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Abstract

Recommender systems have been playing an increasingly im-
portant role in our daily life due to the explosive growth of in-
formation. Accuracy and explainability are two core aspects
when we evaluate a recommendation model and have become
one of the fundamental trade-offs in machine learning. In this
paper, we propose to alleviate the trade-off between accuracy
and explainability by developing an explainable deep model
that combines the advantages of deep learning-based models
and existing explainable methods. The basic idea is to build
an initial network based on an explainable deep hierarchy
(e.g., Microsoft Concept Graph) and improve the model accu-
racy by optimizing key variables in the hierarchy (e.g., node
importance and relevance). To ensure accurate rating predic-
tion, we propose an attentive multi-view learning framework.
The framework enables us to handle sparse and noisy data by
co-regularizing among different feature levels and combining
predictions attentively. To mine readable explanations from
the hierarchy, we formulate personalized explanation genera-
tion as a constrained tree node selection problem and propose
a dynamic programming algorithm to solve it. Experimen-
tal results show that our model outperforms state-of-the-art
methods in terms of both accuracy and explainability.

Introduction
Personalized recommendation has become one of the most
effective techniques to help users sift through massive
amounts of web content and overcome information over-
load. Recently, the recommendation community has reached
a consensus that accuracy can only be used to partially
evaluate a system. Explainability of the model, which is
the ability to provide explanations for why an item is rec-
ommended, is considered equally important (Wang et al.
2018a). Appropriate explanations may persuade users to try
the item, increase users’ trust, and help users make better
decisions (Zhang et al. 2014a).

Determining whether to optimize towards accuracy or ex-
plainability poses a fundamental dilemma for practitioners.
Currently, their choices are limited to two types of models:
• Deep but unexplainable. Deep learning-based recom-

mendation models (Wang et al. 2017; Zheng, Noroozi,
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Figure 1: Multi-level user interest extracted using our
method. The hierarchies correspond to a 26-year-old female
Yelp user (left) and a 30-year-old male Yelp user (right). The
features users care most about are highlighted in orange.

and Yu 2017) achieve state-of-the-art accuracy due to
their capacity to model complex high-level features. How-
ever, the high-dimensional high-level features they learn
are beyond the comprehension of ordinary users.

• Explainable but shallow. Although many explainable
recommendation methods have been proposed, the ex-
plainable components in the models are usually shallow.
Typical explainable components include one or two layers
of attention networks (Chen et al. 2017), matrix factoriza-
tion (Zhang et al. 2014a), and topic modeling (McAuley
and Leskovec 2013). They have achieved considerable
success in improving explainability. However, the lack
of an effective mechanism to model high-level explicit
features limits their accuracy and/or explainability. These
methods can only select explanations from a pre-defined
level of candidates. They cannot identify which level of
features best represents a user’s true interest. For example,
they are not able to tell whether a user only likes shrimps
(lower level) or is interested in seafood (higher level).
In this paper, we aim to mitigate the trade-off between

accuracy and explainability by developing an explainable
deep model for recommendation. The model achieves state-
of-the-art accuracy and is highly explainable. Moreover, it
enables us to accurately portray hierarchical user interest. As
shown in Figure 1, the model can automatically infer multi-
level user profiles and identify which level of features best
captures a user’s true interest, e.g., whether s/he is interested
in lower-level features such as shrimp or higher-level fea-
tures such as seafood.
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To design an explainable deep model as such, we are faced
with two major technical challenges. The first challenge is
to accurately model multi-level explicit features from noisy
and sparse data. It is very difficult to model the relation-
ships between high-level and low-level features since they
have overlapping semantic meanings. For example, learning
whether seafood is important to the user is challenging be-
cause the user may only mention shrimp or meat in the re-
view. The second challenge is to generate explanations that
are easy for common users to understand from the multi-
level structure.

To address these challenges, we develop a Deep Explicit
Attentive Multi-View Learning Model (DEAML). The basic
idea is to build an initial network based on an explainable
deep structure (e.g., knowledge graph) and improve accu-
racy by optimizing key variables in the explainable structure
(e.g., node importance and relevance). To improve model
accuracy, we propose an attentive multi-view learning
framework for rating prediction. In this framework, differ-
ent levels of features are considered as different views. Adja-
cent views are connected by using the attention mechanism.
Results from different views are co-regularized and atten-
tively combined to make the final prediction. This frame-
work helps improve accuracy since it is robust to noise and
enables us to fully leverage the hierarchical information in
the explainable structure. Second, we formulate personal-
ized explanation generation as a constrained tree node
selection problem. To solve this problem, we propose a dy-
namic programming algorithm, which finds the optimal fea-
tures for explanation in a bottom-up manner.

