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Abstract

Due to the potentially significant benefits for society, fore-
casting spatio-temporal societal events is currently attract-
ing considerable attention from researchers. Beyond merely
predicting the occurrence of future events, practitioners are
now looking for information about specific subtypes of fu-
ture events in order to allocate appropriate amounts and types
of resources to manage such events and any associated so-
cial risks. However, forecasting event subtypes is far more
complex than merely extending binary prediction to cover
multiple classes, as 1) different locations require different
models to handle their characteristic event subtype patterns
due to spatial heterogeneity; 2) historically, many locations
have only experienced a incomplete set of event subtypes,
thus limiting the local model’s ability to predict previously
“unseen” subtypes; and 3) the subtle discrepancy among dif-
ferent event subtypes requires more discriminative and pro-
found representations of societal events. In order to address
all these challenges concurrently, we propose a Spatial In-
complete Multi-task Deep leArning (SIMDA) framework that
is capable of effectively forecasting the subtypes of future
events. The new framework formulates spatial locations into
tasks to handle spatial heterogeneity in event subtypes, and
learns a joint deep representation of subtypes across tasks.
Furthermore, based on the “first law of geography”, spatially-
closed tasks share similar event subtype patterns such that
adjacent tasks can share knowledge with each other effec-
tively. Optimizing the proposed model amounts to a new non-
convex and strongly-coupled problem, we propose a new al-
gorithm based on Alternating Direction Method of Multipli-
ers (ADMM) that can decompose the complex problem into
subproblems that can be solved efficiently. Extensive exper-
iments on six real-world datasets demonstrate the effective-
ness and efficiency of the proposed model.

Introduction
Spatio-temporal societal events such as disease outbreaks
and organized crime have a significant impact on society.
The ability to successfully forecast future spatial events of
this nature would thus be extremely beneficial for decision
makers seeking to avoid, control, or alleviate the associated
social upheaval and risks. Spatial social event forecasting is
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Figure 1: Relative amounts of six air pollutant subtypes in
10 districts in Shenzhen, China, 2013 (Xia et al. 2016).

a fast-growing research area that typically forecasts the oc-
currence of future spatial events, namely whether or not a
particular spatial event will happen. However, in many ap-
plications simply forecasting the occurrence of an event is
not enough. Knowledge regarding the subtype or category
of a future event is vital if decision makers are to achieve ac-
curate and optimal resource allocation. For example, Figure
1 shows the percentage of six pollutant subtypes that feature
in air pollution events based on the most frequently detected
primary pollutants in Shenzhen, China in Summer 2013 (Xia
et al. 2016). Local Environmental Monitoring Centers try
to identify which pollutant source causing the most harm
to public health and take appropriate action. For instance,
when the pollutant subtype is PM2.5 (atmospheric particu-
late matter with a diameter less than 2.5 micrometers), the
government can suggest that people who are sensitive to
small particles wear gauze masks to protect themselves. On
the other hand, when the subtype is O3 (trioxygen), gov-
ernment agencies need to alert people to avoid going out-
side when the O3 concentration is highest. Thus, successful
forecasting of the pollutant subtypes provides more specific
information that enables practitioners to allocate resources
that will address public health issues with the specific pri-
mary pollutant source most effectively.

Most of the existing work in this area such as (Zhao et
al. 2015a; Wang et al. 2018) has focused primarily on the
event occurrence rather than engaging in the study of the var-
ious event subtypes, more detailed literature survey is pro-
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vided in the supplementary material1. A few primitive stud-
ies (Chen et al. 2013; Ning et al. 2016) have started to ex-
plore this open problem, typically by applying simple multi-
class classification techniques. However, spatial event sub-
type forecasting is far more complex than simply extending
the binary classification problem into a multi-class setting,
because of several crucial challenges are involved: 1) Spa-
tial heterogeneity and correlation of event-subtype pat-
terns: Different locations have different characteristics, such
as population, climate and administrative policies. In addi-
tion, spatial locations are correlated in terms of their spatial
topology. According to the well-known “first law of geog-
raphy” (Cressie 2015), the event subtype pattern should be
more similar in nearby locations than in those furtheraway.
2) Incomplete labels in spatial event subtypes: Due to the
large number of potential subtypes and the limited avail-
ability of historical data, there may be new subtypes that
do not appear in a specific location in the training set. This
means the predictive model for a specific location will be un-
able to forecast these unseen subtypes in the future, which
could lead to significant problems especially for rare but de-
structive events, such as pandemics and terrorist attacks. 3)
Difficulties in representing event subtype patterns: The
conceptual and semantic discrepancy between event sub-
types could typically be too subtle to discriminate based
solely on manually-defined features such as bag-of-words
representations. This representation is both sparse and high-
dimensional and hence suffers from curse of dimensionality
(Bellman 2013) and low efficiency.

