
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Off-Policy Deep Reinforcement Learning by Bootstrapping the Covariate Shift

Carles Gelada, Marc G. Bellemare
Google Brain

cgel@google.com, bellemare@google.com

Abstract
In this paper we revisit the method of off-policy corrections
for reinforcement learning (COP-TD) pioneered by Hallak et
al. (2017). Under this method, online updates to the value
function are reweighted to avoid divergence issues typical of
off-policy learning. While Hallak et al.’s solution is appeal-
ing, it cannot easily be transferred to nonlinear function ap-
proximation. First, it requires a projection step onto the prob-
ability simplex; second, even though the operator describing
the expected behavior of the off-policy learning algorithm is
convergent, it is not known to be a contraction mapping, and
hence, may be more unstable in practice. We address these
two issues by introducing a discount factor into COP-TD. We
analyze the behavior of discounted COP-TD and find it better
behaved from a theoretical perspective. We also propose an
alternative soft normalization penalty that can be minimized
online and obviates the need for an explicit projection step.
We complement our analysis with an empirical evaluation of
the two techniques in an off-policy setting on the game Pong
from the Atari domain where we find discounted COP-TD
to be better behaved in practice than the soft normalization
penalty. Finally, we perform a more extensive evaluation of
discounted COP-TD in 5 games of the Atari domain, where
we find performance gains for our approach.

Introduction
Central to reinforcement learning is the idea that an agent
should learn from experience. While many algorithms learn
in a purely online fashion, sample-efficient methods typi-
cally make use of past data, viewed either as a fixed dataset,
or stored in a replay memory (Lin 1993, Mnih et al. 2015).
Because this past data may not be generated according to
the policy currently under evaluation, the agent is said to be
learning off-policy (Sutton and Barto 2018).

By now it is well-documented that off-policy learning
may carry a significant cost when combined to function ap-
proximation. Early results have shown that estimating the
value function off-policy, using Bellman updates, may di-
verge (Baird 1995), (Tsitsiklis and Van Roy 1997). More
recently, value divergence was perhaps the most significant
issue dealt with in the design of the DQN agent (Mnih et al.
2015), and remains a source of concern in deep reinforce-
ment learning (van Hasselt, Guez, and Silver 2016).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Further, under off-policy learning, the quality of the Bell-
man fixed point suffers as studied by Kolter (2011) and
Munos (2003). The value function error can be unbound-
edly large even if the value function can be perfectly ap-
proximated. Hence, even in the case where convergence to
the fixed point with off-policy data occurs, solutions can be
of poor quality. Thus, the existing TD learning algorithms
with convergence guarantees under off-policy data (Maei et
al. 2009), (Sutton et al. 2009) can still suffer from off-policy
issues.

This paper studies the covariate shift method for deal-
ing with the off-policy problem. The covariate shift method,
studied by Hallak and Mannor (2017) and Sutton, Mah-
mood, and White (2016), reweights online updates accord-
ing to the ratio of the target and behavior stationary distribu-
tions. Under optimal conditions, the covariate shift method
recovers convergent behavior with linear approximation,
breaking what Sutton and Barto (2018) call the “deadly
triad” of reinforcement learning. We argue the method is
particularly appealing in the context of replay memories,
where the reweighting can be replaced by a reprioritization
scheme similar to that of Schaul et al. (2016).

We improve on Hallak and Mannor’s COP-TD algorithm,
which has provable guarantees but is difficult to implement
in a deep reinforcement learning setting. First, we introduce
a discount factor into their update rule to obtain a more sta-
ble algorithm. Second, we develop an alternative normal-
ization scheme that can be combined with deep networks,
avoiding the projection step necessary in the original algo-
rithm. We perform an empirical study of the two methods
and their variants on the game Pong from the Arcade Learn-
ing Environment and find that our improvements give rise to
significant benefits for off-policy learning.

Background
We study the standard RL setting in which an agent in-
teracts with an environment by observing a state, select-
ing an action, receiving a reward, and observing the next
state. We model this process with a Markov Decision Pro-
cess 〈S,A, R, P, γ〉. Here, S, A denote the state and action
spaces and P is the transition function. Throughout we will
assume that S and A are finite and write n := |S|. A policy
π maps a state to a distribution over actions,R : S×A → R
is the reward function, and γ is the discount factor.

3647

We are interested in the policy evaluation problem, where
we seek to learn the value function V π of a policy from sam-
ples. The value function is the expected sum of discounted
rewards from a state when following policy π:

V π(s) := E
[∞∑
t=0

γtR(st, at)|s0 = s
]
,

where each action is drawn from the policy π, i.e. at ∼
π(· | st), and states are drawn from the transition function:
st+1 ∼ P (· | st, at). We combine the policy π and transition
function P into a state-to-state transition function Pπ , whose
entries are

Pπ(s′ | s) :=
∑
a∈A

π(a | s)P (s′ | s, a).

Let rπ(s) := Ea∼π R(s, a) be the expected reward under
π. One of the key properties of the value function V π is that
it satisfies the Bellman equation:

V π(s) = rπ(s) + γ E
s′∼Pπ

V π(s′).