We conduct two experiments and a user study to evalu-
ate our method. Numerical experiments show that DEAML
outperforms state-of-art deep learning-based recommenda-
tion models in terms of accuracy. An evaluation with 20 hu-
man subjects has shown that the explanations generated by
us are considered significantly more useful than state-of-the-
art aspect-based explainable recommendation method.

Related Work
Many methods have been proposed to improve recom-
mendation accuracy, including content-based (Kompan and
Bieliková 2010), collaborative filtering-based (Das et al.
2007) and hybrid methods (De Francisci Morales, Gionis,
and Lucchese 2012). As an integration and extension of pre-
vious methods, deep learning-based models are proposed
to further improve accuracy. For example, CDL (Wang,
Wang, and Yeung 2015) jointly performs deep represen-
tation leaning and collaborative filtering by employing a
hierarchical Bayesian model. He et al. propose a Neural
Collaborative Filtering framework to learn nonlinear in-
teractions between users and items (He et al. 2017). In
DeepCoNN and NARRE (Zheng, Noroozi, and Yu 2017;
Chen et al. 2018), convolutional neural networks are lever-
aged to extract features from textual reviews. Although these
methods achieve significant improvement in accuracy, the
high-level features extracted are beyond the understanding
of common users. Except for unstructured textual data, re-
searchers have also designed models that leverage structural

information. Famous examples are taxonomy-based meth-
ods that incorporate taxonomies of items into latent factor
models (Kanagal et al. 2012; Zhang et al. 2014b). These
methods can effectively mitigate data sparsity. However,
their accuracy and explainability are limited due to the lack
of a mechanism to model multi-level item features.

Recently, researchers have discovered that providing ex-
planations may improve persuasiveness, effectiveness, ef-
ficiency and user trust (Zhang et al. 2014a). Thus, many
methods have been developed to improve the explainabil-
ity of recommendation models (Ren et al. 2017; Peake and
Wang 2018; Wang et al. 2018b). Pioneer works (McAuley
and Leskovec 2013; Zhang et al. 2014a) focus on im-
proving the explainability of collaborative filtering models.
These works usually rely on shallow explainable compo-
nents such as matrix factorization (Zhang et al. 2014a) and
generative models (Diao et al. 2014; Wu and Ester 2015)
for explanation generation. More recently, researchers dis-
covered the attention mechanism’s capability in improving
the explainability of deep learning-based methods. By us-
ing the attention mechanism, the models can automatically
learn the importance of explicit features and at the same
time refine user and/or item embeddings (Chen et al. 2017;
2018). Researchers have also built explainable models based
on interpretable structures such as graphs (He et al. 2015)
and trees (Wang et al. 2018a).

The aforementioned explainable recommendation meth-
ods have achieved considerable success in improving ex-
plainability. However, to the best of our knowledge, none
of the existing explainable recommendation methods can
model multi-level explicit (explainable) features. As a re-
sult, the accuracy and/or explainability of these methods are
limited. Compared with these methods, our DEAML is an
explainable deep model that achieves state-of-the-art accu-
racy and meanwhile is highly explainable. Moreover, our
model can automatically learn multi-level user profile and
infer which level of features best captures a user’s interest.

Problem Definition
We aim to build an explainable deep recommendation model
by incorporating an explicit (explainable) feature hierarchy.

Input: The input of our model includes a user set U , an
item set V , and an explicit feature hierarchy Υ.

Definition 1. An explicit feature hierarchy Υ is a tree
where each node Fl is an explicit feature or aspect (e.g.,
meat) of the items (e.g., restaurants). Each edge is a tuple
(Fl1 , Fl2), which represents that the child Fl1 (e.g., beef) is
a sub-concept of the parent Fl2 (e.g., meat). We denote the
set of nodes in Υ as F , where F = {F1, ..., FL} and L rep-
resents the total number of nodes in Υ.

