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Abstract

In this paper, we propose a transductive bound over the risk
of the majority vote classifier learned with partially labeled
data for the multi-class classification. The bound is obtained
by considering the class confusion matrix as an error indi-
cator and it involves the margin distribution of the classifier
over each class and a bound over the risk of the associated
Gibbs classifier. When this latter bound is tight and, the er-
rors of the majority vote classifier per class are concentrated
on a low margin zone; we prove that the bound over the
Bayes classifier’ risk is tight. As an application, we extend
the self-learning algorithm to the multi-class case. The algo-
rithm iteratively assigns pseudo-labels to a subset of unla-
beled training examples that have their associated class mar-
gin above a threshold obtained from the proposed transduc-
tive bound. Empirical results on different data sets show the
effectiveness of our approach compared to the same algo-
rithm where the threshold is fixed manually, to the extension
of TSVM to multi-class classification and to a graph-based
semi-supervised algorithm.

1 Introduction
In many real-life applications, the labeling of training exam-
ples for learning is costly and sometimes even not realistic.
For example, in medical diagnosis or biological data anal-
ysis, labeling data may require very expensive tests so that
only small labeled data sets are generally available. In many
other cases, like web oriented applications, huge amount of
observations arrive sequentially and there is not enough time
to label data for different information needs; while unlabeled
data are abundant.

Learning with labeled and unlabeled data, or semi-
supervised learning, has been a subject of growing inter-
est in the machine learning community over the last twenty
years (Chapelle, Schölkopf, and Zien 2010). In this case, la-
beled training examples are generally assumed to be very
few, leading to an inefficient supervised model, while unla-
beled training examples contain valuable information about
the prediction problem and it is generally expected that their
exploitation leads to an increase of prediction performance.

Considering an input space X ⊂ Rd and a discrete out-
put space Y , we assume available a set of labeled training
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examples ZL = {(xi, yi)}li=1 ∈ (X × Y)l, identically and
independently distributed (i.i.d.) with respect to a fixed yet
unknown probability distribution D over X × Y , and a set
of unlabeled training examples XU = {x′i}

l+u
i=l+1 ∈ X u

supposed to be drawn i.i.d. from the marginal distribution
PX(x), over the domain X . If XU is empty, then the prob-
lem reduces to supervised learning. The other extreme case
is the situation where ZL is empty and which corresponds to
unsupervised learning.

Most studies in semi-supervised learning have focused on
the binary classification problem, whereas just few ones are
devoted to the multi-class framework, i.e. |Y| > 2 with
some recent studies considering the learnability of multi-
class semi-supervised learning algorithms under some spe-
cific assumptions. For example, Maximov, Amini, and Har-
chaoui (2018) proved the consistency of the Empirical Risk
Minimization principle in some cases by bounding the true
risk of the trained classifier. However such bounds are not
usable in practice as they are generally too loose.

In this paper, we propose a transductive bound for the
multi-class majority vote classifier, which to the best of our
knowledge, is a first attempt in this direction. The bound is
based on the risk of the associated Gibbs classifier and by
considering the class confusion matrix as an error indicator
as proposed in Morvant, Koço, and Ralaivola (2012). This
bound is obtained by analytically solving a linear program
and it comes out that in the case where the bound over the
risk of the Gibbs classifier is tight and when the Bayes clas-
sifier makes most of its errors on low margin examples, the
obtained bound is tight. From this result, we then propose
to automatically find a threshold for which the risk of the
majority vote classifier is the lowest. This finding allows to
consider the output of the Bayes classifier, or its margin, as
an indicator of confidence and to extend self-learning algo-
rithms to the multi-class case. The proposed strategy iter-
atively learns a Bayes classifier by assigning at each itera-
tion pseudo-labels to unlabeled examples having their mar-
gin above a certain threshold obtained from the proposed
transductive bound.

The paper is organized as follows. In Section 2 we intro-
duce the problem statement and the proposed framework.
In Section 3 we present a bound over the transductive risk
of the multi-class majority vote classifier. In Section 4 we
present empirical evidence showing that the extended self-
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learning algorithm learned using the proposed bound is ef-
fective compared to the same algorithm where the thresh-
old is fixed manually, to the extension of TSVM to multi-
class classification and to a graph-based semi-supervised al-
gorithm on difference data sets. Finally, in Section 5 we dis-
cuss the outcomes of this study and give some pointers to
further research.