In this paper, we propose a novel Spatial Incomplete
Multi-task Deep leArning (SIMDA) framework for spatial
event subtype forecasting that addresses all the above chal-
lenges. The main contributions of our study are as follows:

1. Developing a new deep-based framework for societal
event subtype forecasting. We formulate event subtype
forecasting for multiple locations as a spatial incomplete
multi-task learning problem and propose a novel deep-
based framework that learns profound representations of
event subtypes across tasks. We enforce shared latent fea-
ture representations for different locations while preserv-
ing heterogeneity in their event subtype patterns.

2. Proposing a model that enforces spatial event sub-
type patterns. Based on the first law of geography, we
enforce similar event subtype patterns among spatially-
closer tasks via a novel deep regularization term that is
proved to be theoretically equivalent to the ratio of the
probabilities of the event subtypes distribution patterns
in nearby locations. In addition, the newly proposed deep
regularization term enjoys better scalability with high-
dimensional data and is thus more capable of handling
complex real world problems effectively and efficiently.

3. Developing an efficient algorithm for solving new
non-convex and strongly-coupled problems. To solve
the proposed model’s objective function, which is non-
convex and highly-coupled, we propose a new algorithm

1http://mason.gmu.edu/∼lzhao9/materials/papers/
supp AAAI2019.pdf

based on the Alternating Direction Method of Multipliers
(ADMM) that decomposes the original complex problems
into subproblems that can be solved efficiently with ana-
lytical solutions and conventional stochastic optimization.

4. Conducting comprehensive experiments to validate
the effectiveness and efficiency of the proposed model.
Extensive experiments on six real-world datasets in two
domains, civil unrest and air pollution event forecasting,
demonstrate that the proposed models outperform other
comparison methods in different application domains. In
addition, sensitivity and qualitative analyses are provided
to demonstrate the effectiveness of the proposed regular-
ization term.

Problem Setup and Preliminary Setups
Problem Setup
Suppose there are S spatial locations (e.g., cities, states) in
a country of interest and T denotes all the time intervals.
The spatio-temporal social indicator data (e.g., social media,
news, pollutant factors) for location s and time interval t
(e.g., one day) can be formulated as Xs,t ∈ R1×D, which
denotes a D-dimension feature vector whose i-th element is
a feature value (e.g., the term frequency or index value).

The event subtype at location s and time t is defined
as an nominal response Ys,t ∈ {C1, C2, ..., CK}, where
C1, C2, ..., CK are class labels and K is the total number of
event subtypes. Notice that here a “non-event” will also be
defined as a default subtype when no event happens.

Given the input data Xs,t for a specific location s and a
time interval t, the goal is to predict the subtype of a future
event, denoted by Ys,τ , for the same location s and a future
time interval τ , where τ = t + p and p > 0 is the lead
time. In this paper, the default time intervals t is per day and
the lead time p is one day ahead unless otherwise specified.
Formally, this problem is equivalent to learning a mapping
from input data to a future event subtype Xs,t → Ys,τ .

Preliminaries
To address this issue, multi-class classification models (Wu
et al. 2018) such as multinomial logistic regression (also
known as softmax regression) and neural networks (Xu et
al. 2018) are commonly used to solve the problem due to the
nature of predicting multiple outputs with a single model.

The objective function of our problem with the softmax
regression formulation is as follows:

L(θ) =− 1

ST

( S∑
s

T∑
t

K∑
k=1

1{Ys,t = k} log
eXs,tθ

T
k∑K

c=1 e
Xs,tθTc

)
(1)

where θ ∈ RK×D is the parameter set of the model , θk ∈
R1×D denotes the weight coefficients for class k, and 1{·} is
the indicator function. For example, suppose the event sub-
type for location s at time t is k, then 1{Ys,t = k} = 1 while
1{Ys,t = j} = 0 for any j 6= k.

The model proposed in Equation (1) suffers from a critical
challenge: all the locations share a single weight coefficient
vector θ, hence the model cannot handle any spatial hetero-
geneity in the event subtype for different locations.
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Figure 2: Flowchart of the proposed SIMDA framework

To address this challenge, we can extend Equation (1) to
create a location-specific model, where each location s has
its own weight coefficient set, denoted as Θs ∈ RK×D.
Here, Θs,k ∈ RD×1 denotes the weight coefficients for lo-
cation s and for class k and the objective function of the
location based softmax regression formulation is as follows:

L(Θ)=− 1

ST

( S∑
s

T∑
t

K∑
k=1

1{Ys,t=k} log
eXs,tΘ

T
s,k∑K

c=1 e
Xs,tΘTs,c

)
(2)

However, the above formulation is still insufficient as
Equation (2) assumes all the locations are independent, even
though some spatial correlations will exist among the vari-
ous locations in terms of the event subtype pattern, as shown
in Figure 1. Also, Equation (2) tries to learn an individual pa-
rameter set Θs for each location s, which can dramatically
reduce the training sample size for a given location model.
Furthermore, due to the large number of potential subtypes
and the limited amount of local historical data, there may be
unseen subtypes that have not appeared in a specific location
within a time period. For example in Brazil, there were no
education or medical related protests in city Belo Horizonte
during the time period from July, 2013 to February, 2014.
This means the specific model for the city Belo Horizonte
will not be able to forecast these two subtypes in the future.