In vector notation (Puterman 1994), this becomes

V π = rπ + γPπV
π,

where V π ∈ Rn, rπ ∈ Rn, and Pπ ∈ Rn×n. The value
function is in fact the fixed point of the Bellman operator
Tπ : Rn → Rn, defined as

TπV := rπ + γPπV.

The Bellman operator describes a single step of dynamic
programming (Bellman 1957) or bootstrap; the process
V k+1 := TπV k converges to V π . More interestingly for us,
the operator also describes the expected behavior of learning
rules such as temporal-difference learning (Sutton 1988) and
consequently their learning dynamics (Tsitsiklis and Van
Roy 1997). In the sequel, whenever we analyze the behavior
of operators it is with this relationship in mind.

In this paper we consider the process of learning V π from
samples drawn from P and a behavior policy µ. Following
standard usage, we call this process off-policy learning (Sut-
ton and Barto 2018).

Let d ∈ Rn. We write Dd for the corresponding diagonal
matrix. For a matrix A ∈ Rn×n, the A-weighted squared
seminorm of a vector x ∈ Rn is ‖x‖2A := ‖Ax‖2 =
x>A>Ax. We specialize this notation to vectors in Rn as
‖x‖2d :=

∑n
i=1 d(i)x(i)2. We write e for the vector of all

ones and ∆(S) for the simplex over states (d ∈ ∆(S) =⇒
d>e = 1, d ≥ 0). Finally, recall that d ∈ ∆(S) is the sta-
tionary distribution of a transition function P if and only if

d = dP.

This distribution is unique when P defines a Markov chain
with a single recurrent class (called a unichain, Meyn and
Tweedie 2012). Throughout we will write dπ and dµ for the
stationary distributions of Pπ and Pµ, respectively.

Off-Policy Learning with Linear Approximation
In most practical applications the size of the state space
precludes so-called tabular representations, which learn the
value of each state separately. Instead, one must approximate
the value function. One common scheme is linear function
approximation, which uses a mapping from states to features
φ : S → Rk. The approximate value function at s is then the
inner product of a feature vector with a vector of weights
θ ∈ Rk:

V̂ (s) = φ(s)>θ. (1)
If Φ ∈ Rn×k denotes the matrix of row-feature vectors, (1)
becomes, in vector notation:

V̂ = Φθ.

The semi-gradient update rule for TD learning (Sutton
and Barto 2018) learns an approximation of V π from sample
transitions. Given a starting state s ∈ S, a successor state
s′ ∼ Pπ(· | s), and a step-size parameter α > 0, this update
is

θ ← θ + α
[
rπ(s) + γφ(s′)>θ − φ(s)>θ

]
φ(s). (2)

While (2) does not correspond to a proper gradient descent
procedure (see e.g. Barnard 1993), it can be shown to con-
verge, as we shall now see.

The expected behavior of the semi-gradient update rule is
described by the projected Bellman operator, denoted ΠdTπ
for some distribution d ∈ ∆(S) (Tsitsiklis and Van Roy
1997). The projected Bellman operator is the combination
of the usual Bellman operator with a projection Πd in norm
‖·‖d onto the span of Φ. Typically, the learning rule (2) is
studied in an online setting, where samples correspond to an
agent sequentially experiencing the environment. In the sim-
plest case where an agent follows a single behavior policy µ,
this corresponds to d = dµ.

The stationary point of (2), if it exists, is the solution of
the projected Bellman equation

V̂ π = ΠdTπV̂ π.
When the projection is performed under the stationary dis-
tribution dπ , (2) converges to this fixed point provided α
is taken to satisfy the Robbins-Monro conditions and other
mild assumptions(see Tsitsiklis and Van Roy (1997)). Tak-
ing d 6= dπ , however, may lead to divergence of the weight
vector in (2). A sign of the importance of this issue can be
seen in Sutton and Barto’s choice to dub “deadly triad” the
combination of off-policy learning, function approximation,
and bootstrapping.

A prerequisite to guarantee the convergence of (2) to V̂ π
is that

V̂ k+1 := ΠdTπV̂ k (3)

should also converge for any initial condition V̂ 0 ∈ Rn.
Tsitsiklis and Van Roy proved convergence when d = dπ
by showing that the projected Bellman operator is a contrac-
tion in dπ-weighted norm. That is, for any V, V ′ ∈ Rn,

‖ΠdπTπV −ΠdπTπV ′‖dπ ≤ γ ‖V − V
′‖dπ ,

from which an application of Banach’s fixed point theorem
allows us to conclude that V̂ k → V̂ π . More formally, the

3648

result follows from noting that the induced operator norm
of ΠdπPπ ≤ 1. The lack of a similar result when d 6= dπ
explains the divergence, and is by now well-documented in
the literature (Baird 1995).