2 Framework and Definitions
In this study, we consider learning algorithms that work in
a fixed hypothesis space H = {h : X → Y} of multi-class
classifiers (defined without reference to the training data).
After observing the training set S = ZL ∪ XU , the task of
the learner is then to choose a posterior distribution Q over
H such that the Q-weighted majority vote classifier (also
called Bayes classifier)

BQ(x) := argmax
c∈Y

[
Eh∼Q1h(x)=c

]
, ∀x ∈ X , (1)

will have the smallest possible risk on examples of XU . To-
gether with that, we consider the associated Gibbs classifier
GQ that for any x ∈ X chooses randomly a classifier h ∈ H
according to Q. We accordingly define the transductive er-
ror rateof BQ and GQ over an unlabeled set by:

EU (BQ) :=
1

u

∑
x′∈XU

1BQ(x′) 6=y′ , (2)

EU (GQ) :=
1

u

∑
x′∈XU

Eh∼Q1h(x′)6=y′ . (3)

For an observation x, we further define its unsigned mar-
gin mx = (mQ(x, c))Kc=1 which measures the confidence in
each class of the classifier as

mQ(x, y) := Eh∼Q1h(x)=y. (4)

The proposed bound follows a bound on the joint Bayes
error rate which given a vector θ = (θn)Kn=1 ∈ [0, 1]K , is
defined as,

EU∧θ(BQ) :=
1

u

∑
x′∈XU

1BQ(x′)6=y′1mQ(x′,BQ(x′))≥θk ,

where y′ is the true unknown class label of x′. One of the
practical issues that arises from this result is the possibility
to define a set of thresholds θ for which the bound is optimal
and that we use in a self-learning algorithm by iteratively
assigning pseudo-labels to unlabeled examples having the
highest class margin above the corresponding threshold.

However, as we work with multi-class data, the error rate
does not describe the dispersion of errors regarding each
class over all the others. We rather use the confusion ma-
trix, which provides a richer information. For a classifier h,
the transductive confusion matrix CUh = (cij)i,j={1,...,K}2
is defined as follows:

cij :=

{
0 i = j

RU (h, i, j) i 6= j
,

where for a classifier h, for each class pair (i, j) ∈
{1, . . . ,K}2 s.t. i 6= j, the transductive conditional risk RU
is defined by:

RU (h, i, j) :=
1

ui

∑
x′∈XU

1h(x′)=j1y′=i,

with ui =
∑

x′∈XU 1y′=i is the size of class i ∈ Y .
Similarly, the transductive conditional Gibbs risk is de-

fined as R(GQ, i, j) := Eh∼QR(h, i, j).
The transductive joint Bayes confusion matrix CU∧θBQ

=

(cij)i,j={1,...,K}2 given a vector θ = (θn)Kn=1, θ ∈ [0, 1]K

is defined as:

cij :=

{
0 i = j,

RU∧θ(BQ, i, j) i 6= j,

where the transductive joint Bayes conditional
risk RU∧θ(BQ, i, j) for the class pair (i, j) ∈
{1, . . . ,K}2 s.t. i 6= j, is defined as follows:

RU∧θ(BQ, i, j) :=
1

ui

∑
x′∈XU

1BQ(x′)=j1y′=i1mQ(x′,j)≥θj .

Thus, the transductive joint Bayes conditional risk counts an
example as wrongly classified, if its true label is i and the
majority vote classifier predicts the class j with the margin
mQ(x′, j) ≥ θj . Generally, the majority vote classifier is
supposed to make errors by predicting the label j mostly on
examples with a low value of mQ(x′, j). Then, if θj is high
enough, the joint conditional risk computes the probability
to make a mistake on high margin ”confident” observations.

To work with matrices, we use the spectral norm, defined
by, for a matrix A of size n×m:

‖A‖2 := sup
x∈Rm

‖x‖2=1

‖Ax‖2 = sup
x∈Rm

‖Ax‖2
‖x‖2

.

It corresponds to the matrix’s largest singular value.
We conclude this section by the following proposition,

which links the error rate to the confusion matrix.
Proposition 1. Let BQ be the Bayes classifier. Given a vec-
tor θ ∈ [0, 1]K , for p := {ui/u}Ki=1, we have:

EU∧θ(BQ) =
∥∥∥(CU∧θBQ

)ᵀ
p
∥∥∥
1
.

