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Abstract

Inspired by recent interests of developing machine learning
and data mining algorithms on hypergraphs, we investigate in
this paper the semi-supervised learning algorithm of propa-
gating ”soft labels” (e.g. probability distributions, class mem-
bership scores) over hypergraphs, by means of optimal trans-
portation. Borrowing insights from Wasserstein propagation
on graphs [Solomon et al. 2014], we re-formulate the la-
bel propagation procedure as a message-passing algorithm,
which renders itself naturally to a generalization applicable to
hypergraphs through Wasserstein barycenters. Furthermore,
in a PAC learning framework, we provide generalization er-
ror bounds for propagating one-dimensional distributions on
graphs and hypergraphs using 2-Wasserstein distance, by es-
tablishing the algorithmic stability of the proposed semi-
supervised learning algorithm. These theoretical results also
shed new lights upon deeper understandings of the Wasser-
stein propagation on graphs.

Introduction
Recent decades have witnessed a growing interest in devel-
oping machine learning and data mining algorithms on hy-
pergraphs (Zhou, H., and Schölkopf 2007; Jost and Mulas
2018; Bulò and Pelillo 2009; Li and Ramchandran 2015;
Li and Milenkovic 2017; Hein et al. 2013; Huang, Zhang,
and Yu 2015). As a natural generalization of graphs, a hy-
pergraph is a combinatorial structure consisting of vertices
and hyperedges, where each hyperedge is allowed to con-
nect any number of vertices. This additional flexibility facil-
itates capturing higher order interactions among objects; ap-
plications have been found in many fields such as computer
vision (Govindu 2005), network clustering (Demir, Aykanat,
and Cambazoglu 2008), folksonomies (Ghoshal et al. 2009),
cellular networks (Klamt, Haus, and Theis 2009), and com-
munity detection (Kim, Bandeira, and Goemans 2018).

This paper develops a probably approximately correct
(PAC) learning framework for soft label propagation or
Wasserstein propagation (Solomon et al. 2014), a recently
proposed semi-supervised learning algorithm based on op-
timal transport (Villani 2003; 2008), on graphs and hy-
pergraphs. Different from the prototypical semi-supervised
learning algorithm of label propagation (Belkin, Matveeva,
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and Niyogi 2004), in which labels of interest are typically
numerical or categorical variables, Wasserstein propagation
aims at inferring unknown soft labels, such as histograms or
probability distributions, from known ones, based on pair-
wise similarities qualitatively characterized by edge con-
nectivity and quantitatively measured using Wasserstein dis-
tances. Compared with traditional “hard labels,” soft labels
are built with extra flexibility and informativeness, render-
ing themselves naturally to applications where uncertainty
or distributional information is crucial. For instance, the traf-
fic density at routers in the Internet network or topic dis-
tributions in the co-authorship network are more naturally
modeled as probability distributions.

Briefly speaking, semi-supervised learning is a paradigm
that leverages unlabelled data to improve the generaliza-
tion performance for supervised learning, under generic,
unsupervised structural assumptions (e.g. the manifold as-
sumption) on the dataset; see (Seeger 2001; Zhu 2008;
Chapelle, Schölkopf, and Zien 2006) for an overview. Given
a graph G = (V,E) and a subset of vertices V0 ⊂ V , label
propagation is the procedure of extending an assignment of
labels on V0, denoted as a map f0 : V0 → D valued in an
arbitrary set D, to a map f : V → D on the entire vertex set
V . Borrowing an analogy with classical heat equations, this
extension procedure is reminiscent of heat propagation from
“boundary” V0 to the “entire domain” V . For soft label prop-
agation, the label setD is the probability distributionsP (N)
modeled on a complete separable metric space (N, dN ).

Among the first works addressing semi-supervised learn-
ing with soft labels are (Corduneanu and Jaakkola 2005;
Tsuda 2005; Subramanya and Bilmes 2011). In all these
works, the similarity between two soft labels is quanti-
tatively measured using the Kullback-Leibler (KL) diver-
gence, which often incurs instability and discontinuity in the
inferred soft labels. In (Solomon et al. 2014) the authors pro-
posed to replace the KL divergence with 1- or 2-Wasserstein
distance. The resulting soft label propagation algorithm is
thus termed “Wasserstein propagation.” Specifically, given a
measure-valued map f0 : V0 → P (N) defined on V0 ⊂ V ,
Wasserstein propagation extends f0 to f : V → P (N) by
solving the variational problem

min
f :V→P(N)

∑
(v,w)∈E

W p
p (f (v) , f (w)) (1)
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subject to the constraint f � V0 = f0. Here Wp (µ, ν) de-
notes the p-Wasserstein distance between probability distri-
butions µ, ν ∈ P (N) defined as

Wp (µ, ν) := inf
π∈Π(µ,ν)

[∫∫
N×N

dpN (x, y) dπ (x, y)