Independent of the convergence issues raised by off-
policy learning, the fixed point of the Bellman equation
with linear function approximation is also affected. A metric
for the quality of a value function V̂ (s) is Es∼dπ [(V̂ (s) −
V π(s))2] =

∥∥∥V̂ − V π∥∥∥
dπ

, the expected value prediction er-

ror sampling states from the stationary distribution of the
policy evaluated. Under some conditions, we can bound the
quality of the fixed point under off-policy data as a constant
factor times the optimal prediction error ‖ΠdπV

π − V π‖dπ .

Theorem 1. [Based on Munos 2003] Let d ∈ ∆(S) be some
arbitrary distribution. Suppose that ‖ΠdPdπ‖dπ < 1/γ and
there is a fixed point V̂ πd to the projected Bellman equation
V := ΠdTπV . Then its approximation error in dπ-weighted
norm is at most∥∥∥V̂ πd − V π∥∥∥

dπ
≤
‖ΠdV

π − V π‖dπ
1− γ ‖ΠdPπ‖dπ

.

Furthermore, this error is minimized when d = dπ .

Theorem 1 is interesting because it suggests that dπ is also
the optimal in the sense that it yields the smallest approxima-
tion bound. Kolter (2011) showed that when Theorem 1 does
not apply (because ‖ΠdPπ‖dπ ≥ 1/γ) it is possible to con-
struct examples where the fixed point error is unbounded,
even if ‖ΠdV

π − V π‖dπ = 0 (i.e. cases where a perfect so-
lution exists). Thus, no general bound on the quality of the
off-policy fixed point exists.

Not only do we expect that improvements in off-policy
learning should lead to more stable learning behavior, but
also to the improved quality of the value functions which,
in the control setting, should translate to increases in per-
formance. In this paper we will study the covariant shift
approach to off-policy learning, where updates in (2) are
reweighting so as to induce a projection under dπ .

The Covariate Shift Approach
Suppose that the stationary distributions dπ and dµ are
known, and that states are updated according to a distribu-
tion s ∼ dµ. We use importance sampling (e.g. Precup, Sut-
ton, and Singh 2000) to define the update rule

θ ← θ + α
dπ(s)

dµ(s)

[
r(s, a) + γφ(s′)>θ − φ(s)>θ

]
φ(s)>,

where as before a ∼ µ(· | s), s′ ∼ P (· | s, a), is equiv-
alent to applying the semi-gradient update rule (2) under
the sampling distribution dπ . Further multiplying the up-
date term by π(a | s)

µ(a | s) , we recover (in expectation) the semi-
gradient update rule for learning V π , under the sampling dis-
tribution dπ (Hallak and Mannor 2017). Thus, provided we
reweighted updates correctly, we obtain a provably conver-
gent off-policy algorithm.

The COP-TD learning rule proposed by Hallak and Man-
nor learns the ratio dπ

dµ
from samples. Although much of the

original work is concerned with the combined learning dy-
namics of the value and the ratio, we will focus on the pro-
cess by which this ratio is learned.

Similar to temporal difference learning, COP-TD esti-
mates dπ

dµ
by bootstrapping from a previous prediction.

Given a step-size α > 0, a ratio vector c ∈ Rn and a
sample transition (s, a, s′) where s ∼ dµ, a ∼ µ(· | s), and
s′ ∼ P (· | s, a), COP-TD performs the following update:

c(s′)← c(s′) + α

[
π(a | s)
µ(a | s)

c(s)− c(s′)
]
. (4)

Note that this update rule learns “in reverse” compared to
TD learning. The expected behavior of the update rule is
captured by the COP operator Y :

(Y c)(s′) := E
s∼dµ,a∼µ

[
π(a | s)
µ(a | s)

c(s) | s′
]
.

In vector notation, this operator is:

Y c = D−1
dµ
P>π Ddµc. (5)

Any multiple of dπdµ is a fixed point of Y : Y β dπdµ = β dπdµ , for
β ∈ R. Hallak and Mannor, under the assumption that the
transition matrix Pπ has a full set of real eigenvectors, give
a partial proof that the iterates ck+1 := Y ck converge to
such a fixed point. Our first result is to provide an alternative
proof of convergence that does not require this assumption.

Theorem 2. Suppose that Pπ defines an ergodic Markov
chain on the state space S, and let c0 ∈ ∆. Then the process
ck+1 = Y ck converges to C dπ

dµ
, where C ∈ R is a positive

scalar.

Corollary 1. Suppose that the conditions of Theorem 2 are
met. Define the normalized COP operator

(Ȳ c)(s′) :=
c̃(s′)∑
s c̃(s)

c̃ := Y c.

Then the unique fixed point of the operator Ȳ is the ratio dπ
dµ

,
to which the process ck+1 := Ȳ ck converges.

COP-TD with Linear Function Approximation
The covariate shift method is called-for when the value func-
tion is approximated. Under these circumstances, one might
expect that we also need to learn an approximate ratio ĉ.
Hallak and Mannor consider the linear approximation

ĉ(s) = φ(s)>w,

where w ∈ Rk.1 This gives rise to a semi-gradient update
rule similar to (2) but implementing (4):

w̃ ← w + α

[
π(a | s)
µ(a | s)

φ(s)>w − φ(s′)>w

]
φ(s′)

1In practice, we may avoid negative ĉ’s by clipping them at 0.

