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Abstract

Region-level demand forecasting is an essential task in ride-
hailing services. Accurate ride-hailing demand forecasting
can guide vehicle dispatching, improve vehicle utilization, re-
duce the wait-time, and mitigate traffic congestion. This task
is challenging due to the complicated spatiotemporal depen-
dencies among regions. Existing approaches mainly focus on
modeling the Euclidean correlations among spatially adjacent
regions while we observe that non-Euclidean pair-wise cor-
relations among possibly distant regions are also critical for
accurate forecasting. In this paper, we propose the spatiotem-
poral multi-graph convolution network (ST-MGCN), a novel
deep learning model for ride-hailing demand forecasting. We
first encode the non-Euclidean pair-wise correlations among
regions into multiple graphs and then explicitly model these
correlations using multi-graph convolution. To utilize the
global contextual information in modeling the temporal cor-
relation, we further propose contextual gated recurrent neu-
ral network which augments recurrent neural network with
a contextual-aware gating mechanism to re-weights different
historical observations. We evaluate the proposed model on
two real-world large scale ride-hailing demand datasets and
observe consistent improvement of more than 10% over state-
of-the-art baselines.

Introduction
Spatiotemporal forecasting is a crucial task in urban com-
puting. It has a wide range of applications from autonomous
vehicles operations, to energy and smart grid optimization,
to logistics and supply chain management. In this paper, we
study one important task: region-level ride-hailing demand
forecasting, which is one of the essential components of the
intelligent transportation systems. The goal of region-level
ride-hailing demand forecasting is to predict the future de-
mand of regions in a city given historical observations. Ac-
curate ride-hailing demand forecasting can help organize ve-
hicle fleet, improve vehicle utilization, reduce the wait-time,
and mitigate traffic congestion (Yao et al. 2018b). This task
is challenging mainly due to the complex spatial and tem-
poral correlations. On the one hand, complicated dependen-
cies are observed among different regions. For example, the
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demand of a region is usually affected by its spatially ad-
jacent neighbors and at the same time correlated with dis-
tant regions with the similar contextual environment. On the
other hand, non-linear dependencies also exist among differ-
ent temporal observations. The prediction of a certain time is
usually correlated with various historical observations, e.g.,
an hour ago, a day ago or even a week ago.
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Figure 1: An example of different correlations among re-
gions. To predict the demand in region 1, spatially adjacent
region 2, functionality similar region 3 and transportation
connected region 4 are considered more important, while
distant and irrelevant regions 5 are less relevant.

Recent advances in deep learning enable promising re-
sults in modeling the complex spatiotemporal relationship
in region-based spatiotemporal forecasting. With convolu-
tional neural network and recurrent neural network, state-
of-the-art results are achieved in (Shi et al. 2015; Yu et
al. 2017; Shi et al. 2017; Zhang, Zheng, and Qi 2017;
Zhang et al. 2018a; Ma et al. 2017; Yao et al. 2018b;
2018a). Despite promising results, we argue that two im-
portant aspects are largely overlooked in modeling the spa-
tiotemporal correlations. First, these methods mainly focus
on modeling the Euclidean correlations among different re-
gions, however, we observe that non-Euclidean pair-wise
correlations are also critical for accurate forecasting. Fig-
ure 1 shows an example. For region 1, in addition to neigh-
borhood region 2, it may also correlate to a distant region
3 that shares similar functionality, i.e., they are both near
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schools and hospitals. Besides, region 1 may also be affected
by region 4, which is directly connected to region 1 via a
highway. Second, in these methods, when modeling tempo-
ral correlation with RNN, each region is processed indepen-
dently or only based on local information. However, we ar-
gue that global and contextual information are also impor-
tant. For example, a global increase/decrease in ride-hailing
demand usually indicates the occurrence of some events that
will affect future demand.

To address these challenges, we propose a novel deep
learning model called spatiotemporal multi-graph convolu-
tion network (ST-MGCN). In ST-MGCN, we propose to
encode the non-Euclidean correlations among regions into
multiple graphs. Different from (Yao et al. 2018b), which
uses the graph embedding as extra constant features for
each region, we leverage the graph convolution to explic-
itly model the pair-wise relationship among regions. Graph
convolution is able to aggregate neighborhood information
when performing the prediction which is hard to achieve
through traditional graph embedding. Furthermore, to in-
corporate global contextual information when modeling the
temporal correlation, we propose contextual gated recurrent
neural network (CGRNN). It augments RNN by learning a
gating mechanism, which is calculated based on the summa-
rized global information, to re-weight observations in dif-
ferent timestamps. When evaluated on two real-world large
scale ride-hailing demand datasets, ST-MGCN consistently
outperforms state-of-the-art baselines by a large margin. In
summary, this paper makes the following contributions:
• We identify non-Euclidean correlations among regions in

ride-hailing demand forecasting and propose to encode
them using multiple graphs. Then we further leverage
the proposed multi-graph convolution to explicitly model
these correlations.

