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Abstract

In this paper, we present a hypergraph neural networks
(HGNN) framework for data representation learning, which
can encode high-order data correlation in a hypergraph struc-
ture. Confronting the challenges of learning representation
for complex data in real practice, we propose to incorpo-
rate such data structure in a hypergraph, which is more flexi-
ble on data modeling, especially when dealing with complex
data. In this method, a hyperedge convolution operation is
designed to handle the data correlation during representation
learning. In this way, traditional hypergraph learning proce-
dure can be conducted using hyperedge convolution opera-
tions efficiently. HGNN is able to learn the hidden layer rep-
resentation considering the high-order data structure, which
is a general framework considering the complex data correla-
tions. We have conducted experiments on citation network
classification and visual object recognition tasks and com-
pared HGNN with graph convolutional networks and other
traditional methods. Experimental results demonstrate that
the proposed HGNN method outperforms recent state-of-the-
art methods. We can also reveal from the results that the pro-
posed HGNN is superior when dealing with multi-modal data
compared with existing methods.

Introduction
Graph-based convolutional neural networks (Kipf and
Welling 2017), (Defferrard, Bresson, and Vandergheynst
2016) have attracted much attention in recent years. Dif-
ferent from traditional convolutional neural networks, graph
convolution is able to encode the graph structure of different
input data using a neural network model and it can be used
in the semi-supervised learning procedure. Graph convolu-
tional neural networks have shown superiority on represen-
tation learning compared with traditional neural networks
due to its ability of using data graph structure.

In traditional graph convolutional neural network meth-
ods, the pairwise connections among data are employed. It
is noted that the data structure in real practice could be be-
yond pairwise connections and even far more complicated.
Confronting the scenarios with multi-modal data, the situa-
tion for data correlation modelling could be more complex.
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Figure 1: Examples of complex connections on social me-
dia data. Each color point represents a tweet or microblog,
and there could be visual connections, text connections and
social connections among them.

Figure 1 provides examples of complex connections on so-
cial media data. On one hand, the data correlation can be
more complex than pairwise relationship, which is difficult
to be modeled by a graph structure. On the other hand, the
data representation tends to be multi-modal, such as the vi-
sual connections, text connections and social connections in
this example. Under such circumstances, traditional graph
structure has the limitation to formulate the data correlation,
which limits the application of graph convolutional neural
networks. Under such circumstance, it is important and ur-
gent to further investigate better and more general data struc-
ture model to learn representation.

To tackle this challenging issue, in this paper, we propose
a hypergraph neural networks (HGNN) framework, which
uses the hypergraph structure for data modeling. Compared
with simple graph, on which the degree for all edges is
mandatory 2, a hypergraph can encode high-order data cor-
relation (beyond pairwise connections) using its degree-free
hyperedges, as shown in Figure 2. In Figure 2, the graph is
represented using the adjacency matrix, in which each edge
connects just two vertices. On the contrary, a hypergraph
is easy to be expanded for multi-modal and heterogeneous
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Figure 2: The comparison between graph and hypergraph.

data representation using its flexible hyperedges. For exam-
ple, a hypergraph can jointly employ multi-modal data for
hypergraph generation by combining the adjacency matrix,
as illustrated in Figure 2. Therefore, hypergraph has been
employed in many computer vision tasks such as classifi-
cation and retrieval tasks (Gao et al. 2012). However, tra-
ditional hypergraph learning methods (Zhou, Huang, and
Schölkopf 2007) suffer from their high computation com-
plexity and storage cost, which limits the wide application
of hypergraph learning methods.

In this paper, we propose a hypergraph neural networks
framework (HGNN) for data representation learning. In this
method, the complex data correlation is formulated in a hy-
pergraph structure, and we design a hyperedge convolution
operation to better exploit the high-order data correlation
for representation learning. More specifically, HGNN is a
general framework which can incorporate with multi-modal
data and complicated data correlations. Traditional graph
convolutional neural networks can be regarded as a special
case of HGNN. To evaluate the performance of the pro-
posed HGNN framework, we have conducted experiments
on citation network classification and visual object recog-
nition tasks. The experimental results on four datasets and
comparisons with graph convolutional network (GCN) and
other traditional methods have shown better performance
of HGNN. These results indicate that the proposed HGNN
method is more effective on learning data representation us-
ing high-order and complex correlations.