] 1
p

(2)
where Π (µ, ν) is the set of all probabilistic couplings
on N × N with µ and ν as marginals. When p = 2,
the minimizer of (1) can be interpreted as a harmonic
map, with boundary condition f � V0 = f0, that takes
value in a weak, metric-measure space sense (Otto 2001;
Ambrosio, Gigli, and Savare 2005; Lott and Villani 2009;
Lavenant 2017). Note that this is a nontrivial fact because
in general harmonic maps (or minimizers of the Dirichlet
energy) only exist when the target metric space D is neg-
atively curved in the sense of Alexandrov (Jost 1994), but
P (N) equipped with the 2-Wasserstein distance has pos-
itive Alexandrov curvature (Ambrosio, Gigli, and Savare
2005, §7.3). When D is the one-dimensional distributions
on the real line equipped with the 2-Wasserstein distance,
(Solomon et al. 2014) related (1) to a Dirichlet problem.

In this work, we first extend the framework of (Solomon
et al. 2014) to hypergraphs using Wasserstein barycenter
(Agueh and Carlier 2011; Asoodeh, Gao, and Evans 2018).
For 2-Wasserstein distances this is equivalent to solving
a multi-marginal optimal transport (Carlier and Ekeland
2010) problem with a naturally constructed cost function.
The hypergraph extension of Wasserstein propagation is
based on a novel interpretation of the original algorithm on
graphs (Solomon et al. 2014) as a message-passing algo-
rithm. Next, we take a deeper look at the statistical learn-
ing aspects of our proposed algorithm, and establish general-
ization error bounds for propagating one-dimensional distri-
butions on graphs and hypergraphs using the 2-Wasserstein
distance. One dimensional distributions such as histograms
are among the most frequent application scenarios of soft la-
bel propagation. The main technical ingredient is algorith-
mic stability (Bousquet and Elisseeff 2002). To our knowl-
edge, our generalization bound is the first of its type in the
literature of Wasserstein distance based soft label propaga-
tion; on graphs these results generalize the generalization
error bounds in (Belkin, Matveeva, and Niyogi 2004). As no
general semi-supervised learning algorithm is available for
large dataset (Petegrosso et al. 2017), the new connection
between Wasserstein barycenter and semi-supervised learn-
ing might be of theoretical as well as computational interest.

In the supplemental material, we provide promising nu-
merical results for both synthetic and real data. In particular,
we apply our hypergraph soft label propagation algorithm to
random uniform hypergraphs as well as several UCI datasets
adopting hypergraph representations.

Notation
We denote an undirected simple graph as G = (V,E) where
V = [n] := {1, . . . , n} is the vertex set and E ∈ V × V
denotes edges. We use L to denote the (weighted) graph
Laplacian associated with (weighted) graph G, which is a
real square matrix of size n-by-n defined by L := D −W ,

where W ∈ Rn×n is the (weighted) adjacency matrix of G,
and D ∈ Rn×n is a diagonal matrix with the (weighted) de-
gree of vertex j at its (j, j)-th entry. We use H = (V, E)
to denote a hypergraph where E ∈ 2V is the set of hyper-
edges ofH . Given k ≥ 2 probability measures ρ1, . . . , ρk in
P(N), their Wasserstein barycenter is

bar
(
{ρi}ki=1

)
:= inf

ν∈P(N)

1

k

k∑
i=1

W 2
2 (ρi, ν). (3)

Fundamental properties of the minimizer in (3) are stud-
ied in (Agueh and Carlier 2011); similar results hold when
the squared 2-Wasserstein distance are weighted differently.
Given a hyperedge E of H , we use bar(E) to denote
bar
(
{µi}|E|i=1

)
where the probability measures µ1, . . . , µ|E|

associated with each vertex i inE are clear from the context.

Message Passing and Label Propagation on
Graph and Hypergraph

In this section, we formulate our hypergraph label propaga-
tion as a special case of belief propagation. To this end, we
begin with a brief description of a slightly generalized ver-
sion of Wasserstein label propagation (Solomon et al. 2014)
from a message passing perspective.

A learning problem is specified by a probability distribu-
tion D on X × Y according to which labeled sample pairs
zi = (xi, yi) are drawn and presented to a learning algo-
rithm; the algorithm outputs a map from X to Y . In soft
label propagation problems, the maps of interest take val-
ues in a space of probability distributions Y . From now on,
we assume Y is the space of probability distributions on a
complete metric space (N, dN ), i.e. Y = P (N). Since N is
complete, the space Y equipped with Wasserstein distance is
also a complete metric space (Villani 2003, Theorem 6.18).