• We propose the Contextual Gated RNN (CGRNN) to in-
corporate the global contextual information when model-
ing the temporal dependencies.

• We conduct extensive experiments on two large-scale
real-world datasets, and the proposed approach achieves
more than 10% relative error reduction over state-of-the-
art baseline methods for ride-hailing demand forecasting.

Related work
Spatiotemporal prediction in urban computing
Spatiotemporal prediction is a fundamental problem for
data-driven urban management. There are rich amount of
works on this topic, including predicting bike flows (Zhang,
Zheng, and Qi 2017), the taxi demand (Ke et al. 2017b;
Yao et al. 2018b), the arrival time (Li et al. 2018b), and the
precipitation (Shi et al. 2015; 2017), where the prediction
is aggregated in rectangular regions, and region-wise rela-
tionship is modeled by geographical distance. More specif-
ically, the spatial structure of urban data is formulated as a
matrix whose entries represent rectangular regions. In pre-
vious works, regions and their pair-wise relationships nat-
urally formulate an Euclidean structure, and consequently
convolution neural networks are leveraged for effective pre-
diction.

Non-Euclidean structured data also exists in urban com-
puting. Usually, station or point based prediction tasks, like
traffic prediction (Li et al. 2018c; Yu, Yin, and Zhu 2018;
Yao et al. 2018a), point-based taxi demand prediction (Tong
et al. 2017) and station-based bike flow prediction (Chai,
Wang, and Yang 2018) are naturally non-Euclidean as the
data format is no longer a matrix and convolution neural net-
works becomes less helpful. Manual feature engineering or
graph convolution networks are state-of-the-art techniques
for handling non-Euclidean structure data. Different from
previous works, ST-MGCN encodes pair-wise relationships
among regions into semantic graphs. Though ST-MGCN
is designed for region based prediction, the irregularity of
region-wise relationship makes it a prediction problem for
non-Euclidean data.

In (Yao et al. 2018b), the authors propose DMVST-Net
which encodes the region-wise relationship as graph for taxi
demand prediction. DMVST-Net mainly uses graph embed-
ding as an external features for spatiotemporal prediction,
and consequently fails to use the demand values from re-
lated regions. In (Yao et al. 2018a), the authors further im-
proves (Yao et al. 2018b) by modeling the periodically shift
problem with the attention mechanism. However, none of
these approaches explicitly models the non-Euclidean pair-
wise relationships among regions. In this work, ST-MGCN
uses the proposed multi-graph convolution to incorporate
features from related regions, which is able to make pre-
dictions from demand values of regions that are related in
different perspective.

Recent research in neuroimage analysis for Parkinson’s
disease (Zhang et al. 2018b) shows the effectiveness of
graph convolution network in spatial feature extraction. It
uses GCN to learn features from most similar regions and
proposed a multi-view structure to fuse different MRI ac-
quisitions. However, temporal dependency is not considered
in above work. ST-GCN is used in spatiotemporal predic-
tion for skeleton based action recognition (Li et al. 2018a;
Yan, Xiong, and Lin 2018).The transformation of ST-GCN
is a combination of spatial dependency and local temporal
recurrence. However, we argue in these models, the contex-
tual information or the global information is largely over-
looked in the temporal dependency modeling.

Graph convolution network
Graph convolution network (GCN) is defined over a graph
G = (V,A), where V is the set of all vertices and A ∈
R|V |×|V | is the adjacency matrix whose entries represent
the connections between vertices. GCN is able to extract lo-
cal features with different reception fields from translation
variant non-Euclidean structures (Hammond et al. 2011).
Let L = I −D−1/2AD−1/2 denotes the graph Laplacian
matrix, where D is the degree matrix, a graph convolution
operation (Defferrard, Bresson, and Vandergheynst 2016) is
defined as

Xl+1 = σ(

K−1∑
k=0

αkL
kXl)

1 (1)

1In a graph convolution layer with P inputs and Q outputs,
there will be PQ convolution operations. Here, we only show one
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where Xl denotes the features in the l-th layer, αk is the
trainable coefficient, Lk is the k-th power of the graph
Laplacian matrix, σ is the activation function.