3 Transductive Bounds on the Risk of the
Multi-class Majority Vote Classifier

In this section we propose a transductive bound for the
majority vote classifier in multi-class setting. The bound
is based on the margin distribution as well as a bound of
the transductive conditional Gibbs risk, which we suppose
given. First, we give a theorem that provides a bound for the
transductive joint Bayes conditional risk, which leads to a
bound for the transductive conditional risk of the majority
vote classifier. Then, a corollary is derived, proposing upper
bounds for the Bayes confusion matrix and the Bayes error
rate. Finally, we propose a setting under which the bound on
the conditional risk of the Bayes classifier becomes tight.
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Main Result
Theorem 1. LetBQ be theQ-weighted majority vote classi-
fier. Suppose an upper bound of the transductive conditional
Gibbs risk Rδu(GQ, i, j) that holds with probability 1 − δ
is given. Then for any Q and ∀δ ∈ (0, 1],∀θ ∈ [0, 1]K ,
∀(i, j) ∈ Y2, with probability at least 1− δ we have:

RU (BQ, i, j) ≤ inf
γ∈[0,1]

{
I
(≤,<)
i,j (0, γ)

+
1

γ

⌊
(Kδ

i,j −M<
i,j(γ))

⌋
+

}
, (5)

RU∧θ(BQ, i, j) ≤ inf
γ∈[θj ,1]

{
I
(≤,<)
i,j (θj , γ)

+
1

γ

⌊
(Kδ

i,j −M<
i,j(γ) +M<

i,j(θj))
⌋
+

}
,

(6)

where

Kδ
i,j = Rδu(GQ, i, j)− εi,j ,

εi,j =
1

ui

∑
x′∈XU

1BQ(x′)6=j1y′=imQ(x′, j),

I
(/1,/2)
i,j (t, s) =

1

ui

∑
x′∈XU

1y′=i1t/1mQ(x′,j)/2s,

(/1, /2) ∈ {<,≤}2,

M<
i,j(t) =

1

ui

∑
x′∈XU

1y′=i1mQ(x′,j)<tmQ(x′, j),

bxc+ = x · 1x>0,

From spectral norm properties, the following corollary is
easily deduced:
Corollary 1. Let Uδi,j(θ) be the upper bound for the trans-
ductive joint Bayes conditional risk from Theorem 1 that
holds ∀(i, j) ∈ Y2,∀δ ∈ (0, 1],∀θ ∈ [0, 1]K , with prob-
ability at least 1− δ:

Uδi,j(θ) := inf
γ∈[θj ,1]

{
I
(≤,<)
i,j (θj , γ)

+
1

γ

⌊
(Kδ

i,j −M<
i,j(γ) +M<

i,j(θj))
⌋
+

}
. (7)

Introduce the confusion matrix Uδ
θ which (i, j)-entry is 0,

if i = j, and Uδi,j(θ) otherwise. We consider the spectral
norm. Then, we have:

‖CU∧θBQ
‖ ≤ ‖Uδ

θ‖ and ‖CUBQ
‖ ≤ ‖Uδ

0K
‖,

where 0K is the K-size vector of zeros.
Moreover, we have:
EU∧θ(BQ) ≤

∥∥(Uδ
θ

)ᵀ
p
∥∥
1

and EU (BQ) ≤
∥∥(Uδ

0K

)ᵀ
p
∥∥
1
,

where p = {ui/u}Ki=1.
In the following proposition, we assume that the classi-

fier makes most of its error on unlabeled examples with low
margin. Then, considering that the margin is an indicator of
confidence, the bound becomes tight.

Proposition 2. For all x′ ∈ XU there exists C ∈ [0, 1] such
that for all (i, j) ∈ Y2, for all γ > 0:

1

ui

∑
x′∈XU

1BQ(x′)=j1y′=i1mQ(x′,j)=γ 6= 0⇒

1

ui

∑
x′∈XU

1BQ(x′)=j1y′=i1mQ(x′,j)<γ ≥

C · 1

ui

∑
x′∈XU

1y′=i1mQ(x′,j)<γ . (8)

Then, with probability at least 1− δ the following inequality
holds:

F δi,j −RU (BQ, i, j) ≤
1− C
C

RU (BQ, i, j)

+
Rδu(GQ, i, j)−RU (GQ, i, j)

γ∗
, (9)

where
• γ∗ := γ(p), where p := sup

{
w ∈ {1, . . . , Nj}|b(w)

i,j 6= 0
}

.

• F δi,j := infγ∈[0,1]

{
I
(≤,<)
i,j (0, γ) + 1

γ

⌊
(Kδ

i,j −M<
i,j(γ))

⌋
+

}
.

In the next section, proofs are provided.