3649

and also followed by a projection step on the dµ-weighted
simplex ∆Φ,dµ defined by the set WΦ,dµ := {u ∈ Rk :∑
s∈S dµ(s)φ(s)>u = 1, φ(s)>u ≥ 0}:

w ← arg min
u∈WΦ,dµ

‖u− w̃‖ .

The projection step ensures that the approximate ratio ĉ cor-
responds to some distribution ration d

dµ
for d ∈ S. The com-

bined process is summarized by the normalized COP oper-
ator: ĉk+1 := Π∆Φ,dµ

ΠdY ĉ
k, whose repeated application

converges to some approximate ratio.
One interesting fact is that the semi-gradient update rule,

which corresponds to a d-weighted projection, is by itself
insufficient to guarantee the good behavior of the algorithm.

Lemma 1. Let Y be a symmetric COP-TD operator and Π
be the projection onto Φ in L2 norm. If dπdµ is not in the span
of Φ, then c = 0 is the only solution to

ΠY c = c.

Lemma 1 argues that the normalization step is not only a
convenience but is in fact necessary for the process to con-
verge to anything meaningful. This is further validated by
numerical experiments with general Pπ , dµ and d where we
obseve that the repeated application of operator ΠdY either
converges to 0 or diverges.

A Practical COP-TD
In this paper we are concerned with the application of COP-
TD to practical scenarios, where approximating dπ

dµ
is a

must. As the following observations suggest, however, there
are a number of limitations to COP-TD.
Lack of contraction factor. The operator Y is not in general
a contraction mapping. Hence, while the process ck+1 :=
Y ck converges, it may do so at a slow rate, with greater vari-
ations in the sample-based case, and more importantly may
be unstable when combined with function approximation.
Hard-to-satisfy projection step. In the approximate case,
we saw that it is necessary to combine the COP operator
to a projection onto the dµ-weighted simplex. Although it
is possible to approximate this projection step in an online,
sample-based manner for linear function approximation
(Hallak and Mannor recommend constraining the weights
to the simplex generated by a sufficiently large enough sam-
ple), no counterpart exists for more general classes of func-
tion approximations, making COP-TD hard to combine with
neural networks.

In what follows we address these two issues in turn.

The Discounted COP Learning Rule
While repeated applications of the operator converge to dπ

dµ
,

the operator is not in general a contraction mapping, and its
convergence profile is tied to the (usually unknown) mixing
time of the Markov chain described by Pπ . Our main con-
tribution is the γ̂-discounted COP-TD learning rule, which
recovers COP-TD for γ̂ = 1.

Definition 1. Let c ∈ Rn. For a step-size α > 0, discount
factor γ̂ ∈ [0, 1], and sample (s, a, s′) drawn respectively
from dµ, µ, and P , the γ̂-discounted COP-TD learning rule
is

c(s′)← c(s′)+α

[
γ̂
π(a | s)
µ(a | s)

c(s) + (1− γ̂)− c(s′)
]
. (6)

The corresponding operator is

Yγ̂c := γ̂Y c+ (1− γ̂)e.

By inspection, it is clear that Y1 = Y . However, as we
will see, the discounted COP-TD learning rule has several
desirable properties compared to its undiscounted counter-
part. We begin by characterizing the discounted COP opera-
tor.
Definition 2. For a given γ̂ ∈ [0, 1], we define the dis-
counted reset transition function P̂π as:

P̂π := γ̂Pπ + (1− γ̂)ed>µ ,

where ed>µ is the matrix whose columns are all dµ.
The discounted reset transition function can be under-

stood as a process which either transitions as usual with
probability γ̂, or resets to the stationary distribution dµ with
the remainder probability. This is analogous to the perspec-
tive of the discount factor as a probability of terminating
(White 2017), and is related to the constraint that arises
in the dual formulation of the value function (Wang et al.
2008).

We denote by d̂π the stationary distribution satisfying
d̂π = d̂πP̂π . As an aside, the inclusion of the reset guar-
antees the ergodicity of the Markov chain defined by P̂π .

Proposition 1. The stationary distribution d̂π is given by

d̂π = (1− γ̂)(I − γ̂P>π)−1dµ,

where the sum

(I − γ̂P>π)−1 :=

∞∑
t=0

(γ̂P>π)t.

is convergent for γ̂ < 1.

Put another way, d̂π describes an exponentially weighted
sum of k-step deviations from the behavior policy’s station-
ary distribution dµ, where the kth deviation corresponds to
applying transition P>π k times.

Lemma 2. For γ̂ < 1, the ratio d̂π
dµ

is the unique fixed point
of the operator Yγ̂ .

Theorem 3. Let c0 ∈ ∆. For γ̂ < 1 the process ck+1 :=

Yγ̂c
k converges to d̂π

dµ
, where d̂π is the stationary distribution

of the transition function P̂π corresponding to the given γ̂.
One of the most appealing properties of the discounted

operator (for γ̂ < 1) is that it neither requires normalization,
or even positive initial values to guarantee convergence. As
we shall see, this greatly simplifies the learning process.