SIMDA Model
Incomplete Multi-class Spatial Regularization
In order to jointly handle the spatial heterogeneity issue in
Equation (1) and spatial correlation issue in Equation (2),
multi-task learning technique is leveraged which can jointly
learn the shared characteristics among tasks while preserve
the exclusive patterns for each task (Yuan, Zhou, and Yang
2018; Thrun and O’Sullivan 1998). (Zhao et al. 2015b) have
demonstrated the utility of applying a Multi-Task Learning
framework for forecasting spatiotemporal event occurrence.
(More detailed literature survey is included in the supple-
mental material.) However, when forecasting event subtype,

where multi-class classification problem is combined with
multi-task learning, each task has only a limited number of
samples and thus in practice not every task has a complete
set of labels in the training set. For example, in Figure 2
the bottom right box contains an example of a set of train-
ing data labels (event subtypes). Only task C has a com-
plete set of labels, the other two tasks are both missing one
class. Consequently, the weight coefficient associated with
the missing event subtype k cannot be learned during train-
ing and the model is not capable of predicting the missing
event subtypes. Note that this issue becomes more severe as
the number of class labels increases.

In order to address this problem, we propose allowing cor-
related tasks to adaptively complement each other’s missing
classes. This means that we first need to determine the cor-
relation among tasks. Based on the first law of geography,
namely “everything is related to everything else, but near
things are more related than distant things”(Cressie 2015),
nearby locations will tend to be more similar to each other.

For a time interval t, given two locations i and j that
are close in geo-spatial distance, the probability of the event
subtype Ca at location i denoted as P (Yi,t = Ca|Xi,t), will
be similar to that at location j, leads to the following equa-
tion:

P (Yi,t = Ca|Xi,t) ≈ P (Yj,t = Ca|Xj,t) (3)
Likewise, the ratio of the probability of the event subtype

at location i being equal to event subtype Ca compared to
event subtype Cb, should also be similar to that at location j.
This can be expressed as:

P (Yi,t = Ca|Xi,t)

P (Yi,t = Cb|Xi,t)
≈ P (Yj,t = Ca|Xj,t)

P (Yj,t = Cb|Xj,t)
(4)

The posterior probability P (Yi,t = Ca|Xi,t) can be equiv-
alently represented by any multi-class based models. The
similarity pattern based on the ratio of the probability above
can thus be equivalently denoted by input X and weight co-
efficient Θ based on Equation (2), as shown in Lemma 1.
Lemma 1. Based on the model shown in Equation (2) ,
Equation (4) is theoretically equivalent to the following:

Xi(Θi,a −Θi,b)
T ≈ Xj(Θj,a −Θj,b)

T (5)

where i and j are two tasks that are close in geo-spatial
distance and a and b are any two different event subtypes.

Proof. Please see our supplemental material for details.

Therefore, we propose a new model to regularize the pa-
rameter based on Equation (4), and equivalently on Equation
(5) by introducing a new regularization term for Θ based on
spatial adjacency of the tasks. Mathematically, we propose
the following model objective as follows:

L(Θ) +
β

2

∑S

s

∑C2
k

i,j
‖Xs(Θs,i −Θs,j)

T (6)

− 1

Ns

∑S

c
adj(s, c)Xc(Θc,i −Θc,j)

T ‖22

whereL(Θ) is defined in Equation (2); the function adj(s, c)
defines the adjacency relation between s and c, which can
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be defined based on either spatial correlations such as spa-
tial contiguity or spatial distance. Ns is the normalization
term for location s such that Ns =

∑S
c adj(s, c). Here, the

adjacent function is defined based on the physical distance
and the well-known generalized RBF kernel (Haasdonk and
Bahlmann 2004), as: adj(s, c) = e−γd(s,c)2

. The function
d(s, c) can be the physical distance between two spatial lo-
cations and γ is the scaling factor.

The proposed regularization term encourages adjacent
tasks to have a similar ratio of the probability between any
pair of event subtypes by ensuring the difference between
the corresponding weight coefficients and input Xi(Θi,Ca −
Θi,Cb)

T is similar for adjacent tasks. The regularization
hyper-parameter β controls the importance of this term,
which can be tuned via cross-validation.

Generalization to Deep Spatial Regularization
Softmax regression model can be seen as a special case of
a neural network with 0 hidden layers. In this section, we
propose a generalized Spatial Incomplete Multi-task Deep
leArning (SIMDA) framework based on the deep architec-
ture with arbitrary number of hidden layers. Figure 2 shows
a flowchart of the proposed SIMDA framework. The frame-
work adopts the idea of a shared bottom architecture that can
learn the shared hidden representations of event subtypes
across tasks. In addition, a spatial adjacency based deep reg-
ularization term is proposed to regularize the hidden rep-
resentation learned by the shared hidden layers to enforce
similar event subtype patterns for spatially adjacent tasks.
For example, in Figure 2 Task B and Task C are closer than
Task A, thus Task B and C can share knowledge of their sub-
type patterns and influence each other more strongly while
Task A, which is further away, will not influence them as
much. Consequently, with the help of this knowledge shar-
ing, Task B is able to learn unseen event subtypes through
Task C, mitigating the problem of incomplete subtype avail-
ability due to gaps in the local task training data.