Proofs
Proof of Theorem 1. This proof relies on two lemmas. The
first one connects the conditional Gibbs risk and the condi-
tional joint Bayes risk. The second one provides an analytic
solution of a linear program.

Lemma 1. Let Γc := {γc| ∃ x′ ∈ XU : γc = mQ(x′, c)},
where c ∈ Y , and Nc := |Γc|. Let enumerate its elements
such that they form an ascending order:

γ(1)c ≤ γ(2)c ≤ · · · ≤ γ(Nc)
c .

Denote b(n)i,j := 1
ui

∑
x′∈XU 1BQ(x′)=j1y′=i1mQ(x′,j)=γ

(n)
j

.

Then, ∀(i, j) ∈ Y2:

RU (GQ, i, j) =

Nj∑
n=1

b
(n)
i,j γ

(n)
j + εi,j , (10)

RU∧θ(BQ, i, j) =

Nj∑
n=k+1

b
(n)
i,j , (11)

where εi,j = 1
ui

∑
x′∈XU 1BQ(x′)6=j1y′=imQ(x′, j) and

k =

{
0 if {n|γ(n)j < θj} = ∅
max{n|γ(n)j < θj} otherwise.

Proof. Formula (10) is derived through conditioning by the
value of the majority vote classifier.

Formula (11) is get by considering k, the index of the
smallest γ larger than the threshold θ:

RU∧θ(BQ, i, j)

=
1

ui

Nj∑
n=k+1

∑
x′∈XU

1BQ(x′)=j1y′=i1mQ(x′,j)=γ
(n)
j
.
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We conclude by definition of b(n)i,j .

Lemma 2 (Lemma 4 in Amini, Laviolette, and
Usunier (2008)). Let (gi)i∈{1,...,N} be such that
0 < g1 < g2 < · · · < gN−1 < gN ≤ 1. Consider
also pi ≥ 0, i = 1, . . . , N , B ≥ 0, k ∈ {1, . . . , N}. Then,
the optimal solution of the linear program:

maxq:=(q1,...,qN ) F (q) := maxq1,...,qN
∑N
i=k+1 qi

0 ≤ qi ≤ pi ∀i ∈ {1, . . . , N}∑N
i=1 qigi ≤ B

will be q∗ defined as ∀i ≤ k : q∗i = 0, ∀i > k : q∗i =

min

(
pi,
⌊
B−

∑
j<i q

∗
j gj

gi

⌋
+

)
.

Now we combine those two lemmas to prove Theorem 1.
First, notice that Eq. (5) is easily derived from Eq. (6)

using that M<
i,j(0) = 0.

To prove Eq. (6), we consider two cases.
First, ∀(i, j), ∀θ ∈ [0, 1]K , when the mistake is maxi-

mized, using Lemma 1, we get:

RU∧θ(BQ, i, j) =

Nj∑
n=k

b
(n)
i,j ≤ max

b
(1)
i,j ,...,b

(Nj)

i,j

Nj∑
n=k

b
(n)
i,j , (12)

with k is equal to 0 when {n|γ(n)j < θj} = ∅, and

max{n|γ(n)j < θj} otherwise.
Consider the upper bound Rδu(GQ, i, j) of the Gibbs

conditional risk RU (GQ, i, j) that holds with probability
1 − δ. Denote Kδ

i,j = Rδu(GQ, i, j) − εi,j and B
(n)
i,j =

1
ui

∑
x′∈XU 1y′=i1mQ(x′,j)=γ

(n)
j

. We are interested in the
following linear program task:

max
b
(1)
i,j ,...,b

(Nj)

i,j

Nj∑
n=k

b
(n)
i,j

s.t. ∀n, 0 ≤ b(n)i,j ≤ B
(n)
i,j and

Nj∑
n=1

b
(n)
i,j γ

(n)
j ≤ Kδ

i,j . (13)

As
∑
k<w<n γ

(w)
j B

(w)
i,j = M<

i,j(γ
(n)
j ) − M<

i,j(θj) with

k = max{w|γ(w)
j < t}, we get the following solution

of the linear program (13) by using Lemma 2: with p =

max{n|Kδ
i,j −M<

i,j(γ
(n)
j ) +M<

i,j(θj) > 0},

b
(n)
i,j =


0 n ≤ k,
B

(n)
i,j n ∈ [k + 1, p),
1

γ
(p)
j

(Kδ
i,j −M

<
i,j(γ

(p)
j ) +M<

i,j(θj)) n = p,

0 n > p.