Channel-wise attention
Channel-wise attention (Hu, Shen, and Sun 2018; Chen et
al. 2017) is proposed in the computer vision literature. The
intuition behind channel-wise attention is to learn a weight
for each channel, in order to find the most important frames
and emphasize them by giving higher weights. Let X ∈
RW×H×C denotes the input, where W and H are the di-
mensions of the input image, and C denotes the number of
channels, then the pipeline of channel-wise attention is de-
fined as follows:

zc =Fpool(X:,:,c)=
1

WH

W∑
i=0

H∑
j=0

Xi,j,c for c = 1, 2, · · ·C

s = σ(W2 δ(W1z)) (2)

X̃:,:,c = X:,:,c ◦ sc for c = 1, 2, · · ·C

Fpool is a global average pooling operation, which summa-
rizes each channel into a scalar zc where c is the channel in-
dex. Then an attention operation is applied to generate adap-
tive channel weights s by applying non-linear transforma-
tions on the summarized vector z, where W1 and W2 is the
corresponding weights, δ and σ is the ReLU and sigmoid
function respectively. After that, s is applied to the input
via channel-wise dot product. Finally, the input channels are
scaled based learned weights. In this work, we adopt the idea
of channel-wise attention, and generalize it for temporal de-
pendency modeling among a sequence of graphs.

Methodology
We formalize the learning problem of spatiotemporal ride-
hailing demand forecasting and describe how to model the
spatial and temporal dependencies using the proposed spa-
tiotemporal multi-graph convolution network (ST-MGCN).

Region-level ride-hailing demand forecasting
We divide a city into equal-size grids, and each grid is de-
fined as a region v ∈ V , where V denotes the set of all
disjoint regions in the city. Let X(t) represent the num-
ber of orders in all regions at the t-th interval. Then the
region-level ride-hailing demand forecasting problem is for-
mulated as a single step spatiotemporal prediction given in-
put with a fixed temporal length, i.e., learning a function
f : R|V |×T → R|V | that maps historical demands of all
regions to the demand in the next timestep.

[X(t−T+1), · · · ,X(t)]
f(·)−−→X(t+1)

Framework overview The system architecture of the pro-
posed model ST-MGCN is shown in Figure 2. We represent

operation for simplicity.
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Figure 2: System architecture of the proposed spatiotempo-
ral multi-graph convolution network (ST-MGCN). We en-
code different aspects of relationships among regions, in-
cluding neighborhood, functional similarity and transporta-
tion connectivity, using multiple graphs. First, the proposed
contextual gated recurrent neural network (CGRNN) is used
to aggregate observations in different times considering the
global contextual information. After that, multi-graph con-
volution is used to model the non-Euclidean correlations
among regions.

different aspects of correlations between regions as multi-
ple graphs, whose vertices represent regions and edges en-
code the pair-wise relationship among regions. First, we use
the proposed Contextual Gated Recurrent Neural Network
(CGRNN) to aggregate observations in different times con-
sidering the global contextual information. After that, multi-
graph convolution is applied to capture different types of
correlations between regions. Finally, a fully connected neu-
ral network is used to transform features into the prediction.

Spatial dependency modeling
In this section, we show how to encode different types of
correlations among regions using multiple graphs and how
to model these relationships using the proposed multi-graph
convolution.

We model three types of correlations among regions
with graphs, including (1) the neighborhood graph GN =
(V,AN ), which encode the spatial proximity, (2) functional
similarity graph GF = (V,AF ), which encodes the similar-
ity of surrounding Point of Interests (POIs) of regions, and
(3) the transportation connectivity graph GT = (V,AT ),
which encodes the connectivity between distant regions.
Note that, our approach can be easily extended to model new
types of correlations by constructing related graphs.

Neighborhood Neighborhood of a region is defined based
on the spatial proximity. We construct the graph by connect-
ing a region to its 8 adjacent regions in a 3× 3 grid.