3650

Discounted COP with Linear Function
Approximation
The appeal of the COP-TD learning rule is that it can be ap-
plied online. The same remains true for our discounted COP
learning rule (6). Naturally, when combined with function
approximation the same issue of norm arises: can our learn-
ing process itself be guaranteed to converge? The answer is
yes, provided the discount factor is taken to be small enough.

To begin, let us assume sample transitions are drawn as
s ∼ dµ, a ∼ µ(· | s), s′ ∼ P (· | s, a), as before. Because
dµ is the stationary distribution, s′ ∼ dµ also. The process
we study is therefore described by the projected discounted
COP operator ΠdµYγ̂ .
Lemma 3. The induced operator norm of the COP operator
Y n is upper bounded by a constant

√
Kπ,µ,n, in the sense

that

‖Y n‖2dµ ≤ Kπ,µ,n := sup
s′∈S

∑
s∈S

dµ(s)

dµ(s′)
Pnπ (s′ | s).

Further, the series can be bounded by a constant,

Kπ,µ,n ≤ Kπ,µ :=

∥∥∥∥dµ(s)

dπ(s)

∥∥∥∥
∞

∥∥∥∥dπ(s)

dµ(s)

∥∥∥∥
∞
.

The term Kπ,µ,n is a concentration coefficient similar to
those studied by Munos (2003). Intuitively, it measures the
discrepancy in stationary distributions between two states
that are “close” according to π, in the sense that s′ is reach-
able from s in n steps. When µ = π, the sum simplifies to
dπ(s′) and this term is 1.

We can make use of the concentration coefficient to pro-
vide a safe value of γ̂ below which the discounted COP
learning rule is convergent. Although most of our work con-
cerns 1-step updates, we provide a slightly more general re-
sult on n-step methods here, based on known contraction
results (Sutton and Barto 2018) and the existing multi-step
extension of COP-TD (Hallak and Mannor 2017).
Theorem 4. Consider the n-step discounted COP operator
Y nγ̂ . Then for any c ∈ Rn,∥∥∥∥∥Y nγ̂ c− d̂π

dµ

∥∥∥∥∥
dµ

≤ γ̂n
√
Kπ,µ,n

∥∥∥∥∥c− d̂π
dµ

∥∥∥∥∥
dµ

and in particular for γ̂ < (Kπ,µ,n)−1/2n, Y nγ̂ is a contrac-
tion mapping. Since Kπ,µ,n is a bounded series, the expo-
nential factor is guaranteed to dominate. As a result, there
exists a value of γ̂ < 1 for which the projected n-step dis-
counted COP operator ΠdµY

n
γ̂ is a contraction mapping.

Theorem 4 shows that we can avoid the usual divergence
issues with the learning rule (6) by taking a sufficiently small
γ̂. While these results are not altogether surprising (they mir-
ror the case of value function approximation), we empha-
size that there is no equivalent guarantee in the undiscounted
case.

More generally, we are unlikely to be in the worst-case
scenario achieving the concentration coefficientKπ,µ,n and,
as our empirical evaluation will show, divergence does not

seem to be a problem even with large γ̂. Yet, one may won-
der whether it is relevant at all to learn an approximation
to dπ

dµ
. Using Theorem 1 we argue that since the bound is

continuous in the learning distribution d we can expect im-
proved performance even when the covariate shift is approx-
imated for γ̂ < 1 or where a prediction error due to function
approximation occurs.

Taken as a whole, our results suggest that incorporating
the discount factor γ̂ should improve the behavior of the
COP-TD algorithm in practice.

Soft Ratio Normalization
Suppose we are given a function c : S → R differentiable
w.r.t. its parameters for which we would like that∑

s∈S
dµ(s)c(s) = 1.

A common approach in deep reinforcement learning settings
is to treat this as an additional loss to be minimized. In this
section we also follow this approach, and consider minimiz-
ing the normalization loss

L(c) := 1
2

(∑
s∈S

dµ(s)c(s)− 1
)2
. (7)

The gradient of this loss is

∇L(c) = (
∑
s∈S

dµ(s)c(s)− 1)
∑
s∈S

dµ(s)∇c(s). (8)

We seek an unbiased estimate of this gradient. However, we
cannot recover such an estimate with a single sample s ∼
dµ, in a classic case of the double-sampling problem (Baird
1995). In particular, it is not hard to see that

E
s∼dµ

[(c(s)− 1)∇c(s)] 6= ∇L(c).

However, we can obtain such an estimate by considering
m ≥ 2 samples s1, . . . , sm drawn from dµ. The quantity

∇̂(c) :=
(

1
m−1

m∑
i=2

c(si)− 1
)
∇c(s1)

is an unbiased estimate of the loss gradient (8). In fact, as the
following theorem states, we can do better by allowing each
sample to play both roles in the estimate, and averaging the
results.

Theorem 5. Consider a differentiable function c : S →
R and the loss function (7). Given s1, . . . , sm independent
samples drawn from dµ,

1
m

m∑
i=1

(
1

m−1

∑
j 6=i

c(sj)− 1
)
∇c(si)

is an unbiased estimate of∇L(c).