To build Υ, we leverage the Microsoft Concept
Graph1 (Wu et al. 2012; Wang et al. 2015), which is a widely
used knowledge graph with over 5 million concepts and 85
million “IsA” relations (e.g., cat IsA animal). We first map
n-grams in the reviews to concepts (or instances) in the con-
cept graph. Only the frequently used concepts that are highly

1https://concept.research.microsoft.com/
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Figure 2: Architecture of our proposed DEAML model for rating prediction.

correlated with the ratings are kept and regarded as the ex-
plicit features. We then recursively search the explicit fea-
tures in the concept graph and utilize the “IsA” relationships
to build Υ. On average, the depth of Υ is 5.

Next, we define the hierarchical level of each feature.

Definition 2. The hierarchical level hl of Fl is recursively
defined based on its children: hl = maxFc∈children(FL) hc+
1. IfFl is a leaf, its hierarchical level is set to 1. LetH denote
the largest hierarchical level of internal nodes in Υ.

Besides Υ, two other types of input are the user set U
and the item set V . Each user in U is represented as a tu-
ple (i,xi), where i is the user id and xi ∈ RL is the ob-
served user-feature interest vector. Here the l-th element in
xi measures how much user i cares about feature Fl. Sim-
ilarly, each item in V is represented as (j,yj) and the ob-
served item-feature quality vector yj ∈ RL measures how
well j performs on these features. We adopt the method pro-
posed by (Zhang et al. 2014a) to calculate xi and yj . The
basic idea is to compute xi and yj based on the mentioned
times and the sentiments of the features in the reviews.

Output: Given a user i and an item j, the output of our
model includes the predicted rating r̃ij and a personalized
feature-level explanation E, where E = {Fl1 , ..., FlT } is a
subset of F . Similar to (Zhang et al. 2014a), the final expla-
nations presented to users are in the template as follows.

You might be interested in [features in E],
on which this item performs well.

Approach Overview
Given an explicit feature hierarchy Υ, we build a Deep Ex-
plicit Attentive Multi-View Learning Model (DEAML) that
is able to 1) accurately predict ratings and 2) produce useful
explanations. Our method consists of two steps.

Step 1: Prediction with Attentive Multi-View Learn-
ing. In this step, we build the DEAML model by minimiz-
ing the rating prediction error. The architecture of the model
is shown in Figure 2. For each user i, we first build a user-
feature interest hierarchy (Figure 2A) by using Υ and xi.

While xi measures user interest to some extent, it is in-
accurate due to data sparsity, noises in the data, and also
overlapping semantics of the features. To improve accuracy,
we propose a hierarchical propagation method that prop-
agates user interest along the hierarchy based on user at-
tention. Similarly, for each item j, we build an item-feature
quality hierarchy (Figure 2C) by propagating yj along edges
of Υ. To effectively predict ratings by using the two hierar-
chies, we propose an attentive multi-view learning frame-
work. As shown in Figure 2B, features at different hierarchi-
cal levels are regarded as different views. Predictions from
multiple views are co-regularized to enforce the agreement
among them. Considering a user’s interest is not equally dis-
tributed over different hierarchical levels, we calculate the
final prediction by attentively integrating results from multi-
ple views. Hierarchical propagation and attentive multi-view
learning are jointly optimized, which allows us to simultane-
ously infer user profiles and predict ratings in an end-to-end
manner.

Step 2: Personalized explanation generation. In this
step, we generate the explanations by using the DEAML
model. To this end, we first define a utility function for
candidate features, which jointly considers user-feature in-
terest, item-feature quality and attention scores of different
views. Then we formulate explanation generation as a con-
strained tree node selection problem and propose a dynamic
programming algorithm to solve it efficiently.

Prediction with Attentive Multi-View Learning
In this section, we introduce how to predict the rating given
xi and yj . We first describe the hierarchical propagation
method used to build an accurate user-feature interest hi-
erarchy. Then we propose the attentive multi-view learning
framework that leverages complementary information in the
feature hierarchy to improve rating prediction accuracy.