Wasserstein Label Propagation on Graphs
Let X be a graph G = (V,E), possibly with weights ωij ≥
0 on each edge (i, j). Wasserstein label propagation is an
extension of Tikhonov regularization framework on graphs
(Belkin, Matveeva, and Niyogi 2004) from real-valued func-
tions to measure-valued maps. Denote a measure-valued
map from G to P (N) as µ : V → P (N). For simplicity,
write µi := µ (i) for i ∈ V . A prototypical semi-supervised
learning setting assumes µ1, · · · , µm are known, where 1 ≤
m � n, and the goal is to determine µm+1, · · · , µn on the
rest of the vertices. We will do so by minimizing the follow-
ing objective function with Tikhonov regularization

min
f :V→P(N)

1

m

m∑
i=1

W 2
2 (µi, fi) + γ

∑
(i,j)∈E

ωijW
2
2 (fi, fj) ,

(4)
where γ > 0 is a regularization parameter. This minimiza-
tion problem can be thought of as an extension of the Dirich-
let boundary problem studied in (Solomon et al. 2014) as
here we do not impose fi = µi for i ∈ [m]. The minimizer
of (4) is the measure-valued map “learned” from the train-
ing data {(i, µi) | 1 ≤ i ≤ n} and the given graph structure
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G = (V,E). We point out that the formulation in (Solomon
et al. 2014) is a special case (parameter-free “interpolated
regularization”) of (4) in the limit γ → 0, for the same rea-
son as given in (Belkin, Matveeva, and Niyogi 2004, §2.2).

We now provide an algorithm for solving (4) based on be-
lief propagation. Since this is only a motivating perspective,
we assume for simplicity that the graph is unweighted; all
arguments below can be extended to weighted graphs with
heavier notations. In this context, each vertex i updates its
belief about the local minimizer of (4) fi by exchanging
messages to edges it is incident to. The classical min-sum
algorithm (Moallemi and Roy 2009) describes this process
as follows. At time t, vertex i ∈ [m] has belief b(t)i about
the minimizer fi of (4); then, at time t+ 1, i sends message
J

(t)
i→e to edge e = (i, j) and receives message J (t)

e→i from e,
then updates the message for the next iteration according to

J
(t)
i→e

(
b
(t)
i

)
= W 2

2

(
µi, b

(t)
i

)
+

∑
k∈N(i)\{j}

J
(t−1)
(i,k)→i

(
b
(t−1)
i

)
(5)

and

J
(t)
e→i

(
b
(t)
i

)
= min
fj∈P(N)

[
W 2

2

(
b
(t)
i , fj

)
+ J

(t−1)
j→e (fj)

]
.

(6)
The first term in (5) is set to be zero if i /∈ [m]. The belief is
then updated at at time t+ 1 according to evolution

b
(t+1)
i := arg min

fi

W2(µi, fi) +
∑

k∈V :(i,k)∈E

J
(t)
(i,k)→i(fi)

 .
Convergence of b(t)i to the true minimizer f∗i can be guar-

anteed under some (mild) conditions on initial beliefs if G
is a tree (see e.g., (Moallemi and Roy 2009)).

Wasserstein Label Propagation on Hypergraphs
Let now X be represented by a hypergraph H = (V, E).
Since each hyperedge may contain arbitrary number of ver-
tices, the minimization (4) fails to formulate our learning
objective. Nevertheless, the belief propagation updates (5)
and (6) can naturally be extended to the message passing
between vertex i and hyperedge E containing i as

J
(t)
i→E

(
b
(t)
i

)
= W 2

2

(
µi, b

(t)
i

)
+

∑
E′∈E\{E}:i∈E′

J
(t−1)
E′→i

(
b
(t−1)
i

)
(7)

and

J
(t)
E→i

(
b
(t)
i

)
= min
fE\{i}

[
bar(E)+

∑
k∈E\{i}

J
(t−1)
k→E (fk)

]
. (8)

where fE\{i} = {fk ∈ P(N) : k ∈ E\{i}}. The belief of
vertex i ∈ [m] is then obtained according to the following
rule:

b
(t+1)
i = arg min

fi∈P(N)

[
W 2

2 (µi, fi) +
∑

E∈E:i∈E
J

(t)
E→i(fi)

]
.

These belief propagation update rules justify the following
formulation of label propagation for hypergraphs:

min
f :V→P(N)

1

m

m∑
i=1

W 2
2 (µi, fi) + γ

∑
E∈E

bar(E) (9)

which is a natural generalization of (4) when the graph is un-
weighted. For weighted graphs, (9) still holds with properly
adjusted bar(E) with weights.