AN,ij =

{
1, vi and vj are adjacent
0, otherwise (3)

Functional similarity When making prediction for a re-
gion, it is intuitive to refer to other regions that are similar to
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this one in terms of functionality. Region functionality could
be characterized using its surrounding POIs for each cate-
gory, and the edge between two vertices (regions) is defined
as the POI similarity:

AS,i,j = sim(Pvi , Pvj ) ∈ [0, 1] (4)

where Pvi , Pvj are the POI vectors of regions vi and vj re-
spectively, whose dimension equals to the number of POI
categories and each entry represents the number of a spe-
cific POI category in the region.

Transportation connectivity The transportation system
is also an important factor when performing spatiotemporal
predictions. Intuitively, those geographically distant but con-
veniently reachable regions can be correlated. These kinds
of connectivity are induced by roads like motorway, high-
way or public transportation like subway. Here, we define
regions that are directly connected by these roads as “con-
nected” and the corresponding edge is defined as:

AC,i,j = max(0, conn(vi, vj)−AN,i,j) ∈ {0, 1} (5)

where conn(u, v) is the indicator function of the connectiv-
ity between vi and vj . Note that, the neighborhood edges are
removed from connectivity graph to avoid redundant corre-
lations and also results in a sparser graph.

Multi-graph convolution for spatial dependency model-
ing With these graphs constructed, we propose the multi-
graph convolution to model the spatial dependency as de-
fined in Equation 6.

Xl+1 = σ

( ⊔
A∈A

f(A; θi)XlWl

)
(6)

where Xl ∈ R|V |×Pl ,Xl+1 ∈ R|V |×Pl+1 are the feature
vectors of |V | regions in layer l and l+1 respectively. σ de-
notes the activation function, and

⊔
denotes the aggregation

function, e.g., sum, max, average etc. A denotes the set of
graphs, and f(A; θi) ∈ R|V |×|V | represents the aggregation
matrix of different samples based on graph A ∈ A param-
eterized by θi, while Wl ∈ RPl×Pl+1 denotes the feature
transformation matrix, For example, if f(A; θi) is the poly-
nomial function of the Laplacian matrix L, then this will
become ChebNet (Defferrard, Bresson, and Vandergheynst
2016) on multiple graphs. If f(A; θi) = I, i.e., the identity
matrix, then this will fall back to the fully connected net-
work.

In the implementation, f(A; θi) is chosen to be the K or-
der polynomial function of the graph Laplacian L, and Fig-
ure 3 shows an example of the value transformation for a
centralized region through the graph convolution layer. Sup-
pose all the entries in the adjacency matrix are 0 or 1, entry
Lk
ij 6= 0 means vi is able to reach vj in k-hop. In terms of

convolution operation, k defines the size of reception field
during spatial feature extraction. Using road connectivity
graph GC = (V,AC) in Figure 1 to illustrate. In the ad-
jacency matrix AC , we have:

AC,1,4 = 1;AC,1,6 = 0;AC,4,6 = 1,

𝛼"𝐿"𝑋%

𝑋%
𝛼&𝐿&𝑋%
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�

�
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Figure 3: An example of the ChebNet graph convolution
centralized at the black vertex. Left: The centralized region
is marked black. The one-hop neighbors are marked yellow,
while the two-hop neighbors are marked red. Middle: with
the increase of degree of the graph Laplacian, the reception
field grows (marks green). Right: The output of this layer is
a sum among graph transformations with degree value from
1 to K.

and the corresponding entries of the 1-degree graph Lapla-
cian are:

L1
C,1,4 6= 0;L1

C,1,6 = 0;L1
C,4,6 6= 0

If the maximum degree of graph Laplacian K is set to 1,
the transformed feature vector of region 1, i.e., Xl+1,1,:

will not contain the feature vector of region 6: Xl,6,:, since
L1
C,1,6 = 0. When increasing K to 2, the corresponding en-

try L2
C,1,6 becomes non-zero, and consequently Xl+1,1,: can

utilize information from Xl,6,:.
The multi-graph convolution based spatial dependency

modeling is not restricted to these three types of region-
wise relationships mentioned above, and it can be easily ex-
tended to model other region-wise relationships as well as
other spatiotemporal forecasting problems. It models spa-
tial dependencies by feature extraction through region-wise
relationship. With small reception field, the feature extrac-
tion will focus on close regions, i.e., neighbors that can be
reaches with small number of hops. Increasing the max de-
gree of graph Laplacian or stacking multiple convolution
layers will increase the reception field and consequently en-
courage the model to capture more global dependencies.