Hierarchical Propagation
A straightforward way to build the user-feature interest hi-
erarchy is to map elements in xi to Υ. Specifically, for each
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Figure 3: Hierarchical propagation of user interest.

feature Fl in Υ, we can assume that user i’s interest in Fl
is equal to xil, which is the lth element in xi. Since xil is
calculated by counting the number of times Fl appears in
the reviews written by user i, this method captures user in-
terest to some extent. However, due to data sparsity, noises
in the data, and overlapping semantics of features in Υ, the
constructed user-feature interest hierarchy can be inaccurate.
For instance, a user interested in meat may comment fre-
quently on beef and pork but rarely mentions the word meat.

To solve this issue, we infer users’ true interest x̃i by
propagating xi along Υ. For each parent Fl, we calculate
x̃il by considering personalized user attention (Figure 3):

x̃il = αllxil +
∑
Fc∈children(Fl)

αlcx̃ic,

αlc =
exp(α∗lc)∑

F
c′∈children(Fl)∪{Fl}

exp(α∗
lc′ )

, (1)

α∗lc = h>1 ReLU(Wlel + Wcec + Wuui + b1) + b2,

where αlc is the attention score of feature Fc. el, ec ∈ Rd1
are pre-trained embeddings of Fl and Fc. We follow the
method proposed in (Choi et al. 2017) to train feature em-
beddings that capture both semantic and hierarchical infor-
mation. As there are H levels of features except FL in Υ,
the user embedding at level h is uhi ∈ Rk and the global
user embedding ui ∈ RkH is the concatenation of uhi at all
levels (shown in Figure 2). The hidden layer size of the at-
tention network is d2. Wl ∈ Rd2×d1 ,Wc ∈ Rd2×d1 ,Wu ∈
Rd2×kH ,h1 ∈ Rd2 , b1 ∈ Rd2 , b2 ∈ R and ui ∈ RkH are
model parameters to be learned.

Propagation of yj is similar to that of xi. After that we
obtain a more accurate item-feature quality vector ỹj .

Attentive Multi-View Learning
After we obtain accurate estimates of user-feature interest
and item-feature quality, we predicate how much user i likes
item j based on x̃i and ỹj . To accurately predict the rat-
ing, we design an attentive multi-view learning framework.
In this section, we first introduce how to predict the ratings
based on the information in a single view. Then, we describe
the co-regularization loss that enforces agreement among
different views. Finally, we illustrate how to combine dif-
ferent views in a unified model and learn parameters from
different views jointly.
Loss in each view. In our framework, each view consists
of features at the same hierarchical level. We first consider
rating prediction in a single view. Suppose there are Lh
features at level h. By only considering users’ interest on

these features, we obtain a local user-feature interest vector
x̃hi ∈ RLh , which is a slice of x̃i. Similarly, we can obtain
ỹhj ∈ RLh , which is a slice of ỹj .

At level h, we employ an extended version of
EFM (Zhang et al. 2014a) to predict the rating based on
x̃hi and ỹhj . Compared with collaborative filtering, EFM en-
riches the user and item representations by adding an addi-
tional set of latent factors learned from the explicit features.
Specifically, the user embedding for view h consists of two
parts: uhi = phi ⊕chi ∈ Rk. Here phi ∈ Rk1 are latent factors
learned from explicit features (explicit factors), chi ∈ Rk2
are implicit factors, and ⊕ is the concatenation operator.
Similarly, the item embedding at level h is vhj = qhj ⊕ dhj ,
where qhj ∈ Rk1 denote the explicit factors and dhj ∈ Rk2
are the implicit factors. The explicit factors phi and qhj are
used to fit x̃hi with Zhphi and fit ỹhj with Zhqhj , where
Zh ∈ RLh×k1 is the projection matrix of features at level h.

Traditional EFM directly predicts the rating of user i on
item j as uhi

>
vhj . We further extend it by incorporating

global average rating bias µ, user bias oi and item bias oj :

r̃hij = uhi
>
vhj + oi + oj + µ. (2)

Let Ω denote the set of training instances and rij denote the
ground-truth rating of user i on item j, the loss in view h is:

Lh = λa
∑
i,j∈Ω(r̃hij − rij)2 +

λx
∑
i ‖x̃hi −Zhphi ‖2 + λy

∑
j ‖ỹhj −Zhqhj ‖2, (3)

where λa, λx and λy are weights of corresponding items.
Co-regularization loss. We then consider how the mod-
els in multiple views can complement each other. Based on
the consensus principle which aims to maximize the agree-
ment on multiple views (Xu, Tao, and Xu 2013), a common
paradigm of multi-viewing learning is co-regularization. Ac-
tually, information distributed in different views describes
the inherent characteristics of user-feature interest and item-
feature quality from various aspects. We can regularize the
learning of multiple views by enforcing agreement among
their predictions. This way, complementary information can
be leveraged to benefit the learning of each single view. By
enforcing the agreement between two adjacent views, the
co-regularization loss is:

Lv =
∑
i,j∈Ω

H−1∑
h=1

(r̃hij − r̃h+1
ij )2. (4)

Joint learning. Predictions from multiple views should be
combined for the final prediction. One method is to aver-
age the predictions of all views. However, this assumes that
each view contributes equally to the rating. In reality, differ-
ent views reveal user-feature interest and item-feature qual-
ity at different levels of abstractness. The levels of interest
also vary among users and items. Some users may care more
about general features (e.g. food and service) while others
may be more attracted by a specific feature (e.g. beef ). This
is the same for items. The views are not equally useful and
should be assigned different weights. The weights are sup-
posed to be determined in a user-item-specific way to bet-
ter consider users’ interest and items’ quality. Thus we use
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the attention mechanism to combine multiple views. Let Ih
denote the H-dimensional one-hot vector for view h. The
attention network for view combination is:

w∗h = h>2 ReLU(W1ui +W2vj +W3Ih + b3) + b4,

wh =
exp(w∗h)∑H

h′=1
exp(w∗

h′ )
. (5)

where ui,vj ∈ RkH are the global user embedding and
item embedding used in hierarchical propagation. W1 ∈
Rd3×kH ,W2 ∈ Rd3×kH ,W3 ∈ Rd3×H ,h2 ∈ Rd3 , b3 ∈
Rd3 , b4 ∈ R are model parameters and d3 is the hidden
layer size of this attention network. The final prediction is
a weighted sum of predictions in each view, where wh is the
weight of view h:

r̃ij =

H∑
h=1

whr̃
h
ij . (6)

Let ‖Θ‖2 denote the L2 norm of all parameters in our
model. We optimize the following objective function:

L =
∑
i,j∈Ω

(r̃ij − rij)2 +

H∑
h=1

Lh + λvLv + λr‖Θ‖2, (7)

where λv, λr are weights of corresponding items. We use the
Adam optimizer (Kingma and Ba 2014) because it can auto-
matically adjust the learning rate during the training phase.

Personalized Explanation Generation
The goal of personalized explanation generation is to select
T features from Υ that are most useful in helping user i
decide whether s/he will try item j. Selecting features dis-
tributed in multiple hierarchical levels is challenging be-
cause 1) users’ interest is not evenly distributed over differ-
ent hierarchical levels and 2) we need to avoid selecting fea-
tures with overlapping semantics. In this section, we first in-
troduce our utility function, which estimates the usefulness
of each feature. Then, we formulate the feature selection as
a constrained tree node selection problem and propose a dy-
namic programming method to solve it efficiently.
Utility function. Given user i and item j, three factors are
considered when judging whether a feature Fl is useful:
• Whether user i is interested in Fl.
• How well item j performs on Fl.
• The weight of the view that Fl belongs to.
In view h, the explicit factors phi and qhj are used to fit the
user-interest vector x̃hi with Zhphi and fit ỹhj with Zhqhj .
Let Fl be the l̂-th feature at level h. We define the utility
score of Fl in the recommendation instance (i, j) as:

Ψ(Fl) =
(
Zhphi

)
l̂

(
Zhqhj

)
l̂
wh, (8)

where wh is the user-item-specific attention weight for view
h, which is calculated by using Equation (5). The utility
score for the root feature is set to 0 since it does not have a
concrete meaning. This utility function jointly incorporates
three factors mentioned above.
Constrained tree node selection. Next, we select T features
to be included in the explanation. The goal is to maximize

the total utility score of the selected features. We further re-
quire that features (e.g. beef ) cannot be selected simultane-
ously with their ancestors in Υ (e.g. meat) since they are se-
mantically overlapping. Mathematically, we formulate per-
sonalized explanation generation as a constrained tree node
selection problem:

argmax
φ1,...,φL

∑L
l=1 (φlΨ(Fl)) ,

s.t.
∑L
l=1 φl = T, φl ∈ {0, 1}, (9)

φl1φl2Anc(l1, l2) = 0,∀ hl1 < hl2 ,

where φl = 1 (φl = 0) means feature Fl is (not) selected
and Anc(l1, l2) returns 1 if Fl2 is an ancestor of Fl1 .