This formulae is used to rewrite Eq. (12), as∑p−1
n=k+1B

(n)
i,j = I

(≤,<)
i,j (θj , γ):

RU∧θ(BQ, i, j) ≤ I(≤,<)
i,j (θj , γ

(p)
j )

+
1

γ
(p)
j

(Kδ
i,j −M<

i,j(γ
(p)
j ) +M<

i,j(θj)).

Consider the function: γ 7→ Ti,j(γ) := I
(≤,<)
i,j (θj , γ) +

1
γ

⌊
(Kδ

i,j −M<
i,j(γ) +M<

i,j(θj))
⌋
+

. To prove the theorem, it

remains to check that ∀γ ∈ [θj , 1], Ti,j(γ
(p)
j ) ≤ Ti,j(γ).

For this, let’s consider γ(w)
j , w ∈ {1, . . . , Nj}.

If w > p, then

Ti,j(γ
(p)
j ) ≤ I(≤,<)

i,j (θj , γ
(p)
j ) ≤ Ti,j(γ(w)

j ).

If w < p, then

T (γ
(p)
j )− T (γ

(w)
j )

=

p∑
n=w

b
(n)
i,j −

1

γ
(w)
j

(Kδ
i,j −M<

i,j(γ
(w)
j ) +M<

i,j(θj))

=

p∑
n=w

b
(n)
i,j −

1

γ
(w)
j

(

p∑
n=k+1

b
(n)
i,j γ

(n)
j −

w−1∑
n=k+1

γ
(n)
j b

(n)
i,j )

=
1

γ
(w)
j

(

p∑
n=w

b
(n)
i,j γ

(w)
j −

p∑
n=w

b
(n)
i,j γ

(n)
j ) ≤ 0.

Summing up, we derive forRU∧θ(BQ, i, j) the upper bound
Ti,j(γ

(p)
j ), which, in addition, is the infimum of Ti,j on γ ∈

[θj , 1].

Proof of Proposition 2. First, let’s show that, ∀(i, j) ∈ Y2,

RU (BQ, i, j) ≥
1

ui

∑
x′∈XU

1BQ(x′)=j1y′=i1mQ(x′,j)<γ∗

+
1

γ∗
bKi,j −M<

i,j(γ
∗)c+, (14)

where Ki,j = RU (GQ, i, j) − εi,j and εi,j =
1
ui

∑
x′∈XU 1BQ(x′)6=j1y′=imQ(x′, j).

Denote γ∗ = γ
(p)
j . We apply Lemma 1 and get

that RU (GQ, i, j) =
∑p
n=1 b

(n)
i,j γ

(n)
j + εi,j , where

b
(n)
i,j := 1

ui

∑
x′∈XU 1BQ(x′)=j1y′=i1mQ(x′,j)=γ

(n)
j

. Then,

we can write b(p)i,j =
(
Ki,j −

∑p−1
n=1 b

(n)
i,j γ

(n)
j

)
/γ

(p)
j . Since

−
∑p−1
n=1 b

(n)
i,j γ

(n)
j ≥ −M<

i,j(γ
(p)
j ), we deduce a lower bound

for b(p)i,j :

b
(p)
i,j ≥

1

γ∗
bKi,j −M<

i,j(γ
∗)c+. (15)

Also, taking into account Lemma 1, one can no-
tice that RU (BQ, i, j) =

∑p
n=1 b

(n)
i,j = b

(p)
i,j +

1
ui

∑
x′∈XU 1BQ(x′)=j1y′=i1mQ(x′,j)<γ∗ . Combining this

fact and Eq. (15) we deduce Eq. (14).
Using the initial assumptions and following the definition

of I(/1,/2)i,j (t, s) we deduce from Eq. (14):

RU (BQ, i, j) ≥ C · I
(≤,<)
i,j (0, γ∗) +

1

γ∗
bKi,j −M<

i,j(γ
∗)c+. (16)
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Notice that F δi,j ≤ I
(≤,<)
i,j (0, γ∗) + 1

γ∗

⌊
(Kδ

i,j −M<
i,j(γ

∗))
⌋
+

.
Subtracting Eq. (16) from this inequality we obtain:

F δi,j −RU (BQ, i, j) ≤ (1− C)I
(≤,<)
i,j (0, γ∗)

+
1

γ∗

(⌊
(Kδ

i,j −M<
i,j(γ

∗))
⌋
+
− bKi,j −M<

i,j(γ
∗)c+

)
,

which holds with probability 1− δ.
Then, as by definition RδU (GQ) ≥ RU (GQ) holds with

probability 1− δ, we obtain:

Kδ
i,j −Ki,j = RδU (GQ, i, j)−RU (GQ, i, j) ≥ 0. (17)

In addition, since for any non-negative real numbers
a, b,m ∈ R+ with b ≥ a, it is true that bb−mc+ −
ba−mc+ ≤ b− a, we deduce that⌊

(Kδ
i,j −M<

i,j(γ
∗))
⌋
+
−
⌊
Ki,j −M<

i,j(γ
∗)
⌋
+

≤ RδU (GQ, i, j)−RU (GQ, i, j).
(18)

Finally, from Eq. (16) we derive that I(≤,<)
i,j (0, γ∗) ≤

1
CRU (BQ, i, j). Taking into account this fact as well as Eq.
(18), we infer Eq. (9).

Proposition 2 states that if Condition (8) holds, the differ-
ence between the conditional Bayes risk and its upper bound
does not exceed an expression that depends on a constant C.
If we assume that the Gibbs conditional risk bound is as tight
as possible and the majority vote classifier makes most of its
mistake for the class j on observations with the low value of
mQ(x′, j), we obtain that Condition (8) accepts a high value
C (close to 1), and the bound becomes tight. From theoreti-
cal point of view it makes sense to assume that the majority
vote classifier mistakes mostly on low margin region, since
if the class got a relatively high vote from the hypotheses,
we expect that it is predicted correctly.

4 Multi-class Self-Learning Algorithm
Algorithm
Pseudo-labelling is considered in this paper to increase the
labeled set and improve performances. We introduce the
conditional Bayes error rate EU|θ(BQ), defined by:

EU|θ(BQ) :=
EU∧θ(BQ)

π(mQ(x′, k) ≥ θk)
,

where π(mQ(x′, k) ≥ θk) := 1
u

∑
x′∈XU 1mQ(x′,k)≥θk and

k := BQ(x′), to make a trade-off between the value of the
joint Bayes error rate and the number of pseudo-labeled ex-
amples. The numerator reflects proportions of mistakes on
the unlabeled set when the threshold is equal to θ, whereas
the denominator computes the proportions of unlabeled ob-
servations with the margin no less than the threshold for the
predicted class. One would use the bound get in Theorem
1, but two algorithmic drawbacks of the theorem have to be
highlighted. First, the bound depends on the true labels of
the observations. Finally, the theorem assumes that a bound

for the Gibbs conditional risk is given. To avoid these is-
sues, we take into consideration the non-deterministic case,
namely, we suppose the posterior distribution PY (y|x) de-
fined over Y . Then, we replace the deterministic 1y=i value
by the corresponding probabilistic PY (i|x) one. In practice,
PY (y|x) is approximated by mQ(x, y), saying that the con-
fidence get by the margin are used as probabilities. Remark
that if the space describes the problem poorly, the majority
vote classifier is not able to give good margins, and then the
pseudo-labelling approach can not provide a high increase
in performance.

Similarly to the self-learning algorithm introduced in
Amini, Laviolette, and Usunier (2008), in practice, to find
an optimal θ∗ we perform grid search that is the exhaus-
tive search over the grid of values within the interval (0, 1].
The same algorithm is used for computing the optimal γ∗
that provides the value of an upper bound for the condi-
tional risk (see Theorem 1). In contrast to the self-learning
algorithm, the direct grid search in the multi-class setting is
costly (O(SK), where S is the sampling rate of the grid). As

EU|θ(BQ) ≤
K∑
j=1

E
(j)
U∧θ(BQ)

π{(mQ(x′, j) ≥ θj) ∧ (BQ(x′) = j)}
,

where E
(j)
U∧θ(BQ) =

∑K
i=1

ui

u RU∧θ(BQ, i, j), the sum
might be minimized term by term, tuning independently
each component of θ. This replaces the K-dimensional
minimization task by K tasks of 1-dimensional minimiza-
tion. Then, the time complexity of the threshold search is
O(K2S2u).

Algorithm 1 Multi-class self-learning algorithm (MSLA)

Input:
labeled data set ZL
Unlabeled observations XU
Initialisation:
A set of pseudo-labeled instances, Z 6U ← ∅
A classifier H trained on ZL
repeat

1. Compute the margin threshold θ∗ that minimizes
the conditional Bayes error rate:

θ∗ = arg min
θ∈(0,1]K

EU|θ(BQ).