The main contributions of this paper are two-fold:

1. We propose a hypergraph neural networks framework,
i.e., HGNN, for representation learning using hypergraph
structure. HGNN is able to formulate complex and high-
order data correlation through its hypergraph structure
and can be also efficient using hyperedge convolution
operations. It is effective on dealing with multi-modal
data/features. Moreover, GCN (Kipf and Welling 2017)
can be regarded as a special case of HGNN, for which
the edges in simple graph can be regarded as 2-order hy-
peredges which connect just two vertices.

2. We have conducted extensive experiments on citation
network classification and visual object classification
tasks. Comparisons with state-of-the-art methods demon-
strate the effectiveness of the proposed HGNN frame-
work. Experiments also indicate the better performance
of the proposed method when dealing with multi-modal
data.

Related Work
In this section, we briefly review existing works of hyper-
graph learning and neural networks on graph.

Hypergraph learning
In many computer vision tasks, the hypergraph structure has
been employed to model high-order correlation among data.
Hypergraph learning is first introduced in (Zhou, Huang, and
Schölkopf 2007), as a propagation process on hypergraph
structure. The transductive inference on hypergraph aims to
minimize the label difference among vertices with stronger
connections on hypergraph. In (Huang, Liu, and Metaxas
2009), hypergraph learning is further employed in video ob-
ject segmentation. (Huang et al. 2010) used the hypergraph
structure to model image relationship and conducted trans-
ductive inference process for image ranking. To further im-
prove the hypergraph structure, research attention has been
attracted for leaning the weights of hyperedges, which have
great influence on modeling the correlation of data. In (Gao
et al. 2013), a l2 regularize on the weights is introduced to
learn optimal hyperedge weights. In (Hwang et al. 2008),
the correlation among hyperedges is further explored by a
assumption that highly correlated hyperedges should have
similar weights. Regarding the multi-modal data, in (Gao et
al. 2012), multi-hypergraph structure is introduced to assign
weights for different sub-hypergraphs, which corresponds to
different modalities.

Neural networks on graph
Since many irregular data that do not own a grid-like struc-
ture can only be represented in the form of graph, extending
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Figure 3: The proposed HGNN framework.

neural networks to graph structure has attracted great atten-
tion from researchers. In (Gori, Monfardini, and Scarselli
2005) and (Scarselli et al. 2009), the neural network on
graph is first introduced to apply recurrent neural networks
to deal with graphs. For generalizing convolution network to
graph, the methods are divided into spectral and non-spectral
approaches.

For spectral approaches, the convolution operation is for-
mulated in spectral domain of graph. (Bruna et al. 2014) in-
troduces the first graph CNN, which uses the graph Lapla-
cian eigenbasis as an analogy of the Fourier transform.
In (Henaff, Bruna, and LeCun 2015), the spectral filters
can be parameterized with smooth coefficients to make
them spatial-localized. In (Defferrard, Bresson, and Van-
dergheynst 2016), a Chebyshev expansion of the graph
Laplacian is further used to approximate the spectral filters.
Then, in (Kipf and Welling 2017), the chebyshev polynomi-
als are simplified into 1-order polynomials to form an effi-
cient layer-wise propagation model.

For spatial approaches, the convolution operation is de-
fined in groups of spatial close nodes. In (Atwood and
Towsley 2016), the powers of a transition matrix is em-
ployed to define the neighborhood of nodes. (Monti et al.
2017) uses the local path operators in the form of Gaussian
mixture models to generalize convolution in spatial domain.
In (Velickovic et al. 2018), the attention mechanisms is in-
troduced into the graph to build attention-based architecture
to perform the node classification task on graph.