Barycenter and Clique Representation
In this section, we assume that the labels are one-
dimensional probability distributions, i.e., N ⊂ R, and
work solely with the 2-Wasserstein distance. We will see
that in this case hypergraph label propagation can be cast
into a Wasserstein propagation on a weighted graph arising
from the clique representation of the hypergraph. The rest of
this paper thus focuses on establishing generalization error
bounds for graphs. The main advantage of one-dimensional
soft labels is illustrated by the following classical result in
optimal transportation theory.
Theorem 1 ((Villani 2003)). Let µ, ν ∈ P(N) with N ⊂ R
with cumulative density functions (c.d.f.) Fµ and Fν , respec-
tively. Then

W 2
2 (µ, ν) =

∫ 1

0

(
F−1
µ (s)− F−1

ν (s)
)2

ds,

where F−1
µ and F−1

ν are the generalized inverses of Fµ and
Fν , respectively, i.e., F−1

µ (s) := inf{x ∈ N : Fµ(x) > s}.
The explicit expression for Wasserstein distance en-

ables us to derive the barycenter of any number of one-
dimensional distributions in a closed form.
Theorem 2 ((Bigot et al. 2017)). Let ρ1, . . . , ρk ∈ P(N) be
m probability distributions on N ⊂ R with cumulative den-
sity functions Fρi , i ∈ [k]. Let ρb be the (unique) Wasserstein
barycenter of {ρi}ki=1. Then the generalized inverse c.d.f.
F−1
b of ρb is given by

F−1
b (s) =

1

k

k∑
i=1

F−1
ρi (s).

Since the inverse cdf’s and the distributions are in one-
to-one correspondence, this theorem characterizes the 2-
Wasserstein barycenter of {ρi}mi=1. In light of Theorem 2,
one can simplify the barycenter of hyperedge E that con-
tains vertices, say, {1, 2, . . . , k} as

bar(E) =
1

k

k∑
i=1

W 2
2 (µi, µb)

=
1

k

k∑
i=1

∫ 1

0

(
F−1
µi

(s)− 1

k

k∑
i=1

F−1
µi

(s)

)2

ds

=
1

k2

k∑
i=1

n∑
j=i+1

∫ 1

0

(
F−1
µi

(s)− F−1
µj

(s)
)2

ds

=
1

k2

k∑
i=1

k∑
j=i+1

W 2
2 (µi, µj) (10)

where the first and second equalities follow from Theo-
rems 1 and 2, respectively. Comparing (10) with (9), we have
Proposition 1. Soft label propagation with 2-Wasserstein
distance for one-dimensional distributions on hypergraphs
H using (9) is equivalent to Wasserstein propagation on a
weighted graph arising from the clique representation GH
of H . The weight of each edge e in GH depends only on the
degrees of the hyperedges containing e.
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Proof. Recall that the clique representation of a hypergraph
H = (V, E) is a graph GH = (V,EH), where EH =
{(i, j) : ∃E ∈ E , {i, j} ⊂ E}. The rest of the proof fol-
lows from checking definitions.

Generalization Bounds for Wasserstein
Propagation

In this section we derive generalization bounds for label
propagation (4) on graphs. The same results apply to hy-
pergraphs as well, by Proposition 1. We begin with briefly
reviewing empirical risk, generalization error, and algorith-
mic stability in the passing.

Algorithmic Stability
The framework of algorithmic stability (Devroye and Wag-
ner 1979; Bousquet and Elisseeff 2002; Mukherjee et al.
2006) was proposed in statistical learning as an alternative
to the VC-dimension framework; the latter is often over-
pessimistic since it attempts to bound the generalization per-
formance uniformly over possible algorithms. We briefly re-
capture the essence of algorithmic stability here. Let X and
Y be two measurable spaces, and a set of training samples
S = {zi = (xi, yi) , i = 1, · · · ,m} of size m sampled i.i.d.
with respect to an unknown joint distributionD on the prod-
uct space Z = X×Y . A learning algorithm is a mechanism
that maps S to a global map fS : X → Y defined on the en-
tire X . It is often assumed for simplicity that the algorithm
is symmetric with respect to training sets, i.e., the learning
algorithm should return identical maps for two training sets
with samples differing from each other only by a permuta-
tion. We shall assume all maps considered here are measur-
able, and all the measure spaces are separable. We are inter-
ested in the case in whichX is a simple finite graph and Y is
the probability spaceP (N). The empirical risk or empirical
error of a mapping fS : X → Y learned from the training
set S of size m > 0 is defined as

Rm (fS) :=
1

m

m∑
i=1

c (fS , zi)

where c (·, ·) : Y X × (X × Y ) → R≥0 is a cost function
evaluating the predictive error of fS : X → Y at a point
sampled from the joint distribution D on X × Y . The gen-
eralization error of the learned map is

RD (fS) = Ez∼D [c (fS , z)]

which measures the average prediction error for a map
learned from training data. The central problem in the PAC
learning framework is bounding the discrepancy between
Rm and RD. In (Bousquet and Elisseeff 2002), the authors
proved that such a bound exists if the algorithm satisfies
a uniform stability property, essentially meaning that the
learned mapping changes very little in terms of predictive
power if the training sample undergoes a small change.
Definition 1 (Uniform Stability, (Bousquet and Elisse-
eff 2002)). Fix a positive integer m ∈ Z+. Let S =
{z1, · · · , zm} ⊂ X×Y be a training set, and S′ be another
training set that contains the same elements as S with the

only exception that the sample zi is replaced with a different
sample z′i 6= zi. A learning algorithm A : (X × Y )

m →
Y X that sends any training set S to a mapping fS : X × Y
is said to be (uniform) β-stable for some positive constant
β > 0 if for any pair of training sets S, S′ differing by exact
one element the following inequality holds:

|c (fS , z)− c (fS′ , z)| ≤ β ∀z ∈ X × Y.
Theorem 3 ((Bousquet and Elisseeff 2002)). Let S 7→ fS be
a β-stable learning algorithm, such that 0 ≤ c (fS , z) ≤M
for all z ∈ X × Y and all learning set S. For any arbitrary
ε > 0 we have for all m ≥ 8M2/ε2