Graph embedding is an alternative technique for mod-
eling the region-wise correlation. In DMVST-Net (Yao et
al. 2018b), the authors use graph embedding2 to represent
region-wise relationship, and then add these embeddings
as extra features to each region. We argue that spatial de-
pendency modeling approach in ST-MGCN is preferred for
the following reasons: ST-MGCN encodes region-wise re-
lationships into graphs and aggregate demand values from
related regions by graph convolution. While in DMVST-
Net, the region-wise relationship was embedded to a tem-
poral invariant region-based feature as input to the model.

2The graph embedding is pre-computed. It produces a
temporal-invariant feature vector for each region.
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Figure 4: Temporal correlation modeling with contextual
gated recurrent neural network (CGRNN). It first produces
region descriptions using the global average pooling over the
input and its graph convolution output for each observation.
Then it transfer the summarized vector z into weights which
are used to scale each observation. Finally, a shared RNN
layer across all regions is applied to aggregate the gated in-
put sequence of each region into a single vector.

Though DMVST-Net also captures the topological informa-
tion, it is hard to aggregate demand values from related re-
gions through the region-wise relationship. Also, invariant
features have limited contribution to the model training.

Temporal correlation modeling
We propose the Contextual Gated Recurrent Neural Net-
work (CGRNN) to model the correlations between observa-
tions in different timestamps. CGRNN incorporates contex-
tual information into the temporal modeling by augmenting
RNN with a context aware gating mechanism whose archi-
tecture is shown in Figure 4. Suppose, we have T temporal
observations and X(t) ∈ R|V |×P denotes the t-th observa-
tion, where P is the feature dimensions, P will be 1 if the
feature only contains the number of orders. Then the work-
flow of contextual gating mechanism is as follows.

X̂(t) = [X(t), FK′

G (X(t))] for t = 1, 2, · · ·T (7)

First, the contextual gating mechanism produces region de-
scriptions by concatenating the historical data of a certain
region with information from related regions. The informa-
tion from related regions is regarded as contextual informa-
tion, and is extracted by a graph convolution operation FK′

G
with max degree K ′ (Equation 7) using the corresponding
graph Laplacian matrix. The contextual gating mechanism
is designed to involve information from related regions by
performing graph convolution operation before the pooling
step.

z(t) = Fpool(X̂
(t)) =

1

|V |

|V |∑
i=1

X̂
(t)
i,: for t = 1, 2, · · ·T (8)

Secondly, we use the global average pooling Fpool over all
regions to produce the summary of each temporal observa-
tion (Equation 8).

s = σ(W2 δ(W1z)) (9)

Then an attention operation (Equation 9) is applied to the
summarized vector z, where W1 and W2 is the correspond-
ing weights, δ and σ is the ReLU and sigmoid function re-
spectively.

X̃(t) = X(t) ◦ s(t) for t = 1, 2, · · ·T (10)

Finally, s is applied to the scale each temporal observation
(Equation 10).

Hi,: = RNN(X̃
(1)
i,: , · · · , X̃

(T )
i,: ;W3) for i = 1, · · · , |V |

(11)
After the contextual gating, a shared RNN layer with weight
W3 across all regions is applied to aggregate the gated input
sequence of a region into a single vector Hi,: (Equation 11).
The intuition of sharing RNN among regions is to find a
universal aggregation rule for all regions, which encourages
model generalization and reduces model complexity.

Experiments
In this section, we compare the proposed model ST-MGCN
with other state-of-the-art baselines for region-level ride-
hailing demand forecasting.

Dataset We conduct experiments on two real-world large
scale ride-hailing datasets collected in cities: Beijing and
Shanghai. Both of these datasets are collected in the main
city zone of ride-hailing orders within the time period from
Mar 1st, 2017 to Dec 31st, 2017. For data split, we use the
data from Mar 1st 2017 to Jul 31st 2017 for training, data
from Aug 1st 2017 to Sep 30th 2017 as validation, and the
data from Oct 1st 2017 to Dec 31st 2017 is used for testing.
The POI data is collected in 2017, and contains 13 primary
POI categories. Each region is associated with a POI vec-
tor, whose entry is the number of instances of a certain POI
category. The road network data used for transportation con-
nectivity evaluation is provided by OpenStreetMap (Haklay
and Weber 2008).

