254±0.019 0.318±0.036

Comparing
algorithms

Micro-averaging F1↑
science arts rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 business

CAMEL 0.428±0.018 0.415±0.015 0.401±0.015 0.437±0.017 0.431±0.025 0.491±0.017 0.441±0.015 0.746±0.011
BR 0.277±0.013 0.349±0.018 0.301±0.009 0.310±0.009 0.307±0.013 0.356±0.009 0.321±0.009 0.595±0.003

ECC 0.343±0.028 0.377±0.018 0.385±0.016 0.410±0.022 0.414±0.013 0.482±0.024 0.440±0.011 0.690±0.007
RAKEL 0.337±0.014 0.368±0.017 0.341±0.010 0.337±0.008 0.335±0.014 0.369±0.008 0.350±0.008 0.701±0.014
LLSF 0.446±0.025 0.368±0.018 0.463±0.016 0.432±0.018 0.428±0.023 0.478±0.017 0.438±0.019 0.693±0.035
JFSC 0.449±0.026 0.442±0.017 0.456±0.008 0.422±0.011 0.424±0.012 0.482±0.013 0.438±0.011 0.712±0.021

their best setting. Figure 1(a), 1(b), and 1(c) show the sensi-
tivity curve of CAMEL with respect to α, λ1, and λ2 respec-
tively. It can be seen that α and λ2 have an important influ-
ence on the final performance, because α and λ2 control the
collaboration degree and the model complexity. Figure 1(d)
illustrates the convergence of CAMEL by using the differ-
ence of the optimization variable Z between two successive
iterations, i.e., ∆Z =

∥∥Z(t) − Z(t−1)
∥∥
F

. From Figure 1(d),
we can observe that ∆Z quickly decreases to 0 within a few
number of iterations. Hence the convergence of CAMEL is
demonstrated.

Conclusion

In this paper, we make a key assumption for multi-label
learning that for each individual label, the final prediction in-
volves the collaboration between its own prediction and the
predictions of other labels. Guided by this assumption, we
propose a novel method to learn the high-order label corre-
lations via sparse reconstruction in the label space. Besides,
by seamlessly integrating the learned label correlations into
model training, we propose a novel multi-label learning ap-
proach that aims to explicitly account for the correlated pre-
dictions of labels while training the desired model simul-
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(a) α (b) λ1 (c) λ2 (d) Convergence Curve

Figure 1: Parameter sensitivity and convergence analysis of CAMEL on the enron dataset.

taneously. Extensive experimental results show that our ap-
proach outperforms the state-of-the-art counterparts.

Despite the demonstrated effectiveness of CAMEL, it
only considers the global collaborative relationships be-
tween labels, by assuming that such collaborative relation-
ships are shared by all the instances. However, as different
instances have different characteristics, such collaborative
relationships may be shared by only a subset of instances
rather than all the instances. Therefore, our further work is
to explore different collaborative relationships between la-
bels for different subsets of instances.
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Appendix A. The ADMM Procedure
To solve problem (3) by ADMM, we first reformulate prob-
lem (3) into the following equivalent form:

min
Sj ,z

1

2
‖Y−jSi −Yj‖22 + λ ‖z‖1 (13)

s.t. Sj − z = 0

Following the ADMM procedure, the above constrained op-
timization problem (13) can be solved as a series of un-
constrained minimization problems using augmented La-
grangian function, which is presented as:

L(Sj , z,µ) =
1

2
‖Y−jSj −Yj‖22 + λ ‖z‖1 + (14)

v>(Sj − z) +
ρ

2
‖Sj − z‖22

Here, ρ is the penalty parameter and v is the Lagrange mul-
tiplier. By introducing the scaled dual variable µ = 1

ρv, a
sequential minimization of the scaled ADMM iterations can
be conducted by updating the three variables Sj , z and µ
sequentially:

S
(k+1)
j = (Y>−jY−j + ρI)−1(Y>−jYj + ρ(z(k) − µ(k)))

z(k+1) = Sλ/ρ(S
(k+1)
j + µ(k))

µ(k+1) = µ(k) + S(k+1) − z(k+1) (15)

where S is the proximity operator of the `1 norm, which is
defined as Sω(a) = (a− ω)+ − (−a− ω)+.

Appendix B. Model Parameter Optimization
The Lagrangian of problem (8) is expressed as:

L(W,E,A,b) = tr(E>E) + λ2 tr(W>W)+ (16)

tr (A>(Z− φ(X)W − 1b> −E))

where tr is the trace operator, and A = [a1,a2, · · · ,an]> ∈
Rn×q is the introduced matrix that stores the Lagrangian
multipliers. Besides, we have used the property of trace op-
erator that tr(W>W) = ‖W‖2F . By Setting the gradient
w.r.t. E,A,W,b to 0 respectively, the following equations
will be induced:

∂L
∂E

= 0⇒ A = E

∂L
∂A

= 0⇒ Z− φ(X)W − 1b> = E

∂L
∂W

= 0⇒W =
1

λ2
φ(X)>A

∂L
∂b

= 0⇒ A>1 = 0 (17)

The above linear equations can be simplified by the follow-
ing steps:

Z = φ(X)W + 1b> + E

Z =
1

λ2
φ(X)φ(X)>A + 1b> + A

Z =
1

λ2
KA + 1b> + A (18)

Here, we define H = 1
λ2
K + I, then we can obtain:

HA + 1b> = Z

A + H−11b> = H−1Z

1>H−11b> = 1>H−1Z

b> =
1H−1Z

1>H−11
(19)

In this way, A can be calculated by A = H−1(Z− 1b>).
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