More specifically, the generalized framework enjoys sev-
eral advantages, including: 1) Greater discriminative and
predictive power. Based on the Universal Approximation
Theorem (Hornik 1991), a simple neural network including
only a single hidden layer can approximate any continuous
function. More specifically, for event subtype forecasting,
developing a better understanding of the subtle differences
among event subtypes requires deep representations. 2) Bet-
ter generalizability with deep spatial regularization. Spa-
tial regularization on the highly-concise feature representa-
tions learned by deep architecture can help boost the model
generalizability considerably and it is especially important
for deep learning applications that involve large dataset. 3)
Better efficiency with respect to input dimensions. Deep
models learn highly-condensed and discriminative represen-
tations that typically have less dimensionality than row in-
puts, which means that generalized SIMDA frameworks can
be more efficient to optimize.

In generalized SIMDA framework, suppose the function
f(·) denotes the computation of the shared hidden layers
and Φ denotes the parameter set of the network, the acti-

vation f(X) is thus the hidden representations learned by
the shared hidden layers. f(X) is then passed as input to
the task specific output layers with weight coefficient Θ to
compute the final result, as shown in Figure 2. The similarity
pattern based on the ratio of the probability in Equation (4)
can thus be equivalently denoted by f(X) and Θ, as shown
in Theorem 1.

Theorem 1. In the SIMDA framework, for any deep learn-
ing architectures that use the softmax function as their out-
put layer, equation (4) is theoretically equivalent to the fol-
lowing:

f(Xi)(Θi,a −Θi,b)
T ≈ f(Xj)(Θj,a −Θj,b)

T (7)

where Θi,b denotes the task specific output layer weight co-
efficient vector for task i and class Cb.

Proof. Please see our supplemental material for details.

Notice that Theorem 1 can be seen as a generalized form
of Lemma 1 since Lemma 1 is a special case when function
f(·) is the identity function f(X) = X . Moreover, since the
regularization directly works on the output layer parameters
set Θ and activation f(X), there is no further restrictions
of the network structures regarding the shared hidden lay-
ers. This means that the framework can be used with vari-
ous deep learning architectures on the shared bottom layers
(such as convolutional layers) and arbitrary activation func-
tions (such as ReLU).

Mathematically, the Spatial Incomplete Multi-task Deep
leArning (SIMDA) framework is as follows:

LD(Φ,Θ) +
β

2

∑S

s

∑C2
k

i,j
‖f(Xs)(Θs,i −Θs,j)

T (8)

− 1

Ns

∑S

c
adj(s, c)f(Xc)(Θc,i −Θc,j)

T ‖22

where we define LD(Φ,Θ) as the general multi-task deep
learning objective function; Φ is the weight coefficient pa-
rameter set for the shared hidden layers; Θ is the task spe-
cific output layer weights with Θs,i denoting the weights for
task s and for predicting class Ci.

Theorem 1 and the above model objective indicate that
instead of directly applying the regularization based on input
data X , SIMDA will learn the mapping from the input data
from different tasks in a deep shared feature space and then
apply the spatial regularization to the latent representation.

Algorithm
The problem in Equation (8) is nonconvex and parameters
are tightly coupled together within the new regularization
term. Moreover, the function f(X) involves the shared neu-
ral network layers, with highly complex objective functions
coupled with parameter set Φ. Instead of directly solving
the whole problem with regularization, existing works typ-
ically first decompose it into subproblems which are much
simpler or even with analytical solutions and hence ensures
the efficiency. For example, several ADMM (Boyd et al.
2011) based methods has been proposed: (Kiaee, Gagné,
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and Abbasi 2016) applied ADMM on deep convolutional
neural networks with sparse regularization and observed im-
provement on the optimization efficiency and overall perfor-
mance; (Sun et al. 2016) proposed ADMM-NET for solving
the general Compressive Sensing MRI problem. However,
those algorithms are normally problem dependent and thus
can not be directly used here. A new method is needed to
solve our new problem which is highly challenging.