In our experimental section we will see that the normal-
ization loss plays an important role in making COP-TD prac-
tical.

3651

Random

Uncorrected

Uncorrected
Random

Divergence

Figure 1: η = 0.002 with 5 seeds per run for 150 iterations. Left. Comparing discount factors in Pong. Using a discount factor
gives a significant performance improvement. Right. Comparing normalization weights in Pong. Using normalization helps
learning, but a large normalization weight causes divergence in the c values.

Corrected

Uncorrected

Random

Figure 2: η = 0.02 with 3 seeds for 150 iterations. Performance of discounted COP-TD with a small target update period of
1000 and γ̂ = 0.99 on 5 Atari 2600 games.

Experimental Results
In this section we provide empirical evidence demonstrating
that our method yields useful benefits in an off-policy, deep
reinforcement learning setting. In our experiments we use
the Arcade Learning Environment (ALE) (Bellemare et al.
2013), an RL interface to Atari 2600 games. We consider the
single-GPU agent setup pioneered by Mnih et al. (2015). In
this setup, the agent uses a replay memory (implemented as
a windowed buffer) to store past experience, which it trains
on continuously. As a result, much of the agent’s learning
carries an off-policy flavor.

We focus on a fixed behavior policy, specifically the uni-
formly random policy. We are interested in learning as good
of a control policy as we can. That is, at each step the tar-
get policy is the greedy policy with respect to the predicted
Q-values. While the theory we developed here applies to the
policy evaluation case, we believe this setup to be a more
practical and more stringent test of the idea. We emphasize
that on the ALE, the uniformly random policy generates data
that is significantly different from any learned policy; as a re-
sult, our experiments exhibit a high degree of off-policyness.
To the best of our knowledge, we are the first to consider
such a drastic setting.

Implementation
Our baseline is the C51 distributional reinforcement learn-
ing agent (Bellemare, Dabney, and Munos 2017), and we
use published hyperparameters unless otherwise noted. We

augment the C51 network by adding an extra head, the ratio
model c(s), to the final convolutional layer, whose role is to
predict the ratio dπ

dµ
. The ratio model consists of a two-layer

fully-connected network with a ReLU hidden layer of size
512. Whenever a correction term is used as a sampling pri-
ority or to compute a bootstrapping target, we clip negative
outputs to 0. In what follows θ̄ denotes the parameters of the
target network, which includes the ratio model.

In initial experiments we found that multiplicatively
reweighting the loss function using covariate shifts hurt per-
formance, likely due to larger gradient variance. Instead, to
reweight sample transitions we use a prioritized replay mem-
ory (Schaul et al. 2016) where priorities correspond to the
approximate ratios of our model, which in expectation re-
covers the reweighting. These adjusted sampling priorities
result in large portions of the dataset being mostly ignored
(i.e. those unlikely under policy π); hence, the effective size
of the data set is reduced and we risk overfitting. In our ex-
periment we mitigated this effect by taking a larger replay
memory size (10 million frames) than usual.

Identical to C51, the target policy πθ̄ is the ε-greedy policy
with respect to the expected value of the distribution output
of the target network. We set ε = 0.1. The ratio model is
trained by adding the squared loss

η
(
γ̂cθ̄(s)

πθ̄(a|s)
µ(a|s)

+ (1− γ̂)− cθ(s′)
)2

(9)

to the usual distributional loss of the agent, where η > 0

3652

Prioritized
Uniform
Prioritized + Auxiliary
Uniform + Auxiliary

Figure 3: η = 0.002 with 3 seeds for 50 iterations. 4-way performance comparison using the discounted COP-TD loss as an
auxiliary task and TD error prioritization as in (Schaul et al. 2016), blue line corresponds to the corrected agent with γ̂ = 0.999
at iteration 50.

Figure 4: From same runs shown in Figure 1, left. Average
predicted ratio in evaluation episode for a set of γ̂ in the
game of Pong.

is a hyperparameter trading off the two losses. In experi-
ments where we also normalize the ratio model, a third loss
(with corresponding weight hyperparameter) is also added.
Preliminary experiments showed that learning the ratio with
prioritized sampling led to stability issues, hence we train
the ratio model by sampling transitions uniformly from the
replay memory. Each training step samples two indepen-
dent transition batches, prioritized and uniform for the value
function and covariate shift respectively.

Since the training is done ”backwards in time”, no valid
transition exists that would update the correction of an initial
state s0. This is similar to how there is no valid transition that
updates the value of the terminal state in an episodic MDP.
However, the distribution of any initial state s0 is policy-
independent, and so its ratio is 1. As a result, we modify
the loss (9) for initial states by replacing the bootstrap tar-
get with 1. A more detailed analysis of our method in the
episodic case is provided in the supplementary material.