Experimental Settings
Recall that the learning task is formulated as learning a func-
tion f : R|V |×T → R|V |. In the experiment, we generate the
region set V by partitioning city map into grids with size
equals to 1km × 1km 3. There are totally 1296 regions in
Beijing, and 896 regions in Shanghai. Following the prac-
tice in (Zhang, Zheng, and Qi 2017), the input of the net-
work consists of 5 historical observations, including 3 lat-
est closeness components, 1 period component and 1 latest
trend component. In building the transportation connectiv-
ity graph, we consider the following high-speed roads, in-
cluding motorway, highway and subway. Two regions are
regarded as “connected” as long as there is a high-speed road
directly connecting them.

In the experiment, f(A; θi) in Equation 6 is chosen to be
the Chebyshev polynomial functionl (Defferrard, Bresson,
and Vandergheynst 2016) of the graph Laplacian with the
degree K equals to 2, and

⊔
is chosen to be the sum ag-

gregation function. The number of hidden layers is 3, with
3Referred to industrial practice.
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Table 1: Performance comparison of different approaches
for ride-hailing demand forecasting. ST-MGCN achieves the
best performance with all metrics on both datasets.

Method
Beijing Shanghai

RMSE MAPE(%) RMSE MAPE(%)

HA 16.14 23.9 17.15 34.8
LASSO 14.24±0.14 23.8±0.8 10.62±0.06 22.9±0.8
Ridge 14.24±0.11 23.8±0.9 10.61±0.04 23.1±0.8
VAR 13.32±0.17 22.4±1.6 10.54±0.18 23.7±1.4
STAR 13.16±0.22 22.2±1.9 10.52±0.21 23.2±1.4
GBM 13.66±0.16 23.1±1.5 10.25±0.11 23.4±1.2
STResNet 11.77±0.95 14.8±6.0 9.87±0.94 14.9±6.0
DMVST-Net 11.62±0.48 12.3±5.5 9.61±0.44 13.8±1.2
ST-GCN 11.62±0.36 10.1±5.1 9.29±0.31 11.2±1.3

ST-MGCN 10.78±0.25 8.8±3.5 8.30±0.16 9.3±0.9

64 hidden units each and an L2 regularization with a weight
decay equal to 1e-4 is applied to each layer. Specially, the
graph convolution degree K ′ in CGRNN equals to 1.

We use ReLU as the activation in the graph convolution
network. The learning rate of ST-MGCN is set to 2e-3, and
early stopping on the validation dataset is used. All neural
network based approaches are implemented using Tensor-
flow (Abadi and others 2016), and trained using the Adam
optimizer (Kingma and Ba 2015) for minimizing RMSE.
The training of ST-MGCN takes 10GB RAM and 9GB GPU
memory. The training process takes about 1.5 hour on a sin-
gle Tesla P40.

Methods for evaluation We compare the proposed model
(ST-MGCN) with the following methods for ride-hailing de-
mand forecasting:
• Historical Average (HA): which models the ride-hailing

demand as a seasonal process, and uses the average of
previous seasons as the prediction. The period used is 1
week, and the prediction is based on aggregated data from
the same time in previous weeks.

• LASSO, Ridge: which takes historical data from different
timestamps as input for linear regression with L1 and L2
regularization respectively.

• Auto-regressive model (VAR,STAR): VAR is the multi-
variate extension of auto-regressive model which is able
to model the correlation between regions. STAR (Pace et
al. 1998) is a an AR extension specifically for spatiotem-
poral modeling problems. In the experiment, the number
of lags used is 5.

• Gradient boosted machine (GBM): gradient boosting
decision tree based regression implemented using Light-
GBM (Ke et al. 2017a). The following setting is used in
the experiment: the number of trees is 50, the maximum
depth is 4 and the learning rate is 2e-3.

• ST-ResNet (Zhang, Zheng, and Qi 2017): ST-ResNet is
a CNN-based framework for traffic flow prediction. The

model uses CNN with residual connections to capture the
trend, the periodicity, and the closeness information.

• DMVST-Net (Yao et al. 2018b): DMVST-Net is a multi-
view based deep learning approach for taxi demand pre-
diction. It consists of three different views: the temporal
view, the spatial view, and the semantic view modeled
with LSTM, CNN and graph embedding respectively.

• DCRNN, ST-GCN: Both DCRNN (Li et al. 2018c) and
ST-GCN (Yu, Yin, and Zhu 2018) are graph convolu-
tion based models for traffic forecasting. Both models
use road network for building non-euclidean region-wise
relationship. DCRNN models the spatiotemporal depen-
dency by integrating graph convolution into the gated re-
current unit, while ST-GCN models the both the spatial
and temporal dependencies with convolution structures
and achieves better efficiency.