We solve the above problem by using dynamic program-
ming. Let G(l, t) denote the maximum utility we can obtain
by selecting t nodes in the subtree rooted at Fl. Let us use
IDls to represent the id of the s-th child feature of Fl, em-
ploy J(l, s, t) to denote the maximum utility we can obtain
by selecting t nodes from the first s children of Fl, and use
S to denote the total number of children of Fl. We have the
following transition equations:

G(l, t) =

{
max (Ψ(Fl), J(l, S, t)) t = 1

J(l, S, t) t > 1
(10)

J(l, s, t) = max
06t′6t

(J(l, s− 1, t′) +G(IDls, t− t′)) .

Here, we need to carefully consider whether t = 1 because
if we select more than one node (i.e., t >1) from the sub-
tree rooted at Fl, Fl itself can not be selected. Otherwise,
the constraint will be violated. Supposing that the root of Υ
is FL, we can obtain the final solution with the maximum
utility G(L,T) by using Equation (10) iteratively.
Time complexity. If the maximum number of children of a
feature is M , the time complexity of our dynamic program-
ming algorithm is O(LMT 2). It is more efficient than the
brute force algorithm whose time complexity is O(LT ).

Experiments
We conduct two experiments and a user study to evaluate the
effectiveness of our method. First, we demonstrate that our
method performs better than the state-of-the-art methods in
terms of accuracy. Then, we conduct parameter sensitivity
analysis to validate the robustness of our model. Finally, we
evaluate the explainability of DEAML with 20 human sub-
jects in a user study.

Table 1: Statistics of three public datasets.
Dataset #Users #Items #Reviews

Toys and Games 19,412 11,924 167,597
Digital Music 5,541 3,568 64,706

Yelp 8,744 14,082 212,922

Experimental Settings
Datasets. We use three datasets from different domains for
evaluation. Table 1 summarizes the statistics of the datasets.
• Toys and Games is the part of the Amazon dataset2 that

2http://jmcauley.ucsd.edu/data/amazon
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Table 2: RMSE comparison with baselines on three datasets. Best results are highlighted in bold.

.

G1 G2 G3 Ours
NMF PMF SVD++ CKE HFT EFM DeepCoNN NARRE DEAML-V DEAML

Toys and Games 1.1489 1.1832 0.9071 0.9923 0.9958 0.9534 0.9199 0.9084 0.9062 0.9040
Digital Music 1.1520 1.2619 0.9211 0.9849 1.0910 0.9696 0.9212 0.9209 0.9190 0.9118

Yelp 1.2678 1.2413 1.1561 1.2279 1.2738 1.2019 1.1503 1.1348 1.1343 1.1333

focuses on Toys and Games. We choose the 5-core version
where all users and items have at least 5 reviews.

• Digital Music is also from the Amazon 5-core dataset. It
focuses on the domain of digital music.

• Yelp consists of restaurant reviews from Yelp Challenge
20183. Since the raw data is very large and sparse, we
follow (Zhang et al. 2014a) to preprocess the data. Specif-
ically, we select restaurants located in the Phoenix city
and ensure that all users and items have at least 10 ratings.

Baselines. We select eight competitive methods for compar-
ison. These methods can be divided into three groups ac-
cording to the type of data they use.
• The first group (G1) only relies on the observed rating

matrix for rating prediction. This group consists of three
methods: NMF (Lee and Seung 2001), PMF (Mnih and
Salakhutdinov 2008) and SVD++ (Koren 2008).

• The second group (G2) contains a knowledge-based
method, CKE (Zhang et al. 2016). Here, we regard the
feature hierarchy Υ as the structural knowledge in CKE.

• The third group (G3) consists of four methods that
leverage the textual reviews for rating prediction:
HFT (McAuley and Leskovec 2013), EFM (Zhang et al.
2014a), DeepCoNN (Zheng, Noroozi, and Yu 2017) and
NARRE (Chen et al. 2018). Among them, DeepCoNN
and NARRE are deep learning-based. EFM is the state-of-
the-art method for mining feature-level explanations from
a single layer of features (no hierarchical structure).