Hypergraph Neural Networks
In this section, we introduce our proposed hypergraph neu-
ral networks (HGNN). We first briefly introduce hypergraph
learning, and then the spectral convolution on hypergraph
is provided. Following, we analyze the relations between
HGNN and existing methods. In the last part of the section,
some implementation details will be given.

Hypergraph learning statement
We first review the hypergraph analysis theory. Different
from simple graph, a hyperedge in a hypergraph connects
two or more vertices. A hypergraph is defined as G =
(V, E ,W), which includes a vertex set V , a hyperedge set E .
Each hyperedge is assigned with a weight by W, a diagonal

matrix of edge weights. The hypergraph G can be denoted
by a |V| × |E| incidence matrix H, with entries defined as

h(v, e) =

{
1, if v ∈ e
0, if v 6∈ e, (1)

For a vertex v ∈ V , its degree is defined as d(v) =∑
e∈E ω(e)h(v, e). For an edge e ∈ E , its degree is defined

as δ(e) =
∑
v∈V h(v, e). Further, De and Dv denote the di-

agonal matrices of the edge degrees and the vertex degrees,
respectively.

Here let us consider the node(vertex) classification prob-
lem on hypergraph, where the node labels should be smooth
on the hypergraph structure. The task can be formulated as
a regularization framework as introduced by (Zhou, Huang,
and Schölkopf 2007):

arg min
f
{Remp(f) + Ω(f)}, (2)

where Ω(f) is a regularize on hypergraph,Remp(f) denotes
the supervised empirical loss, f(·) is a classification func-
tion. The regularize Ω(f) is defined as:

Ω(f) =
1

2

∑
e∈E

∑
{u,v}∈V

w(e)h(u, e)h(v, e)

δ(e)( f(u)√
d(u)

− f(v)√
d(v)

)2
,

(3)

We let θ = D
−1/2
v HWD−1e H>D

−1/2
v and ∆ = I−Θ.

Then, the normalized Ω(f) can be written as

Ω(f) = f>∆, (4)

where ∆ is positive semi-definite, and usually called the hy-
pergraph Laplacian.

Spectral convolution on hypergraph
Given a hypergraph G = (V, E ,∆) with n vertices,
since the hypergraph Laplacian ∆ is a n × n positive
semi-definite matrix, the eigen decomposition ∆ = ΦΛΦ>

can be employed to get the orthonormal eigen vectors
Φ = diag(φ1, . . . , φn) and a diagonal matrix Λ =
diag(λ1, . . . , λn) containing corresponding non-negative
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Figure 4: The illustration of the hyperedge convolution layer.

eigenvalues. Then, the Fourier transform for a signal x =
(x1, . . . ,xn) in hypergraph is defined as x̂ = Φ>x, where
the eigen vectors are regarded as the Fourier bases and the
eigenvalues are interpreted as frequencies. The spectral con-
volution of signal x and filter g can be denoted as

g ? x = Φ((Φ>g)� (Φ>x)) = Φg(Λ)Φ>x, (5)
where � denotes the element-wise Hadamard product and
g(Λ) = diag(g(λ1), . . . ,g(λn)) is a function of the Fourier
coefficients. However, the computation cost in forward and
inverse Fourier transform is O(n2). To solve the prob-
lem, we can follow (Defferrard, Bresson, and Vandergheynst
2016) to parametrize g(Λ) with K order polynomials. Fur-
thermore, we use the truncated Chebyshev expansion as
one such polynomial. Chebyshv polynomials Tk(x) is recur-
sively computed by Tk(x) = 2xTk−1(x) − Tk−2(x), with
T0(x) = 1 and T1(x) = x. Thus, the g(Λ) can be parame-
tried as

g ? x ≈
K∑
k=0

θkTk(∆̃)x, (6)

where Tk(∆̃) is the Chebyshev polynomial of order k with
scaled Laplacian ∆̃ = 2

λmax
∆ − I. In Equation 6, the ex-

pansive computation of Laplacian Eigen vectors is excluded
and only matrix powers, additions and multiplications are
included, which brings further improvement in computation
complexity. We can further let K = 1 to limit the order
of convolution operation due to that the Laplacian in hyper-
graph can already well represent the high-order correlation
between nodes. It is also suggested in (Kipf and Welling
2017) that λmax ≈ 2 because of the scale adaptability of
neural networks. Then, the convolution operation can be fur-
ther simplified to

g ? x ≈ θ0x− θ1D−1/2HWD−1e H>D−1/2v x, (7)
where θ0 and θ1 is parameters of filters over all nodes. We
further use a single parameter θ to avoid the overfitting prob-
lem, which is defined as{