Performance comparison
For all approaches, we tune the model parameters using grid
search based on the performance on the validation dataset,
and report the performance on the testing dataset over multi-
ple runs. We evaluate the performance of based on two popu-
lar metrics, i.e., Root Mean Square Error (RMSE) and Mean
Absolute Percentage Error (MAPE) 4. Table 1 shows the test
error comparison of different approaches for ride-hailing de-
mand forecasting over of ten runs.

We observe the following phenomena in both datasets:
(1) deep learning based methods, including ST-ResNet,
DMVST-Net, ST-GCN and the proposed ST-MGCN, which
are able to model the non-linear spatiotemporal dependen-
cies, generally outperform other baselines; (2) ST-MGCN
achieves the best performance regarding all the metrics on
both datasets, outperforming the second best baseline by
at least 10% in terms of relative error reduction, which
suggests the effectiveness of proposed approaches for spa-
tiotemporal correlations modeling; (3) compared with other
deep learning models, ST-MGCN also shows lower vari-
ance.

Effect of spatial dependency modeling
To investigate the effect of spatial and temporal dependency
modeling, we evaluate the following variants of ST-MGCN
by removing different components from the model, includ-
ing: (1) the neighborhood graph, (2) the functional similarity
graph, (3) the transportation connectivity graph. The result
is shown in Table 2. Removing any graph component causes
a significant error increase which justifies the importance of
each type of relationship. These graphs encode the impor-
tant prior knowledge, i.e., region-wise correlation, which is
leveraged for more accurate forecasting.

To evaluate the effect of incorporating multiple region-
wise relationships, we extend existing single graph-based
models, including DCRNN (Li et al. 2018c) and ST-
GCN (Yu, Yin, and Zhu 2018) with the multi-graph con-
volution framework and the resulted models are DCRNN+

4Following the practice in (Yao et al. 2018b), we filter the sam-
ples with demand values less than 10 when computing MAPE.
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and ST-GCN+. As shown in table 3, both DCRNN+ and ST-
GCN+ achieve improved performance which shows the ef-
fectiveness of incorporating multiple region-wise relation-
ships.

Table 2: Effect of spatial correlation modeling on the Bei-
jing dataset. Removing any component will result in a sta-
tistically significant error increase.

Removed component RMSE

Neighborhood 11.47
Functional 11.42

Transportation 11.69

ST-MGCN 10.78

Table 3: Effect of adding multi-graph design to existing
methodologies on the Beijing dataset. Adding extra graph to
original model will result in a statistically significant error
decrease.

Model RMSE

ST-GCN 11.62
ST-GCN+ 11.20
DCRNN 12.02

DCRNN+ 11.55

ST-MGCN 10.78

Effect of temporal dependency modeling
To further investigate the effect of temporal dependency
modeling, we evaluate the following variants of ST-MGCN
using different methods for temporal modeling, including
(1) Average pooling: which aggregates different temporal
observations using the average pooling, (2) RNN: which
aggregates temporal observations using the recurrent neu-
ral network (RNN) (3) CG: which uses contextual gating to
re-weight different temporal observations but without RNN
(4) GRNN: CGRNN without the graph convolution (Equa-
tion 7). The results are shown in Table 4. We observe the
following phenomena:
• Average pooling which blindly averages different obser-

vations has the worst performance, while RNN which is
able to do content dependent non-linear temporal aggre-
gation achieves clearly improved results.

• CGRNN which augments RNN with contextual gating
mechanism achieves further improved result than RNN.
Besides, removing either the RNN (CG) or the graph con-
volution operation (GRNN) results in clear worse perfor-
mance which justify the effectiveness of each component.

Effect of model parameters
To study the effects of different hyperparameters of the pro-
posed model, we evaluate models on the Beijing by varying
two of the most important hyperparameters, i.e., the degree

Table 4: Effect of temporal correlation modeling on the Bei-
jing dataset

Temporal modeling approach RMSE

Average pooling 12.74
RNN 11.05
CG 11.82

GRNN 10.91

CGRNN 10.78
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Figure 5: Effect of number of layers and the polynomial or-
der K of the graph convolution on the Beijing dataset.