Algorithm 1: The Proposed Algorithm
Require: X,Y, ρ, β, λ
Ensure: solution Φ,Θ

1: initialize Φ0,Θ0, V 0,W 0, Z0, y(1)0, y(2)0, y(3)0, i=0

2: repeat
3: % Solve subproblem of variable Φ,Θ by fixing the other variables
4: Φi,Θi ⇐

argminΦ,Θ LD(Φ,Θ) + tr(y(1)(Z−f(X))T )+ ρ
2 ||Z−f(X)||22+

tr(y(2)(Θ−V )T)+ ρ
2 ||Θ−V ||

2
2+tr(y(3)(Θ−W )T)+ρ

2||Θ−W ||
2
2

5: for s⇐ 1 toK do
6: % Get the analytical solution by setting∇VsL(Φ,Θ,V,W,Z)=0

7: V is ⇐
(
β(ZTs Zs)⊗ (MMT ) + ρI

)−1

vec

(
y(2)
s + ρΘs + βM

(
1
Ns

∑S
c adj(s, c)ZcW

T
c M

)T
Zs

)
8: end for
9: for c⇐ 1 toK do
10: % Get the analytical solution by setting∇WcL(Φ,Θ,V,W,Z)=0

11: W i
c ⇐

(
β
∑S
s
adj(s,c)2

N2
s

(ZTcZc)⊗ (MMT )+ρI

)−1

vec

(
y(3)
c +ρΘc−β

∑S
sM
(

1
Ns

∑S
i6=cadj(s,i)ZiW

T
i M−ZsV

T
s M

)T
Zc

)
12: end for
13: for s⇐ 1 toK do
14: % Get the analytical solution by setting∇ZsL(Φ,Θ,V,W,Z)=0

15: Zis⇐
(
−y(1)

s +ρf(Xs)+β
(

1
Ns

∑S
c adj(s, c)ZcW

T
c M

)
MTVs

)
(
βV Ts MMTVs + ρI

)−1

16: end for
17: y(1)i ⇐ y(1) + ρ(Z − f(X)) % Update dual variable y(1)

18: y(2)i ⇐ y(2) + ρ(Θ− V ) % Update dual variable y(2)

19: y(3)i ⇐ y(3) + ρ(Θ−W ) % Update dual variable y(3)

20: i⇐ i+ 1

21: until convergence

Thus, we propose a new algorithm based on ADMM that
first decomposes the original problem into several simpler
subproblems that can then be solved iteratively. Our algo-
rithm ensures global optimal solutions with analytical so-
lutions for all subproblems except the subproblem that in-
cludes the original deep model loss, which will be solved
with Stochastic Gradient Descent (SGD) to get local optima.
More details of the algorithm are presented as follows.

Based on the ADMM formulation, the original objective
function of SIMDA can now be re-written as follows:

LD(Φ,Θ) +
β

2

∑S

s

∑C2
k

i,j
‖Zs(Vs,i − Vs,j)T

− 1

Ns

∑S

c
adj(s, c)Zc(Wc,i −Wc,j)

T ‖22 (9)

s.t. Θ = V,Θ = W,Z = f(X)

Thus, by decoupling the output layer parameter set Θ that
appears both in deep model loss and regularization term, the

original problem is transformed into a simpler one with aux-
iliary variables V , W and Z. The augmented Lagrangian
that uses additional quadratic penalty terms with penalty pa-
rameter ρ is further computed as follows:

L(Φ,Θ,V,W,Z)=LD(Φ,Θ)+tr(y(1)(Z−f(X))T)+
ρ

2
||Z−f(X)||22

+
β

2

S∑
s

C2
k∑

i,j

‖Zs(Vs,i−Vs,j)T−
1

Ns

S∑
c

adj(s, c)Zc(Wc,i−Wc,j)
T‖22+

tr(y(2)(Θ−V )T)+
ρ

2
||Θ−V ||22+tr(y(3)(Θ−W )T)+

ρ

2
||Θ−W ||22

where the tr(·) operator denotes the trace of the matrix.
The pseudo-code of the proposed algorithm is

summarized in Algorithm 1. The parameter set
{Φ,Θ, V,W,Z, y(1), y(2), y(3)} is alternately solved
by the proposed algorithm until convergence is achieved.
Lines 3-15 show the alternating optimization for each of
the variables. M ∈ Rk×C2

k is an auxiliary matrix to help
make the computation in matrix format, as elaborated in the
supplementary material.

Experiments
Dataset and Experiment Setup
In this study, five datasets from civil unrest forecasting and
one dataset from air pollution event forecasting are used for
the experimental evaluations. All the experiments were con-
ducted on a 64-bit machine with Intel(R) core(TM) quad-
core processor (i7CPU 2.5GHz) and 16GB memory.

Civil Unrest Datasets: These datasets were obtained
from 5 different countries in Latin America, namely Brazil,
Colombia, Mexico, Paraguay, and Venezuela. Data sources
from Twitter are adopted as the model inputs. In each case
the data for the period from July 1, 2013 to February 9,
2014 is used for training and validation, where the valida-
tion set consists of a randomly chosen 30% of the data, and
the rest is used for training; the data from February 10, 2014
to December 31, 2014 is used for the performance evalu-
ation. The event forecasting results are validated against a
well-established labeled events set, the Gold Standard Re-
port (GSR) (GSR Dataset ). GSR is a collection of civil un-
rest news reports from the most influential newspaper outlets
in Latin America (O’Connor et al. 2010). The event subtype
for the civil unrest dataset is the event primary population
type (i.e. ‘Business’, ‘Education’ etc.). An example of a la-
beled GSR event is given by the tuple: (City=“Maracaibo”,
State =“Zulia”, Country = “Venezuela”, Date = “2013-01-
19”, Event subtype=“Education”).