θ1 = − 1
2θ

θ0 = 1
2θD

−1/2
v HD−1e H>D

−1/2
v ,

(8)

Then, the convolution operation can be simplified to the
following expression

g ? x ≈ 1

2
θD−1/2v H(W + I)D−1e H>D−1/2v x

≈ θD−1/2v HWD−1e H>D−1/2v x,

(9)

where (W + I) can be regarded as the weight of the hyper-
edges. W is initialized as an identity matrix, which means
equal weights for all hyperedges.

When we have a hypergraph signal X ∈ Rn×C1 with n
nodes and C1 dimensional features, our hyperedge convolu-
tion can be formulated by

Y = D−1/2v HWD−1e H>D−1/2v XΘ, (10)

where W = diag(w1, . . . ,wn). Θ ∈ RC1×C2 is the param-
eter to be learned during the training process. The filter Θ
is applied over the nodes in hypergraph to extract features.
After convolution, we can obtain Y ∈ Rn×C2 , which can be
used for classification.

Hypergraph neural networks analysis
Figure 3 illustrates the details of the hypergraph neural net-
works. Multi-modality datasets are divided into training data
and testing data, and each data contains several nodes with
features. Then multiple hyperedge structure groups are con-
structed from the complex correlation of the multi-modality
datasets. We concatenate the hyperedge groups to generate
the hypergraph adjacent matrix H. The hypergraph adjacent
matrix H and the node feature are fed into the HGNN to get
the node output labels. As introduced in the above section,
we can build a hyperedge convolutional layer f(X,W,Θ)
in the following formulation

X(l+1) = σ(D−1/2v HWD−1e H>D−1/2v X(l)Θ(l)), (11)

where X(1) ∈ RN×C is the signal of hypergraph at l layer,
X(0) = X and σ denotes the nonlinear activation function.

The HGNN model is based on the spectral convolution on
the hypergraph. Here, we further investigate HGNN in the
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property of exploiting high-order correlation among data. As
is shown in Figure 4, the HGNN layer can perform node-
edge-node transform, which can better refine the features
using the hypergraph structure. More specifically, at first,
the initial node feature X(1) is processed by learnable fil-
ter matrix Θ(1) to extract C2-dimensional feature. Then, the
node feature is gathered according to the hyperedge to form
the hyperedge feature RE×C2 , which is implemented by the
multiplication of H> ∈ RE×N. Finally the output node fea-
ture is obtained by aggregating their related hyperedge fea-
ture, which is achieved by multiplying matrix H. Denote
that Dv and De play a role of normalization in Equation 11.
Thus, the HGNN layer can efficiently extract the high-order
correlation on hypergraph by the node-edge-node transform.

Relations to existing methods When the hyperedges only
connect two vertices, the hypergraph is simplified into a sim-
ple graph and the Laplacian ∆ is also coincident with the
Laplacian of simple graph up to a factor of 1

2 . Compared
with the existing graph convolution methods, our HGNN can
naturally model high-order relationship among data, which
is effectively exploited and encoded in forming feature ex-
traction. Compared with the traditional hypergraph method,
our model is highly efficient in computation without the in-
verse operation of Laplacian ∆. It should also be noted that
our HGNN has great expansibility toward multi-modal fea-
ture with the flexibility of hyperedge generation.