PS∼Dm {|Rm (fS)−RD (fS)| > ε} ≤
64Mmβ + 8M2

mε2
,

(11)
and for any m ≥ 1

PS∼Dm {|Rm (fS)−RD (fS)| > ε+ β}

≤ 2 exp

(
− mε2

2 (mβ +M)
2

)
.

(12)

Of course, the order of β in terms of the number m of
training samples will be crucial here, otherwise any learn-
ing algorithm is uniformly stable for any bounded cost func-
tion. In (Bousquet and Elisseeff 2002) it was pointed out
that a sufficient condition for these bounds to be tight is
β = O (1/m) as m → ∞. It was verified in (Bousquet and
Elisseeff 2002) that the Tikhonov regularization framework
for scalar-valued functions with quadratic cost function sat-
isfies this requirement; but Theorem 3 is indeed much more
general and applicable to any measurable spaces X and Y .
The rest of this paper is devoted to establishing algorithmic
stability for(hyper)graph soft label propagation.

Generalization bounds for Soft Label Propagation
The goal of this subsection is to verify that the conditions
of Theorem 3 are satisfied for the Tikhonov regularization
framework (4). The first task is to find an appropriate model
class for the distributions in P (N) that ensures the uniform
boundedness of the cost function

c (f, (j, µj)) = W 2
2 (fj , µj) . (13)

This can be fulfilled trivially, for instance, if the metric space
(N, dN ) is of bounded diameter. This includes many generic
applications we run into in practice, in particular for prop-
agating histograms but is already not satisfied by popular
distribution classes such as the Gaussian distributions. It is
therefore preferable to work with a model class for distri-
butions with uniformly bounded pairwise Wasserstein dis-
tances under milder assumptions. By definition (2), bound-
ing the Wassertein distance from above can be achieved
by plugging an arbitrary coupling into the variational en-
ergy functional defining (2). However, explicitly construct-
ing meaningful couplings is difficult in general. Many exist-
ing bounds explore the multiscale structure of the supports
of the two distributions (David 1988; Lei 2018; Singh and
Póczos 2018), but it is not clear how those technical condi-
tions can be used as model class specifications. We shall by-
pass this difficulty by leveraging the simple characterization
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of Wasserstein distances between one-dimensional distribu-
tions using quantile functions.

According to Theorem 1, one can simplify (4) as

min
f :V→P(N)

∫ 1

0

[ 1

m

m∑
i=1

(
F−1
µi

(s)− F−1
fi

(s)
)2

+ γ
∑

(i,j)∈E

(
F−1
fi

(s)− F−1
fj

(s)
)2 ]

ds.

Since the inverse c.d.f.’s and the distributions are in one-to-
one correspondences, and all F−1

µi
are given, it suffices to

solve for the F−1
fi

’s in their entirety and then recover each
probability distribution at vertex i from F−1

fi
: [0, 1] → R.

To simplify notations, define Φ : V × [0, 1] → R as
Φ (i, s) := F−1

fi
(s) and denote Φs (i) := Φ (i, s) for all

s ∈ [0, 1] and i ∈ V . For each fixed s ∈ [0, 1], Φs can be
viewed as a function defined on the vertices of the graph G.
For simplicity, we will identify each Φs with a real column
vector of length n = |V |. Then the regularization term in (4)
can be written in terms of L, the weighted graph Laplacian
of G. Thus (4) transforms into

min
Φ:V×[0,1]→R

1

m

m∑
i=1

∫ 1

0

∣∣F−1
µi

(s)− Φs (i)
∣∣2 ds

+ γ

∫ 1

0

Φ>s LΦs ds.

(14)

The optimization problem (14) can be viewed as a lin-
ear combination of infinitely many Tikhonov regularization
problems, one for each s ∈ [0, 1]; each sub-problems is com-
pletely decoupled from others. Indeed, standard variational
analysis shows that it suffices to solve each subproblem in-
dividually, i.e., solve for each fixed s ∈ [0, 1]

min
Φs∈Rn

1

m

m∑
i=1

(
F−1
µi

(s)− Φs (i)
)2

+ γΦ>s LΦs. (15)

Once all subproblems are solved, it is necessary to check
the compatibility across the solutions {Φs : s ∈ [0, 1]}, i.e.,
for any fixed i ∈ V , the map s 7→ Φs (i) is indeed the in-
verse c.d.f. of a probability distribution. This compatibility
will become straightforward after we derive the closed-form
solution of each subproblem (15); see Proposition 2 below.