2. S ← {(x′, y′)|x′ ∈ XU ; [mQ(x′, y′) ≥ θy′ ]∧ [y′ =
argmaxc∈Y mQ(x′, c)]}

3. Z 6U ← Z 6U ∪ S, XU ← XU \ S
4. Learn a classifier H with the following loss func-

tion:

L(H,ZL, Z 6U ) =
l + |Z6U |

l
L(H,ZL) +

l + |Z 6U |
|Z 6U |

L(H,Z 6U )

until XU or S are ∅
Output: The final classifier H
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Data set # of labeled examples, |ZL| # of unlabeled examples, |XU | Dimension, d # of classes, K

Vowel 99 891 10 11
DNA 31 3155 180 3

Pendigits 109 10883 16 10
MNIST 175 69825 900 10
SensIT 49 98479 100 3

Table 1: Characteristics of data sets used in our experiments ordered by the size of the training set (|S| = |ZL|+ |XU |).

The extended strategy denoted by MSLA is described in
Algorithm 11.

Experimental Results
In our experiments, we considered the Random Forest model
with 200 trees and the maximal depth of trees (Breiman
2001), denoted by H in Algorithm 1, as the majority voted
classifier with uniform posterior distribution. In this case,
the margin mx of an observation is evaluated by the mean
vector of votes that the trees of the forest give to each class.
As the size of the labeled training examples (|ZL|) is small,
we did not tune the hyperparameters of the classifier and left
them by their default values.

The proposed MSLA algorithm, with margin thresholds
estimated by minimizing the conditional Bayes error rate,
is compared with
• a supervised Random Forest (RF) trained using only la-

beled examples. The approach is obtained at the initializa-
tion step of MSLA and once learned it is directly applied
to predict the class labels of the whole unlabeled set;

• a scikit-learn implementation of the graph based, label
propagation (Pedregosa et al. 2011) approach (denoted by
LP);

• the one-versus-all extension of TSVM (Joachims 1999)
denoted by OVA-TSVM. In some cases, the convergence
time was too long, we stopped learning the model when
the convergence took more than one hour;

• the multi-class extension of the classical self-learning ap-
proach (denoted by FSLA) described in Tür, Hakkani-
Tür, and Schapire (2005) with the margin thresholds
fixed to the best threshold (0.7 for all classes) that we
found on the unlabeled set, after testing different values
manually over a predefined set of thresholds in the set
{0.1, 0.2, . . . , 0.9}.
Experiments are conducted on 5 publicly available data

sets (Dheeru and Karra Taniskidou 2017; Chang and Lin
2011). The associated applications are image classification,
with the MNIST and the Pendigits databases of hand-
written digits; a signal processing kind of application with
the SensIT data set for vehicle type classification, speech
recognition using the Vowel database and finally DNA pre-
diction using the DNA data set. We use available prepro-
cessed versions (Chang and Lin 2011) of all data sets, except

1The code source of the algorithm can be found at https://
github.com/vfeofanov/trans-bounds-maj-vote.

MNIST, for which we extracted HOG-features (Dalal and
Triggs 2005) with the following parameters: cells of size (4,
4), blocks of size (5, 5) and the number of orientations was
fixed to 4. The main characteristics of these data sets are
summarized in Table 1.

Each experiment is conducted 20 times, by randomly
splitting the labeled and the unlabeled training sets from the
original data sets by keeping fixed their respective size (l
and u) at each iteration. Results are evaluated over each un-
labeled set using the accuracy (ACC) and the standard F1
measure (F1) (Baeza-Yates and Ribeiro-Neto 1999), which
is the harmonic average of precision and recall. Reported
performances are averaged over the 20 trials.

Table 2 summarizes results obtained by RF, FSLA, LP,
OVA-TSVM and MSLA. We used bold face to indicate the
highest performance rates and the symbol ↓ indicates that the
performance is significantly worse than the best result, ac-
cording to Mann-Whitney U test (Mann and Whitney 1947)
used at the p-value threshold of 0.01. From these results it
comes out that

• compared to the fully supervised approach, RF, unlabeled
training data may degrade performance in some cases.
This may be due to the fact that the learning hypotheses
of the learning algorithms are not met regarding the data
sets where the decrease is observed;

• LP and OVA-TSVM did not pass the scale over larger data
sets (SensIT and MNIST).

• Self-training approaches are more robust to the large-
scale problem and MSLA provides significantly better re-
sults than other approaches on Pendigits, SensIT
and MNIST.

• On DNA, with a very few number of labeled training ex-
amples , OVA-TSVM outperforms MSLA.