Implementation
Hypergraph construction In our visual object classifica-
tion task, the features of N visual object data can be repre-
sented as X = [x1, . . . ,xn]

>. We build the hypergraph ac-
cording to the distance between two features. More specif-
ically, Euclidean distance is used to calculate d(xi,xj). In
the construction, each vertex represents one visual object,
and each hyperedge is formed by connecting one vertex and
its K nearest neighbors, which brings N hyperedges that
links K + 1 vertices. And thus, we get the incidence ma-
trix H ∈ RN×N with N × (K + 1) entries equaling to 1
while others equaling to 0. In the citation network classifi-
cation, where the data are organized in graph structure, each
hyperedge is built by linking one vertex and their neighbors
according to the adjacency relation on graph. So we also get
N hyperedges and H ∈ RN×N.

Model for node classification In the problem of node
classification, we build the HGNN model as in Figure 3.
The dataset is divided into training data and test data. Then
hypergraph is constructed as the section above, which gen-
erates the incidence matrix H and corresponding De. We
build a two-layer HGNN model to employ the powerful ca-
pacity of HGNN layer. And the softmax function is used to
generate predicted labels. During training, the cross-entropy
loss for the training data is back-propagated to update the pa-
rameters Θ and in testing, the labels of test data is predicted
for evaluating the performance. When there are multi-modal
information incorporate them by the construction of hyper-

edge groups and then various hyperedges are fused together
to model the complex relationship on data.

Experiments
In this section, we evaluate our proposed hypergraph neu-
ral networks on two task: citation network classification and
visual object recognition. We also compare the proposed
method with graph convolutional networks and other state-
of-the-art methods.

Dataset Cora Pumbed

Nodes 2708 19717
Edges 5429 44338

Feature 1433 500
Training node 140 60

Validation node 500 500
Testing node 1000 1000

Classes 7 3

Table 1: Summary of the citation classification datasets.

Citation network classification
Datasets In this experiment, the task is to classify citation
data. Here, two widely used citation network datasets, i.e.,
Cora and Pubmed (Sen et al. 2008) are employed. The ex-
perimental setup follows the settings in (Yang, Cohen, and
Salakhutdinov 2016). In both of those two datasets, the fea-
ture for each data is the bag-of-words representation of doc-
uments. The data connection, i.e., the graph structure, in-
dicates the citations among those data. To generate the hy-
pergraph structure for HGNN, each time one vertex in the
graph is selected as the centroid and its connected vertices
are used to generate one hyperedge including the centroid
itself. Through this we can obtain the same size incidence
matrix compared with the original graph. It is noted that as
there are no more information for data relationship, the gen-
erated hypergraph constructure is quite similar to the graph.
The Cora dataset contains 2708 data and 5% are used as la-
beled data for training. The Pubmed dataset contains 19717
data, and only 0.3% are used for training. The detailed de-
scription for the two datasets listed in Table 1.

Experimental settings In this experiment, a two-layer
HGNN is applied. The feature dimension of the hidden layer
is set as 16 and the dropout (Srivastava et al. 2014) is em-
ployed to avoid overfitting with drop rate p = 0.5. We
choose the ReLU as the nonlinear activation function. Dur-
ing the training process, we use Adam optimizer (Kingma
and Ba 2014) to minimize our cross-entropy loss function
with a learning rate of 0.001. We have also compared the
proposed HGNN with recent methods in these experiments.

Results and discussion The results of the experimental re-
sults and comparisons on the citation network dataset are
shown in Table 2. For our HGNN model, we report the aver-
age classification accuracy of 100 runs on Core and Pumbed,
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which is 81.6% and 80.1%. As shown in the results, the pro-
posed HGNN model can achieve the best or comparable per-
formance compared with the state-of-the-art methods. Com-
pared with GCN, the proposed HGNN method can achieve a
slight improvement on the Cora dataset and 1.1% improve-
ment on the Pubmed dataset. We note that the generated hy-
pergraph structure is quite similar to the graph structure as
there is neither extra nor more complex information in these
data. Therefore, the gain obtained by HGNN is not very sig-
nificant.