Air Pollution Dataset: The dataset used for air pollution
event forecasting covers the major cities in China. Air qual-
ity information about the concentration of pollutant sources
(such as PM2.5 and PM10) is used as the data source. The
dataset contains about one-year air condition records for ma-
jor cities in China from July 2016 to July 2017. The first half
of the data (for the year 2016) is used for training and valida-
tion, where the validation set consists of a randomly chosen
30% of the data, and the rest is used for training; the data for
2017 is used for performance evaluation. To further enrich
the experiment and assess the prediction power of our pro-
posed model, 4 different settings for the prediction lead time
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p (1 day, 3 days, 5 days, and 7 days) are utilized in the experi-
ment. The forecasting results for the most important primary
pollutants are validated against the corresponding air qual-
ity statistics reported by the corresponding cities’ local air
quality monitoring stations, together with each city’s Envi-
ronmental Monitoring Center. The Environmental Monitor-
ing Centers publish daily summaries of the primary pollu-
tants affecting their cities. The event subtype is the most im-
portant primary pollutant (such as PM2.5, PM10, O3 and
None, with the latter indicating good air quality with no ma-
jor pollutants present). An example of an air pollution daily
report is: (City = “Beijing”, Station = “Temple of Heaven”,
Date = “01-01-2017”, Primary Pollutant = “PM2.5”).

Parameter Setting: The hyper-parameters and network
structure are chosen via a grid search based on model per-
formance on the validation set. For all neural network based
models, fully connected layers with sigmoid activation func-
tion are used. More detailed parameter settings and sensitiv-
ity analysis are presented in the supplemental material.

Performance Evaluation: To evaluate the model perfor-
mance, macro-average precision, recall and F1-Score are
used here to provide an overall measure of model perfor-
mance across all event subtype classes. In addition, we
also introduce the Receiver Operating Characteristic (ROC)
curve to further evaluate the overall prediction power.

Baselines for comparison: The performance of the pro-
posed model is compared with baselines as well as exist-
ing state of the art methods, namely: SVC1V1 (Support Vec-
tor Classifier with OneVsOne) and SVC1VA (Support Vector
Classifier with OneVsAll) (Hsu and Lin 2002), SR (Softmax
Regression) (Nasrabadi 2007; Chen et al. 2013), MLP (Mul-
tiLayer Perceptron)(Rumelhart, Hinton, and Williams 1985)
and SBM (Shared-Bottom Model) (Caruana 1998; Caruna
1993). The detailed introduction and hyper-parameter set-
tings are included in the supplemental material.

Performance
Tables 1 and 2 show the performance for all the methods on
all the datasets over all the event subtypes based on macro-
average precision, recall and F1-score. For neural network
based models the numbers attached along with the model
name are the number of hidden layers, notice that SIMDA-
SR is SIMDA framework used with Softmax Regression (i.e.
without hidden-layers) . In both tables, the best results for
each dataset are highlighted in bold face and underlined; the
second best are in bold face only.

Table 1 shows that SIMDA framework used along with
deep architectures performs consistently well across all
the different countries, being the best in Brazil, Mexico,
Paraguay, and Venezuela and competitive in Colombia. It
outperforms the baseline models by 10% - 25% among
macro-average precision, recall and F1-score. The baseline
SBM also achieves good scores, but is overall not as com-
petitive as SIMDA. This is largely because SIMDA utilizes
geo-information by including the proposed spatial correla-
tion based constraint. Interestingly, SIMDA largely outper-
forms the baselines on the Venezuela dataset, but achieves
only competitive results on the Colombia dataset compared
with SBM. Examining the dataset, 11 of the 14 cities have
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Figure 3: Macro-average ROC comparison

incomplete event subtype classes in the Venezuela dataset,
nearly 80% of the total, while only 8 out of 13 cities have
incomplete event subtype classes in the Colombia dataset,
around 60%. This may suggest that the spatial regulariza-
tion term in SIMDA improves the performance substantially
when there is more serious incompleteness of classes.

Table 2 also demonstrate the effectiveness of the proposed
methods in the domain of air pollution event forecasting
with different prediction lead times. SIMDA used along with
deep architectures outperforms the baseline models consis-
tently by 5%-10% in terms of the F1-score and achieves the
top performance for both precision and recall. The results
presented in this table also highlight the increasing diffi-
culty of predictions with longer lead times, as forecasting
long-term future events introduces considerably more un-
certainty. However, the proposed model behaves stably and
suffers from less decline in terms of its overall performance
compared with the other methods. For instance, the F1-score
only decreases by about 10% for the SIMDA-3 model, while
other baselines decrease by about 15%-30%. This may sug-
gest that the proposed spatial regularization term in SIMDA
improves the robustness of the deep model substantially, en-
abling it to capture more long-term dependencies of the data
and the corresponding event subtypes.