The solutions to Tikhonov regularization problems (15)
is known back in (Belkin, Matveeva, and Niyogi 2004). Let
1 = (1, · · · , 1)

> ∈ Rn be the column vector of all ones, and

T` = diag (t1, · · · , t`, 0, · · · , 0)
> ∈ Rn

where ti is the multiplicity of vertex i ∈ V in the training
set S (we assumed without loss of generality that the training
samples are the first ` vertices, for notational convenience),
and

ys =

(∑
vi=1

F−1
µi

(s) , · · · ,
∑
vi=`

F−1
µi

(s) , 0, · · · , 0

)>
∈ Rn

(16)

i.e., for 1 ≤ i ≤ `, the i-th entry of ys is the sum of the ti
values of the inverse c.d.f.’s of i ∈ V . With these notations,
it is easy to write down the Euler-Lagrange equation of the
optimization problem (15) as

(T` +mγL) Φ∗s = ys. (17)

To solve this equation, note that the operator T`+mγLmay
not be invertible — in fact, neither T` nor L is invertible.
Nonetheless, assuming the graph is connected, the nullspace
ofL is one-dimensional and spanned precisely by the all-one
vector 1. This means that L will be invertible on the orthog-
onal complement of the one-dimensional subspace spanned
by 1. Furthermore, noting that

T` +mγL = mγ

(
1

mγ
T` + L

)
, (18)

by standard functional analysis (or (Belkin, Matveeva, and
Niyogi 2004, Proof of Theorem 5)) we know that the per-
turbed operator L + (mγ)

−1
T` is invertible on the orthog-

onal complement as well provided that mγ is sufficiently
large. More precisely, the invertibility holds for

γ ≥ max {t1, · · · , t`}
mλ1

where λ1 is the smallest non-zero eigenvalue of L, or the
spectral gap of the (possibly weighted) connected graph
G. This observation, together with the invariance of the
quadratic cost in (15) under global translations, allow us to
preprocess the input data by subtracting scalar

ȳs :=
1

m
1>ys =

1

m

m∑
i=1

F−1
µi

(s) (19)

from each F−1
µi

(s), applying the inverse of T` + mγL, and
finally adding ȳs back to the obtained solution. More specif-
ically, we would like to solve the equivalent optimization
problem

Φ∗s = arg min
Φs∈Rn

1

m

m∑
i=1

[(
F−1
µi

(s)− ȳs
)
− (Φs (i)− ȳs)

]2
+ γ (Φs − ȳs1)

>
L (Φs − ȳs1) ,

(20)
which gives

Φ∗s − ȳs1 = (T` +mγL)
−1

(ys − ȳsT`1) .

Therefore, the solution to (15) takes the form

Φ∗s = (T` +mγL)
−1

(ys − ȳsT`1) + ȳs1. (21)

We emphasize here that the notation (T` +mγL)
−1 alone

does not make sense because the matrix T` + mγL may
well be non-invertible; only the notation (T` +mγL)

−1
u

for u ∈ Rn satisfying 1>u = 0 bears actual meanings.
Remark 1. Alternatively, one can derive a solution to (15) by
directly applying the pseudo-inverse of T` +mγL to ys, i.e.
setting Φ∗s := (T` +mγL)

†
ys; this avoids the requirement

that γ needs not be too small, but leaves the algorithmic sta-
bility of the resulting solution Φ∗s in question.
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Now that we have obtained closed-form solutions (21) to
subproblems (15) for each s ∈ [0, 1], it is imperative to
guarantee that the closed-form solutions {Φ∗s | 0 ≤ s ≤ 1}
do piece together and give rise to inverse c.d.f.’s at each ver-
tex i ∈ V . This basically requires that, for each i ∈ V , the
map [0, 1] 3 s 7→ Φ∗s (i) ∈ R should be non-decreasing
and right continuous. The right continuity is obvious, since
for each i ∈ V the map [0, 1] 3 s 7→ ys (i) is right
continuous, and the linear combination of right continu-
ous functions is still right continuous, thus the assertion
follows from the closed-form expression (21). The mono-
tonicity would be guaranteed if there is a “maximum prin-
ciple” for the operator T` + mγL, or equivalently L +

(mγ)
−1
T , on the graph G, i.e. if Rn 3 y ≥ 0 (entry-

wise) and (T` +mγL) Φ = y then Φ ≥ 0 (entrywise).
This is because: we already have ys − yt ≥ 0 for any
0 ≤ t ≤ s ≤ 1 by the monotonicity of the inverse c.d.f.’s,
hence such a “maximum principle” would then guarantee
Φs−Φt ≥ 0 (entrywise). Such maximum principles abound
for graph Laplacians, see e.g. (Holopainen and Soardi 1997;
Chung, Chung, and Kim 2007). It is natural to expect such a
maximum principle to hold for L+(mγ)

−1
T as well, since

T is a non-negative.
Lemma 1 (Maximum Principle). If Φ ∈ Rn is such
that [(T` +mγL) Φ] (i) ≥ 0 for all 1 ≤ i ≤ ` and
[(T` +mγL) Φ] (i) = 0 for all ` + 1 ≤ i ≤ n, then Φ
attains both its maximum and minimum over i = 1, · · · , n
within {1, · · · , `}. In particular, Φ (i) ≥ 0 for all 1 ≤ i ≤ n.