Discounting and Normalization
We first study the effect of using the discounted COP update
rule and/or normalization in the context of the game of Pong.
In Pong, the random agent achieves an average score close
to -21, the minimum (Bellemare et al. 2013). Figure 1, left,
compares the learning curves of various values of the dis-
count factor γ̂, the agent with no corrections and the random
baseline using a ratio loss weight η = 0.02. For discount

factors not too large (all except γ̂ = 0.9999) better per-
formance compared to the uncorrected baseline is achieved.
Using normalization instead (Figure 1, right) also improves
performance. However, for high values of the normalization
weight, we observed unstable and sometimes divergent be-
havior. The runs which can be seen to stop mid plot had
diverged in their c outputs (Figure ??, appendix). We spec-
ulate that the reason for the divergence is higher variance in
the loss function, and that a smaller step size might reduce
such instabilities. Since using a discount factor proved more
stable, has a slight performance advantage and is better un-
derstood theoretically than normalization, we will center the
rest of the empirical evaluation around it.

In Figure 2 we report results for five Atari games cho-
sen on the basis that a random agent playing these games
explores the state space at least sufficiently to provide use-
ful data for off-policy learning. We run C51 with discounted
corrections with γ̂ = 0.99 and η = 0.02. We observe per-
formance improvements in Seaquest, Breakout and Pong, no
noticeable difference in Asterix and a small loss in Space In-
vaders.

Auxiliary tasks and Prioritization

One might wonder if the performance benefits observed are
really due to sampling from a more on-policy distribution.
Auxiliary tasks in the form of extra prediction losses have
successfully been used to learn better representations and
aid the learning of the value function (Jaderberg et al. 2016),
(Aytar et al. 2018). To validate that the gains originate from
correcting the off-policy data distribution as opposed to bet-
ter representations, we show a modification of the previ-
ous experiment where the covariate shift was learned but
not used. We also compare how our proposed prioritization
scheme compares to the one originally proposed by (Schaul
et al. 2016) who used a function of the TD error to set the
priorities. A four-way comparison of auxiliary tasks and TD
error prioritization is shown in Figure 3 where η = 0.002.
We note that neither using the covariate shift prediction as
an auxiliary task nor using TD error based prioritized sam-
pling seemed to make any difference in all the games ex-
cept SpaceInvaders. Interestingly, the covariate shift auxil-
iary task in SpaceInvaders helped when uniform sampling
was used but hurt under prioritization.

3653

1.7351.7281.7230.00250.00250.0025

low c high c

Figure 5: Sample states (frames) encountered under the random policy, predicted either as relatively less likely under π (low
c) or relatively more likely under π (high c). The experiment clipped the corrections at 0.0025 which was later found to be
unnecessary.

The Effect of the Discount Factor
To better understand the effect of γ̂ in the learned ratios
Figure 4 shows the average predicted ratio over evaluation
episodes (where the ε-greedy policy is used instead of the
uniform random policy) in the game of Pong for the same
set of runs shown in Figure 1, left. Too large a discount
(γ̂ = 0.9999) causes a decrease in performance, (see Fig-
ure 1, left) and one might expect that divergence of the
ratios would be the cause. Surprisingly, we observe that
γ̂ = 0.9999 show no signs of divergence. We emphasize
is that the average episode ratio decays monotonically with
γ̂, hinting that there is a tendency for the ratios to collapse
to 0 which overcomes any potential divergence issues.

Qualitative Evaluating the Learned Ratios
As an additional experiment, we qualitatively assessed the
ratio c(s) learned by our deep network. We generated
100,000 sample states by executing the random behavior
policy on Pong. From these, we selected the top and bot-
tom 50 states according to the ratio (c value) predicted by
an agent trained under the regime of the previous section for
50 million frames. Recall that that c > 1 means the network
believes the state is more likely under π than µ, while when
c < 1 the converse is true.

Figure 5 shows the outcome of this experiment for the top
3 states in terms of c-value, and 3 low-c states; additional
frames are provided in the supplemental. While our results
remain qualitative, we see a clear trend in the selected im-
ages. States that are assigned low c correspond to those in
which the opponent is about to score a point (2nd and 3rd
images). The network also assigns a low c to a state in which
the opponent has scored a high number of points (18 out of
a possible total of 21) compared to the agent’s (0 out of 21).
This is indeed an unlikely state under π: if the trained agent
ties the computer opponent, on average, then we expect its
score to roughly match that of the opponent.

By contrast, states that are likely under c are those for in
which the agent successfully returns the ball. These are natu-
rally unlikely situations under µ, which plays randomly, but
likely under the more successful policy π, which has learned
to avoid the negative reward associated with failing to return
the ball.

From this qualitative evidence we conclude that our
model learns to clearly distinguish likely and unlikely sam-
ple transitions. We believe these results are particularly sig-
nificant given the relative scarcity of off-policy methods of
this kind in deep reinforcement learning.

Conclusion
In this paper we revisited Hallak and Mannor’s COP-TD al-
gorithm and extended it to be applicable to the deep rein-
forcement learning setting. While these results on the Atari
2600 suite of games remain preliminary, they demonstrate
the practicality of learning the covariate shift in complex
settings. We believe our results further open the door to in-
creased sample efficiency in deep reinforcement learning.