The experimental results in both Table 1 and 2 show that
overall shallow models such as SR, SVM based models and
SIMDA-SR perform worse than deep models with hidden
layers such as MLP, SBM and SIMDA-3. This is largely be-
cause shallow models cannot discriminate the subtle differ-
ences between event subtype patterns very well. Notice that
among the shallow models, SIMDA-SR still outperforms all
other baselines most of the time, which further demonstrates
the effectiveness of the proposed spatial regularization even
on shallow models on various application domains.

To further evaluate the overall prediction power of
the SIMDA model, the Receiver Operating Characteristic
(ROC) curve is also introduced for comparison, as shown
in Figure 3. Here, the Brazil dataset is used to represent the
Civil Unrest dataset, other datasets follow the similar trends.
The China Air dataset has a lead time of 7 days. The pro-
posed SIMDA model curve is the blue solid line and those
for the baseline models are shown as dashed lines. The Area
Under Curve (AUC) for each curve is provided in the legend.
Notice that for neural network based models, only those giv-
ing the best AUC scores are shown here. The curves for the
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Table 1: Performance comparison for the civil unrest datasets (macro Precision, Recall and F1).
Method Brazil Colombia Mexico Paraguay Venezuela

SVC1VA 0.2318,0.2479,0.2368 0.2374,0.2673,0.2447 0.1798,0.1991,0.1738 0.2009,0.2396,0.2055 0.2136,0.2348,0.2069
SVC1V1 0.2444,0.2582,0.2465 0.2062,0.2096,0.1995 0.1651,0.1600,0.1511 0.2058,0.2715,0.2152 0.2118,0.2481,0.2058

SR 0.2131,0.2525,0.2247 0.2496,0.2840,0.2545 0.1781,0.1888,0.1676 0.2212,0.2644,0.2287 0.2239,0.2507,0.2191
SIMDA-SR 0.2586,0.2699,0.2560 0.2568,0.2799,0.2645 0.2106,0.1897,0.1849 0.2378,0.2935,0.2402 0.2538,0.2661,0.2326

MLP-1 0.2423,0.2358,0.2359 0.2369,0.2354,0.2357 0.1800,0.1957,0.1715 0.2160,0.3145,0.2234 0.2174,0.2200,0.2155
MLP-2 0.2512,0.2575,0.2530 0.2594,0.2736,0.2634 0.1757,0.1534,0.1608 0.2300,0.2694,0.2307 0.2180,0.2311,0.2152
MLP-3 0.2699,0.2590,0.2643 0.2400,0.2628,0.2436 0.1842,0.1539,0.1675 0.2133,0.2049,0.2084 0.2174,0.2200,0.2155
SBM-1 0.2821,0.2634,0.2696 0.2956,0.2701,0.2762 0.2237,0.2051,0.2121 0.2447,0.3655,0.2543 0.2212,0.2115,0.2122
SBM-2 0.2560,0.2737,0.2597 0.2919,0.2637,0.2732 0.2104,0.1951,0.2009 0.2363,0.2971,0.2416 0.2455,0.2505,0.2286
SBM-3 0.2821,0.2637,0.2714 0.2759,0.3176,0.2863 0.2060,0.1793,0.1908 0.2392,0.2459,0.2369 0.2545,0.1910,0.2162

SIMDA-1 0.2848,0.2804,0.2788 0.3067,0.2761,0.2845 0.2187,0.2070,0.2123 0.2467,0.3749,0.2562 0.2684,0.2422,0.2477
SIMDA-2 0.3558,0.2887,0.2779 0.2648,0.3130,0.2670 0.2252,0.2110,0.2176 0.2543,0.3373,0.2638 0.2704,0.2421,0.2471
SIMDA-3 0.2828,0.2641,0.2712 0.2689,0.3152,0.2710 0.2081,0.2338,0.2000 0.2473,0.4482,0.2532 0.2178,0.2571,0.2174

Table 2: China air pollution event forecasting dataset with various prediction lead times (macro Precision, Recall and F1).
Method 1-day 3-days 5-days 7-days

SVC1VA 0.4966,0.5255,0.5009 0.4362,0.4768,0.4309 0.3940,0.3946,0.3872 0.4334,0.4553,0.4240
SVC1V1 0.5700,0.5716,0.5652 0.4532,0.4849,0.4565 0.4361,0.4545,0.4380 0.4351,0.4412,0.4302

SR 0.4254,0.4338,0.4287 0.4082,0.4229,0.4102 0.3949,0.4208,0.3974 0.4126,0.4277,0.4104
SIMDA-SR 0.5290,0.6436,0.5572 0.4256,0.6395,0.4293 0.4281,0.6350,0.4236 0.4541,0.6863,0.4412