Method Cora Pubmed

DeepWalk (Perozzi, Al-Rfou,
and Skiena 2014)

67.2% 65.3%

ICA (Lu and Getoor 2003) 75.1% 73.9%
Planetoid (Yang, Cohen, and
Salakhutdinov 2016)

75.7% 77.2%

Chebyshev (Defferrard, Bres-
son, and Vandergheynst 2016)

81.2% 74.4%

GCN (Kipf and Welling 2017) 81.5% 79.0%

HGNN 81.6% 80.1%

Table 2: Classification results on the Cora and Pubmed
datasets.

Visual object classification
Datasets and experimental settings In this experiment,
the task is to classify visual objects. Two public benchmarks
are employed here, including the Princeton ModelNet40
dataset (Wu et al. 2015) and the National Taiwan University
(NTU) 3D model dataset (Chen et al. 2003), as shown in Ta-
ble 3. The ModelNet40 dataset consists of 12,311 objects
from 40 popular categories, and the same training/testing
split is applied as introduced in (Wu et al. 2015), where
9,843 objects are used for training and 2,468 objects are
used for testing. The NTU dataset is composed of 2,012
3D shapes from 67 categories, including car, chair, chess,
chip, clock, cup, door, frame, pen, plant leaf and so on. In
the NTU dataset, 80% data are used for training and the
other 20% data are used for testing. In this experiment, each
3D object is represented by the extracted features. Here,
two recent state-of-the-art shape representation methods are
employed, including Multi-view Convolutional Neural Net-
work (MVCNN) (Su et al. 2015) and Group-View Convolu-
tional Neural Network (GVCNN) (Feng et al. 2018). These
two methods are selected due to that they have shown sat-
isfactory performance on 3D object representation. We fol-
low the experimental settings of MVCNN and GVCNN to
generate multiple views of each 3D object. Here, 12 virtual
cameras are employed to capture views with a interval angle
of 30 degree, and then both the MVCNN and the GVCNN
features are extracted accordingly.

To compare with GCN method, it is noted that there is no
available graph structure in the ModelNet40 dataset and the
NTU dataset. Therefore, we construct a probability graph
based on the distance of nodes. Given the features of data,

the affinity matrix A is generated to represent the relation-
ship among different vertices, and Aij can be calculated by:

Aij = exp(−2Dij2

∆
) (12)

where Dij indicates the Euclidean distance between node
i and node j. ∆ is the average pairwise distance between
nodes. For the GCN experiment with two features con-
structed simple graphs, we simply average the two modal-
ity adjacency matrices to get the fused graph structure for
comparison.

Dataset ModelNet40 NTU

Objects 12311 2012
MVCNN Feature 4096 4096
GVCNN Feature 2048 2048

Training node 9843 1639
Testing node 2468 373

Classes 40 67

Table 3: The detailed information of the ModelNet40 and
the NTU datasets.

Figure 5: An example of hyperedge generation in the vi-
sual object classification task. Left: For each node we ag-
gregate its N neighbor nodes by Euclidean distance to gen-
erate a hyperedge. Right: To generate the multi-modality hy-
pergraph adjacent matrix we concatenate adjacent matrix of
two modality.

Hypergraph structure construction on visual datasets
In experiments on ModelNet40 and NTU datasets, two hy-
pergraph construction methods are employed. The first one
is based on single modality feature and the other one is based
on multi-modality feature. In the first case, only one feature
is used. Each time one object in the dataset is selected as the
centroid, and its 10 nearest neighbors in the selected feature
space are used to generate one hyperedge including the cen-
troid itself, as shown in Figure 5. Then, a hypergraph G with
N hyperedges can be constructed. In the second case, mul-
tiple features are used to generate a hypergraph G modeling
complex multi-modality correlation. Here, for the ith modal-
ity data, a hypergraph adjacent matrix Hi is constructed ac-
cordingly. After all the hypergraphs from different features
have been generated, these adjacent matrices Hi can be con-
catenated to build the multi-modality hypergraph adjacent
matrix H. In this way, the hypergraphs using single modal
feature and multi-modal features can be constructed.
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Feature
Features for Structure

GVCNN MVCNN GVCNN+MVCNN
GCN HGNN GCN HGNN GCN HGNN

GVCNN (Feng et al. 2018) 91.8% 92.6% 91.5% 91.8% 92.8% 96.6%
MVCNN (Su et al. 2015) 92.5% 92.9% 86.7% 91.0% 92.3% 96.6%

GVCNN+MVCNN - - - - 94.4% 96.7%

Table 4: Comparison between GCN and HGNN on the ModelNet40 dataset.