This lemma then implies the promised monotonicity.
Proposition 2. For any vertex i ∈ V , the closed-form solu-
tions (21) is non-decreasing with respect to s ∈ [0, 1].

Proof. By the equivalence of (20) and (15), the solutions Φs
satisfies the Euler-Lagrange equations for (15):

(T` +mγL) Φ∗s = ys.

For any 0 ≤ t ≤ s ≤ 1, subtracting two Euler-Lagrange
equations yields

(T` +mγL) (Φ∗s − Φ∗t ) = ys − yt ≥ 0

where the inequality follows from the definition of ys in
(16). Furthermore, it is straightforward to see that ys − yt
satisfies the assumption in Lemma 1, which then implies
Φ∗s ≥ Φ∗t .

We can now rest assured that the solutions (21) indeed
constitute an inverse c.d.f. at each vertex i ∈ V . But there
is more to this: it can actually be easily verified that (20)
is equivalent to the Tikhonov regularization problem formu-
lated in (Belkin, Matveeva, and Niyogi 2004) if we view
(Φs − ȳs1) as variables. We can thus follow the idea of
(Belkin, Matveeva, and Niyogi 2004, Theorem 5) to get al-
gorithmic stability of each individual Φs, s ∈ [0, 1].
Theorem 4. Assume m ≥ 4 and 0 < T :=
max {t1, · · · , t`} < ∞ satisfies mγλ1 − T > 0,
where λ is the regularization parameter in (15) and
λ1 is the spectral gap of the connected graph G. Let
S = {(vi, µi) | 1 ≤ i ≤ m, vi ∈ V, µi ∈ P (R)} and S′ =

{(v′i, µ′i) | 1 ≤ i ≤ m, vi ∈ V, µi ∈ P (R)} be two train-
ing sets that differ from each other by exactly one data sam-
ple. Assume further that, for a fixed s ∈ [0, 1] there holds

max
{∣∣F−1

µi
(s)
∣∣ , ∣∣∣F−1

µ′
i

(s)
∣∣∣ , i = 1, · · · ,m

}
≤Ms <∞.

(22)
Let Φ∗s,Φ

′∗
s be solutions of (15) for S and S′, respectively,

Φ∗s = (T` +mγL)
−1

(ys − ȳsT`1) + ȳs1

Φ′∗s = (T ′` +mγL)
−1

(y′s − ȳ′sT ′`1) + ȳ′s1

where T ′` , y
′
s, ȳ
′
s are defined analogously to T`, ys, ȳs but

with respect to S′ instead of S. Then

‖Φ∗s − Φ′∗s ‖∞ ≤
3Ms

√
Tm

(mγλ1 − T )
2 +

4Ms

mγλ1 − T
+

2Ms

m
.

(23)
The boundedness assumption on Φs seems artificial but is

indeed very natural: an almost identical argument as the first
part of the proof of Lemma 1, with minimum replaced with
maximum and mutatis mutandis, establishes the fact that the
global maximum of Φs must be attained at the boundary
1 ≤ i ≤ `. Hence, since there are only finitely many data in
the training set, this boundedness is a very mild requirement
(e.g. satisfied if each F−1

µi
(s) is finite). We define the model

class to reflect the requirement that the inverse c.d.f.’s of the
one-dimensional probability distributions in the training set
should be controlled. We define the model class in Defini-
tion 2 and summarize the maximum principle argument as a
lemma on a priori estimates for future convenience.
Definition 2 (Dominated Quantile Class). Let φ ∈ L2 [0, 1]
and φ ≥ 0 on [0, 1]. A probability distribution µ ∈
P (R) is said to belong to dominated quantile class M2

φ if∣∣F−1
µ (s)

∣∣ ≤ φ (s) for a.e. s ∈ [0, 1].

Lemma 2 (A Priori Estimates). If in the training set S =
{(vi, µi) | 1 ≤ i ≤ m, vi ∈ V, µi ∈ P (R)} all µi lie in a
dominated quantile model classM2

φ for some φ ∈ L2 [0, 1]

with φ ≥ 0 on [0, 1], then any map f : V → P (R) minimiz-
ing (4) takes values inM2

φ as well.

Proof. By the equivalence between (4) and (14), it suffices
to show the following fact: for each fixed s ∈ [0, 1], if
max

{∣∣F−1
µi

(s)
∣∣ , i = 1, · · · ,m

}
≤ φ (s) then ‖Φ∗s‖∞ ≤

φ (s), where Φ∗s is defined in (20). But this follows straight-
forwardly from the maximum principle.