Our analysis of these results is that the self-training algo-
rithm does better pass the scale but it is extremely sensitive
to the choice of the initial classifier and the threshold used
for pseudo-labeling. On DNA the number of labeled exam-
ples is too small, leading to a bad initialization of the first
classifier trained over the labeled training set. The poor es-
timation of the margin mQ(x, y) leads to a bad approxima-
tion of the conditional probability PY (y|x) used in pseudo-
labeling. On SensIT, Pendigits and MNIST collections
(especially the two last), the initial RF classifier is efficient,
but compared to FSLA, it comes out that the choice of the
threshold for pseudo-labeling is crucial, and that using the
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Data set Score RF LP OVA-TSVM FSLA θ=0.7 MSLA

Vowel
ACC .5832± .0261 .5768± .0268 NA .516↓ ± .0429 .5918± .0267
F1 .5716± .0275 .568± .0261 NA .4934↓ ± .0459 .5804± .0298

DNA
ACC .6932↓ ± .0721 .5383↓ ± .0387 .8125± .0386 .5164↓ ± .0899 .7059↓ ± .0826
F1 .65↓ ± .1086 .5348↓ ± .0437 .8119± .0375 .3724↓ ± .0959 .6631↓ ± .1177

Pendigits
ACC .8639↓ ± .022 .7767↓ ± .0515 .667↓ ± .0225 .8474↓ ± .0352 .8866± .019
F1 .8613↓ ± .0252 .7564↓ ± .0687 .6562↓ ± .0213 .8415↓ ± .0424 .8851± .0198

MNIST
ACC .8647↓ ± .0176 NA NA .7998↓ ± .0587 .9085± .0182
F1 .8633↓ ± .0193 NA NA .7743↓ ± .077 .9086± .0182

SensIT
ACC .67± .0291 NA NA .6192↓ ± .0366 .6745± .0288
F1 .654± .0448 NA NA .5784↓ ± .0683 .6599± .0421

Table 2: The result table of the classification performance on different data sets described in Table 1. The performance is
computed using two score functions: accuracy and F1. The sign ↓ shows if the performance is statistically worse than the best
result on the level 0.01 of significance. NA indicates the case when the algorithm does not converge.

conditional Bayes error rate, the margin of observations are
good indicators to find such efficient thresholds. In the case
of MNIST, the increase in performace compared to RF is
about 4% on both the accuracy and the F1 measure.

We also analyze the behavior of the various algorithms for
growing initial amounts of labeled data in the training set.
Figure 1 illustrates this by showing the accuracy on a sub-
sample of 3500 observations on MNIST of RF, FSLAθ=0.7

and MSLAwith respect to the percentage of the labeled train-
ing examples. As expected, all performance curves increase
monotonically with respect to the additional labeled data.
When there are sufficient labeled training examples, all algo-
rithms actually converge to the same accuracy performance,
suggesting that the labeled data carries out sufficient in-
formation and no additional information could be extracted
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Figure 1: Classification accuracy over a subset of 3500 ob-
servations of the MNIST collection. On the graphs, dots rep-
resent the average performance on the unlabeled training set
over 20 random splits.

from unlabeled examples.
For a low number of labeled training data, the contribution

of FSLAθ=0.7 and MSLA that use unlabeled data is clearly
shown. Even when the initial supervised RF classifier is effi-
cient, an inexact threshold used for pseudo-labeling will lead
to an addition of extra noise, making that the Random For-
est trained over the augmented noisy data set becomes less
effective than RF itself.

5 Conclusion
In this paper we proposed a bound over the transductive risk
of a multi-class voted majority classifier. We showed how
the bound can be obtained by considering the class confu-
sion matrix as an error indicator, by involving the margin
distribution of the classifier over each class and a bound over
the risk of the associated Gibbs classifier. From our study, it
came out that when the latter bound is tight and the errors
of the majority vote classifier per class are concentrated on a
low margin zone, the bound over the risk of the Bayes classi-
fier is tight. We further showed that this bound can be solved
analytically using a linear program. From this result, we then
proposed to extend the self-training algorithm to the multi-
class case by automatically finding a threshold for which
the risk of the majority vote is the lowest. We provided em-
pirical evidence of the extended algorithm compared to the
case where the threshold is fixed manually, to a graph based
semi-supervised approach and to the one-vs-all extension of
TSVM. From the numerical results, it came out that the self-
learning algorithm can better pass the scale but it is highly
sensitive to the choice of the initial classifier trained over
the labeled training set and to the threshold upon which un-
labeled examples are pseudo-labeled. These results suggest
that, considering the margin is effectively interesting.
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