Feature
Features for Structure

GVCNN MVCNN GVCNN+MVCNN
GCN HGNN GCN HGNN GCN HGNN

GVCNN ((Feng et al. 2018)) 78.8% 82.5% 78.8% 79.1% 75.9% 84.2%
MVCNN ((Su et al. 2015)) 74.0% 77.2% 71.3% 75.6% 73.2% 83.6%

GVCNN+MVCNN − − − − 76.1% 84.2%

Table 5: Comparison between GCN and HGNN on the NTU dataset.

Method Classification
Accuracy

PointNet (Qi et al. 2017a) 89.2%
PointNet++ (Qi et al. 2017b) 90.7%

PointCNN (Li et al. 2018) 91.8%
SO-Net (Li, Chen, and Lee 2018) 93.4%

HGNN 96.7%

Table 6: Experimental comparison among recent classifica-
tion methods on ModelNet40 dataset.

Results and discussions Experiments and comparisons
on the visual object recognition task are shown in Table 4
and Table 5, respectively. For the ModelNet40 dataset, we
have compared the proposed method using two features with
recent state-of-the-are methods in Table 6. As shown in the
results, we can have the following observations:

1. The proposed HGNN method outperforms the state-of-
the-art object recognition methods in the ModelNet40
dataset. More specifically, compared with PointCNN and
SO-Net, the proposed HGNN method can achieve gains
of 4.8% and 3.2%, respectively. These results demon-
strate the superior performance of the proposed HGNN
method on visual object recognition.

2. Compared with GCN, the proposed method achieves bet-
ter performance in all experiments. As shown in Ta-
ble 4 and Table 5, when only one feature is used for
graph/hypergraph structure generation, HGNN can ob-
tain slightly improvement. For example, when GVCNN
is used as the object feature and MVCNN is used for
graph/hypergraph structure generation, HGNN achieves
gains of 0.3% and 2.0% compared with GCN on the
ModelNet40 and the NTU datasets, respectively. When
more features, i.e., both GVCNN and MVCNN, are
used for graph/hypergraph structure generation, HGNN
achieves much better performance compared with GCN.

For example, HGNN achieves gains of 8.3%, 10.4% and
8.1% compared with GCN when GVCNN, MVCNN and
GVCNN+MVCNN are used as the object features on the
NTU dataset, respectively.

The better performance can be dedicated to the employed
hypergraph structure. The hypergraph structure is able to
convey complex and high-order correlations among data,
which can better represent the underneath data relation-
ship compared with graph structure or the methods without
graph structure. Moreover, when multi-modal data/features
are available, HGNN has the advantage of combining such
multi-modal information in the same structure by its flexible
hyperedges. Compared with traditional hypergraph learning
methods, which may suffer from the high computational
complexity and storage cost, the proposed HGNN frame-
work is much more efficient through the hyperedge convo-
lution operation.

Conclusion
In this paper, we propose a framework of hypergraph neural
networks (HGNN). In this method, HGNN generalizes the
convolution operation to the hypergraph learning process.
The convolution on spectral domain is conducted with hy-
pergraph Laplacian and further approximated by truncated
chebyshev polynomials. HGNN is a more general frame-
work which is able to handle the complex and high-order
correlations through the hypergraph structure for representa-
tion learning compared with traditional graph. We have con-
ducted experiments on citation network classification and
visual object recognition tasks to evaluate the performance
of the proposed HGNN method. Experimental results and
comparisons with the state-of-the-art methods demonstrate
better performance of the proposed HGNN model. HGNN
is able to take complex data correlation into representation
learning and thus lead to potential wide applications in many
tasks, such as visual recognition, retrieval and data classifi-
cation.
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