We now present the main theoretical result of this paper.
In our setting these results apply to graphs as well as hyper-
graphs by Proposition 1.
Proposition 3 (Algorithmic Stability for Soft Label Propa-
gation of One-Dimensional Distributions). Assume m ≥ 4
and 0 < T := max {t1, · · · , t`} < ∞ satisfying mγλ1 −
T > 0, where γ is the regularization parameter in (15) and
λ1 is the spectral gap of the weighted, connected graph G.
If the joint distribution D ∈ P (V × P (R)) is supported on
V ×M2

φ for a quantile model classM2
φ ⊂ P (R) for some

φ ∈ L2 [0, 1] with φ ≥ 0 on [0, 1], then the solutions of (4)
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or (9) are β-stable in the sense of Definition 1 with respect
to cost function (13), where

β = 4 ‖φ‖22

[
3
√
Tm

(mγλ1 − T )
2 +

4

mγλ1 − T
+

2

m

]
. (24)

Proof. Let (j, θj) be a new sample drawn from the joint dis-
tribution D. Then θj ∈ M2

φ with probability 1. Let S, S′

be two training samples with values in M2
φ and differ by

exactly one data point. By Theorem 4 we have

|Φ∗s (j)− Φ′∗s (j)|

≤

[
3
√
Tm

(mγλ1 − T )
2 +

4

mγλ1 − T
+

2

m

]
φ (s) .

(25)

By (10), the difference between the squared Wasserstein
losses satisfy

|c (fS , (j, θj))− c (fS′ , (j, θj))|

=
∣∣W 2

2 (fS (j) , θj)−W 2
2 (fS′ (j) , θj)

∣∣
=

∣∣∣∣∫ 1

0

∣∣∣Φ∗s (j)− F−1
θj

(s)
∣∣∣2 ds−

∫ 1

0

∣∣∣Φ′∗s (j)− F−1
θj

(s)
∣∣∣2 ds

∣∣∣∣
≤
∫ 1

0

∣∣∣(Φ∗s (j) + Φ′∗s (j)− 2F−1
θj

(s)
) (

Φ∗s (j)− Φ′∗s (j)
)∣∣∣ ds

(∗)
≤
[

3
√
Tm

(mγλ1 − T )2
+

4

mγλ1 − T
+

2

m

]
·
∫ 1

0

4φ (s) · φ (s) ds

= 4 ‖φ‖22

[
3
√
Tm

(mγλ1 − T )2
+

4

mγλ1 − T
+

2

m

]
= β,

where at (∗) we used (25) to bound the difference
|Φ∗s (j)− Φ′∗s (j)|, and invoked Lemma 2 to conclude that

Φ∗s (j) ,Φ′∗s (j) ≤ φ (s)

and hence∣∣∣Φ∗s (j) + Φ′∗s (j)− 2F−1
θj

(s)
∣∣∣ ≤ 4φ (s) .

Note that the cost function is uniformly bounded by M =

4 ‖φ‖22 in our setting. Our main result this follows from com-
bining Proposition 3 and Theorem 3.

Theorem 5 (Generalization Error for Soft Label Propaga-
tion for One-Dimensional Distributions). Under the same
assumptions as Proposition 3, for any ε > 0 we have for all
m ≥ 8M2/ε2

PS∼Dm {|Rm (fS)−RD (fS)| > ε} ≤ 64Mmβ + 8M2

mε2
,

(26)
and for any m ≥ 1

PS∼Dm {|Rm (fS)−RD (fS)| > ε+ β}

≤ 2 exp

(
− mε2

2 (mβ +M)
2

)
,

(27)

where M = 4 ‖φ‖22 and β given by (24).

Conclusion
In this paper, we proposed a novel framework for a semi-
supervised learning problem where (i) the labels are given
by probability measures on a metric space (“soft labels”) and
(ii) the underlying similarity structure is given by a hyper-
graph (which subsumes graph and simplicial complex). Our
framework was inspired by a re-formulation of graph-based
label propagation in terms of message passing and borrowed
ideas from the theory of multi-marginal optimal transport.
We then established generalization error bounds for prop-
agating one-dimensional distributions using 2-Wasserstein
distances. To the best of our knowledge, this constitutes
the first generalization error bounds for Wasserstein dis-
tance based soft label propagation, even on graphs. We ex-
pect similar generalization bounds to hold for propagating
higher-dimensional probability distributions as well as us-
ing other Wasserstein distances, but a deeper understanding
of the geometry of Wasserstein spaces will be indispens-
able for those purposes. Future work include (i) generaliza-
tion of our results to higher-dimensional probability mea-
sures, (ii) investigating the scalability and efficiency of our
message-passing algorithm, and (iii) experimental study of
our framework on real-work networks that can be naturally
represented by hypergraphs.
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