Evaluation metric. We adopt the widely-used Root Mean
Square Error (RMSE) to evaluate the accuracy of all algo-
rithms on rating prediction. A lower RMSE indicates a better
performance. This is calculated as:

RMSE =

√
1

N

∑
i,j

(r̃ij − rij)2, (11)

where N is the total number of testing instances.
Details. We randomly split the dataset into training (70%),
validation (15%) and test (15%) sets. We tune the hyper-
parameters of each algorithm on the validation set and eval-
uate their performance on the test set. The number of latent
factors k for algorithms is searched in [8,16,32,64,128]. Af-
ter parameter tuning, we set k = 8 for NMF, PMF and HFT,
and k = 16 for SVD++. We set k = 32 for EFM, CKE,
DeepCoNN, NARRE and DEAML. We reuse most hyper-
parameters of DeepCoNN and NARRE reported by their au-
thors. For simplicity, the number of explicit and implicit fac-
tors are set equally in EFM and DEAML. When constructing
Υ in DEAML, we select the top-2000 frequently mentioned
concepts in reviews, sort them by their correlations with the

3https://www.yelp.com/dataset/challenge

ratings and keep only top-500 of them. We set d1, d2, d3, λv ,
and λa to 20, 10, 10, 10.0, and 3.0, respectively.

Study on Model Accuracy
Overall performance. The accuracy of our approach and
the baselines on three datasets are shown in Table 2. After
analyzing the results, we made the following conclusions.

First, methods that incorporate review information (G3)
generally perform better than others. Compared with those
only relying on a rating matrix (G1) and the method that
incorporates the feature hierarchy (G2), methods in G3 re-
spectively achieve 8.9% and 3.0% improvement in accuracy
on average. We ascribe this to the fact that reviews provide
more information about users’ interest and items’ quality.

Second, deep recommendation models (DeepCoNN,
NARRE and ours) perform significantly better than those
with shallow models (10.7% improvement in accuracy on
average). This is because deep models can model high-level
features more effectively and better capture non-linear inter-
actions. This again demonstrates the necessity of developing
a deep version of the explainable models.

Third, our DEAML model achieves the best performance
on all three datasets. Our approach performs significantly
better than EFM, achieving 5.7%, 5.2% and 6.0% improve-
ments on three datasets. This demonstrates the effective-
ness of our attentive multi-view learning framework. While
EFM predicts ratings from a single view, our design of at-
tentive multi-view learning allows different views to com-
plement and benefit each other. Compared with CKE that
simply learns item embeddings from knowledge bases, our
approach fully leverages the feature hierarchy and improves
accuracy by 8.0%. The infusion of explicit feature hierarchy
provides our approach with additional knowledge that Deep-
CoNN and NARRE cannot leverage. Given a set of explicit
features, DEAML can differentiate low-level features from
high-level ones and learn the associations between the fea-
tures, while DeepCoNN and NARRE treat all features as if
they are at the same level. On average, our method is 1.0%
more accurate than DeepCoNN and NARRE.
Effectiveness of the attention mechanism. In DEAML,
we employ the attention mechanism to combine predictions
from different views. To validate the effectiveness of the at-
tention mechanism, we design DEAML-V, which is a vari-
ant that assigns same weights to all views. From Table 2 we
can observe that DEAML constantly performs better than
DEAML-V. It verifies our consideration that different views
contain features at different levels of abstractness and should
be assigned weights according to users’ interest and items’
quality. The attention mechanism enables DEAML to com-
bine multiple views more adaptively and perform better.

3627



8 16 32 64 128
Number of latent factors

0.91

0.92

0.93

0.94

0.95

RM
SE

DEAML
SVD++
DeepCoNN
NARRE

Figure 4: RMSE on Digital Music with different numbers of
latent factors (compared with three competitive baselines).

0 10 20 30 40 50
v

0.911

0.913

0.915

RM
SE

0 1 2 3 4 5
a

0.911

0.915

0.919

RM
SE

Figure 5: RMSE on Digital Music with different weights λv
of co-regularization (left) and weights λa of errors in each
view (right).