We emphasize that the instabilities observed when learn-
ing the covariate shift under prioritized sampling point to
the importance of the data distribution used to learn the ra-
tios. Which distribution is optimal will be the focus of future
work. The covariate shift method is a “backward” off-policy
method, in the sense that it corrects a mismatch between
distributions based on past transitions. It would be interest-
ing to combine our method to “forward” off-policy methods
such as Retrace (Munos et al. 2016), which have also yielded
good results on the Atari 2600 (Gruslys et al. 2018). Then, it
would be interesting to understand whether overfitting does
occur due to a smaller effective replay size, and how this
can be addressed. Finally, an exciting avenue would be ex-
tending the method to the more general case where multiple
policies have generated off-policy data, which would allow
COP-TD to be applied in the standard control setting.

Acknowledgements
We would like to thank Dale Schuurmans, James Martens,
Ivo Danihelka, Danilo J. Rezende for insightful discussion.
We also thank Jacob Buckman, Saurabh Kumar, Robert
Dadashi and Nicolas Le Roux for reviewing and improving
the draft.

References
Aytar, Y.; Pfaff, T.; Budden, D.; Paine, T. L.; Wang, Z.; and
de Freitas, N. 2018. Playing hard exploration games by

3654

watching Youtube. CoRR abs/1805.11592.
Baird, L. 1995. Residual algorithms: Reinforcement learn-
ing with function approximation. In Proceedings of the
twelfth international conference on machine learning (ICML
1995), 30–37.
Barnard, E. 1993. Temporal-difference methods and
Markov models. IEEE Transactions on Systems, Man, and
Cybernetics.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An evaluation
platform for general agents. Journal of Artificial Intelligence
Research 47:253–279.
Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A
distributional perspective on reinforcement learning. In Pro-
ceedings of the International Conference on Machine Learn-
ing.
Bellman, R. E. 1957. Dynamic programming. Princeton,
NJ: Princeton University Press.
Gruslys, A.; Dabney, W.; Azar, M. G.; Piot, B.; Bellemare,
M.; and Munos, R. 2018. The reactor: A fast and sample-
efficient actor-critic agent for reinforcement learning. In In-
ternational Conference on Learning Representations.
Hallak, A., and Mannor, S. 2017. Consistent on-line off-
policy evaluation.
Jaderberg, M.; Mnih, V.; Czarnecki, W.; Schaul, T.; Leibo,
J. Z.; Silver, D.; and Kavukcuoglu, K. 2016. Reinforce-
ment learning with unsupervised auxiliary tasks. CoRR
abs/1611.05397.
Kolter, J. Z. 2011. The fixed points of off-policy TD. In
NIPS.
Lin, L. 1993. Scaling up reinforcement learning for robot
control. In Machine Learning: Proceedings of the Tenth In-
ternational Conference, 182–189.
Maei, H. R.; Szepesvári, C.; Bhatnagar, S.; Precup, D.; Sil-
ver, D.; and Sutton, R. S. 2009. Convergent temporal-
difference learning with arbitrary smooth function approx-
imation. In NIPS.
Meyn, S. P., and Tweedie, R. L. 2012. Markov chains and
stochastic stability.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.;
Fidjeland, A. K.; Ostrovski, G.; et al. 2015. Human-
level control through deep reinforcement learning. Nature
518(7540):529–533.
Munos, R.; Stepleton, T.; Harutyunyan, A.; and Bellemare,
M. G. 2016. Safe and efficient off-policy reinforcement
learning. In Advances in Neural Information Processing
Systems.
Munos, R. 2003. Error bounds for approximate policy it-
eration. In Proceedings of the International Conference on
Machine Learning.
Precup, D.; Sutton, R. S.; and Singh, S. P. 2000. Eligibility
traces for off-policy policy evaluation. In Proceedings of the
International Conference on Machine Learning.

Puterman, M. L. 1994. Markov Decision Processes: Dis-
crete stochastic dynamic programming. John Wiley & Sons,
Inc.
Schaul, T.; Quan, J.; Antonoglou, I.; and Silver, D. 2016.
Prioritized experience replay. In International Conference
on Learning Representations.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT Press, 2nd edition.
Sutton, R. S.; Maei, H. R.; Precup, D.; Bhatnagar, S.; Silver,
D.; Szepesvári, C.; and Wiewiora, E. 2009. Fast gradient-
descent methods for temporal-difference learning with lin-
ear function approximation. In ICML.
Sutton, R. S.; Mahmood, A. R.; and White, M. 2016. An
emphatic approach to the problem of off-policy temporal-
difference learning. Journal of Machine Learning Research.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine Learning 3(1):9–44.
Tsitsiklis, J. N., and Van Roy, B. 1997. An analysis of
temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control 42(5):674–690.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep rein-
forcement learning with double Q-learning. In Proceedings
of the AAAI Conference on Artificial Intelligence.
Wang, T.; Lizotte, D.; Bowling, M.; and Schuurmans, D.
2008. Dual representations for dynamic programming. Jour-
nal of Machine Learning Research 1–29.
White, M. 2017. Unifying task specification in reinforce-
ment learning.

3655