MLP-1 0.5640,0.5625,0.5594 0.4679,0.4809,0.4614 0.4596,0.4761,0.4451 0.4646,0.4684,0.4592
MLP-2 0.6108,0.5567,0.5693 0.4687,0.4805,0.4638 0.4378,0.4359,0.4308 0.4605,0.4472,0.4504
MLP-3 0.5739,0.5873,0.5719 0.4989,0.4916,0.4902 0.4848,0.4683,0.4718 0.4597,0.4537,0.4364
SBM-1 0.5710,0.6162,0.5812 0.5718,0.5230,0.5162 0.5692,0.5075,0.5134 0.5763,0.5343,0.4896
SBM-2 0.5383,0.5981,0.5509 0.4630,0.6396,0.4880 0.4802,0.6211,0.4997 0.5070,0.6457,0.5256
SBM-3 0.5284,0.6085,0.5526 0.5154,0.5426,0.5035 0.5089,0.6331,0.5236 0.5271,0.5631,0.5184

SIMDA-1 0.5558,0.5668,0.5560 0.4761,0.5704,0.5046 0.4878,0.6562,0.5085 0.4738,0.6539,0.4698
SIMDA-2 0.5605,0.6556,0.5863 0.4932,0.6186,0.5290 0.4935,0.5289,0.4991 0.5627,0.6390,0.5868
SIMDA-3 0.5979,0.6364,0.6002 0.5633,0.5776,0.5431 0.5256,0.5851,0.5300 0.5138,0.6310,0.5425

None
PM 2.5
PM 10
PM 2.5&PM 10

(a) Primary Pollutant Distribution Predicted by SBM
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Figure 4: Comparison of pollutant subtype distribution predicted by SBM and SIMDA of major cities in China
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Figure 5: Runtime comparison of SIMDA-SR and SIMDA-3

Civil Unrest dataset on the left clearly show that the SIMDA
model achieves the best ROC curve, with an AUC score of
0.81. This is also the case for the China air pollution dataset,
where the SIMDA model again achieves the highest AUC
score of 0.80. This further demonstrates the effectiveness
and overall prediction power of the proposed SIMDA model.

Scalability
Figure 5 compares the run time of SIMDA-SR with soft-
max regression and SIMDA-3 with three hidden layers in
its neural network architecture on one step of the ADMM
iteration. The run time for SIMDA-SR increases quadrat-
ically with the number of input dimensions, starting from
only 0.5 second with 100 dimensions and rising to around
26 seconds with 1300 dimensions. On the other hand, the run
time for the 3 hidden layer SIMDA increases linearly start-
ing from 2.6 seconds for 100 dimensions and then climbing
to 6 seconds with 1300 input dimensions, when the number
of neurons of the the hidden layers remain unchanged. This
demonstrates that the generalized SIMDA framework enjoys
better scalability in terms of time complexity when dealing
with high dimensional complex real world data.

The Effect of Subtype Pattern Regularization
This section validates the effectiveness of the deep regu-
larization term regarding the event subtype patterns in the
SIMDA model. Looking at the China air pollution event
forecasting dataset, Figure 4 compares the pollutant sub-
type patterns in terms of the class distribution predicted by
the baseline SBM (i.e., without regularization) and SIMDA
(i.e. with regularization), with Figure 4 (a) and (b), respec-
tively, showing the models’ predicted event subtype distri-
butions for each task (city) in China. Figure 4(c) shows
the ground truth distribution for the same period. Overall,
Figure 4(b) shows a better fit for the subtype distribution
among the different cities than Figure 4(a). This indicates
that with the help of the spatial regularization term, SIMDA
was able to learn a better class distribution even when the
event subtypes are imbalanced and incomplete. For instance,
for the city Nanjing, with no spatial regularization, SBM
over-fits the training data severely and forecasts the future
subtype as predominantly “PM2.5&PM10” which diverges
significantly from the ground truth distribution. In contrast,
SIMDA not only learns from task specific training data, but
also regularizes the model by sharing adjacent tasks’ event
subtype probability ratios. Consequently, the SIMDA model

over-fits less on subtype “PM2.5&PM10” and successfully
forests “PM2.5” as the majority subtype during the test pe-
riod, which is a closer fit to the ground truth distribution
shown in Figure 4(c).

Conclusions
Beyond merely predicting the occurrence of future events,
effective forecasting of event subtypes provides valuable in-
formation to practitioners and enables them to allocate ap-
propriate amounts and types of resources to manage and
ameliorate social risks. To achieve this objective, this paper
proposes a novel Spatial Incomplete Multi-task Deep leArn-
ing (SIMDA) framework that characterizes spatial hetero-
geneity, task label incompleteness, and event subtype pattern
correlations. An efficient algorithm is proposed to handle
this non-convex and strongly coupled model objective. Ex-
tensive experiments on six real-world datasets demonstrate
that the proposed model outperforms other baseline methods
in multiple application domains.
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