Parameter Sensitivity Analysis

In this section, we study the sensitivity of several important
parameters in our approach. We only report results on Digi-
tal Music here due to the space limitation. Results on other
datasets are similar.

Effect of number of latent factors. We first compare our
approach with three competitive baselines (SVD++, Deep-
CoNN and NARRE) at different numbers of latent factors.
The results are shown in Figure 4. We can see that DEAML
consistently achieves the best performance with varying
numbers of latent factors. This demonstrates the robustness
of our approach. We further observe that increasing the num-
ber of latent factors does not necessarily improve accuracy,
because too many latent factors may lead to over fitting.

Effectiveness of co-regularization. We then study how
RMSE changes with λv , which is the weight of the co-
regularization loss term. The left part of Figure 5 shows
that our approach achieves the best performance when λv
is 10.0. Smaller or larger λv will hurt performance. This
demonstrates the importance of involving agreement (co-
regularization) among different views.

Effectiveness of enforcing accurate prediction in each
view. The right part of Figure 5 shows how RMSE changes
with increasing λa, which is the weight of rating prediction
errors in each single view. The lowest RMSE is achieved
when λa = 3.0. When λa is 0, the performance degrades
since we fail to train a good predictor in each single view.

Study on Explainability
In this section, we evaluate the usefulness of our explana-
tions in helping real-world users make better decisions.With
the help of a data annotation company, we recruit 20 partic-
ipants who have written at least 15 Yelp reviews. The par-
ticipants are independent and do not know each other. All
reviews on the restaurants they mentioned are crawled and
merged with other reviews in the Yelp dataset. Two baselines
are used for comparison. The first baseline is PAV, which
is the famous “People Also Viewed” explanation. The sec-
ond baseline is EFM, which is the state-of-the-art method for
generating feature-level explanations. We apply our method
and baselines on the merged dataset and randomly sample
100 restaurants for testing. We ensure that none of the partic-
ipants go to these restaurants. For each restaurant, we gener-
ate three explanations for each participant using PAV, EFM,
and DEAML. The template of EFM is same as DEAML and
PAV has it own format:“People also viewed this item”. T is
set to 3 for both EFM and DEAML. The participants are re-
quired to give annotations from 1 to 5 on each explanation
according to its usefulness in helping them decide whether
they will go to the restaurants. We randomly shuffle the order
of explanations so that they do not know which explanation
comes from which method4.

Table 3: Average score on explanation usefulness. <30 and
≥30 refer to two age groups.

.

Male Female <30 ≥30 Overall

PAV 1.35 1.51 1.65 1.11 1.41
EFM 3.18 3.13 3.03 3.32 3.16

DEAML 3.69 3.52 3.58 3.68 3.63

Table 3 shows the average score on the usefulness of
explanations generated by the three methods. We observe
that PAV performs the worst since it only suggests that one
restaurant is popular and is not personalized. Our DEAML
outperforms EFM in explanation usefulness (14.9% im-
provement). This suggests that DEAML can accurately iden-
tify a user’s interest and a restaurant’s quality on multi-level
features while EFM suffers from the sparse and noisy data.
Additionally, EFM often selects features that are semanti-
cally overlapped (e.g., food and cheese) since it ignores the
hierarchical structure of features while DEAML considers
such constraints to make the generated explanation more in-
formative. We also study the annotations given by partici-
pants of different profiles such as gender and age (see Table
3). DEAML consistently performs the best for both male and
female participants. It is the same for participants in the two
age groups. This suggests that DEAML is robust to various
user profiles and is personalized enough to generate useful
explanations that help each user make better decisions.

Conclusions
In this paper, we propose a Deep Explicit Attentive Multi-
View Learning Model (DEAML) for explainable rec-

4Explanations generated are at https://www.microsoft.com/en-
us/research/uploads/prod/2018/10/explanations.csv
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ommendation, which combines the advantages of deep
learning-based methods and existing explainable methods.
The proposed attentive multi-view learning frameworks en-
ables the model to accurately predict ratings and infer multi-
level user profiles. To support personalized explanation gen-
eration from multi-level features, we formulate the problem
as constrained tree node selection and solve it efficiently
by using dynamic programming. Experimental results show
that our model performs better than state-of-the-art methods
in both accuracy and explainability.
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