K and number of layers in the graph convolution. Figure 5
shows the performance on test set. We observe that with
the increase of number of layers, the error first decreases
and then increases. While the error first decreases and then
plateaus with the increase of K. Larger K or the number of
layers will enable the model capture more global correlation
at the cost of increased model complexity and more prune to
overfitting.

Conclusion and Future work
In this paper, we investigated the region-level ride-hailing
demand forecasting problem and identified its unique spa-
tiotemporal correlations. We proposed a novel deep learning
based model which encoded the non-Euclidean correlations
among regions using multiple graphs and explicitly captured
them using multi-graph convolution. We further augmented
the recurrent neural network with contextual gating mech-
anism to incorporate global contextual information in the
temporal modeling procedure. When evaluated on two large
scale real-world ride-hailing demand datasets, the proposed
approach achieved significantly better results than state-of-
the-art baselines. For future work, we plan to investigate the
following aspects (1) evaluate the proposed model on other
spatiotemporal forecasting tasks; (2) extend the proposed
approach for multiple step sequence forecasting.

Acknowledgement
This research has been funded in part by NSF grants IIS-
1254206, IIS-1539608, ITSP project No. ITS/391/15FX and

3662



Hong Kong CERG grants 16209715, 16244616. The re-
search is supported by Didi Chuxing. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily re-
flect the views of any of the sponsors such as NSF.

References
Abadi, M., et al. 2016. Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. In 12th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI ’16).
Chai, D.; Wang, L.; and Yang, Q. 2018. Bike flow prediction
with multi-graph convolutional networks. SIGSPATIAL.
Chen, L.; Zhang, H.; Xiao, J.; Nie, L.; Shao, J.; Liu, W.;
and Chua, T.-S. 2017. SCA-CNN: Spatial and channel-
wise attention in convolutional networks for image caption-
ing. In Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on, 6298–6306. IEEE.
Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional neural networks on graphs with fast localized
spectral filtering. In Advances in Neural Information Pro-
cessing Systems, 3844–3852.
Haklay, M., and Weber, P. 2008. Openstreetmap: User-
generated street maps. IEEE Pervasive Computing 7(4):12–
18.
Hammond, D. K.; Vandergheynst, P.; Gribonval, R.; Ham-
mond, D. K.; Vandergheynst, P.; and Gribonval, R. 2011.
Wavelets on graphs via spectral graph theory. 30(2):129–
150.
Hu, J.; Shen, L.; and Sun, G. 2018. Squeeze-and-excitation
networks. In Computer Vision and Pattern Recognition
(CVPR), 2018 IEEE Conference on. IEEE.
Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.;
Ye, Q.; and Liu, T.-Y. 2017a. Lightgbm: A highly efficient
gradient boosting decision tree. In Advances in Neural In-
formation Processing Systems, 3149–3157.
Ke, J.; Zheng, H.; Yang, H.; and Chen, X. M. 2017b. Short-
term forecasting of passenger demand under on-demand ride
services: A spatio-temporal deep learning approach. Trans-
portation Research Part C: Emerging Technologies 85:591–
608.
Kingma, D. P., and Ba, J. 2015. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations (ICLR ’14).
Li, C.; Cui, Z.; Zheng, W.; Xu, C.; and Yang, J. 2018a.
Spatio-temporal graph convolution for skeleton based action
recognition. In 2018 AAAI Conference on Artificial Intelli-
gence (AAAI’18).
Li, Y.; Fu, K.; Wang, Z.; Shahabi, C.; Ye, J.; and Liu, Y.
2018b. Multi-task representation learning for travel time es-
timation. In International Conference on Knowledge Dis-
covery and Data Mining (KDD ’18).
Li, Y.; Yu, R.; Shahabi, C.; and Liu, Y. 2018c. Diffusion
convolutional recurrent neural network: Data-driven traffic
forecasting. In International Conference on Learning Rep-
resentations (ICLR ’18).

Ma, X.; Dai, Z.; He, Z.; Ma, J.; Wang, Y.; and Wang, Y.
2017. Learning traffic as images: a deep convolutional neu-
ral network for large-scale transportation network speed pre-
diction. Sensors 17(4):818.
Pace, R. K.; Barry, R.; Clapp, J. M.; and Rodriquez, M.
1998. Spatiotemporal autoregressive models of neighbor-
hood effects. The Journal of Real Estate Finance and Eco-
nomics 17(1):15–33.
Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.;
and Woo, W.-c. 2015. Convolutional lstm network: A ma-
chine learning approach for precipitation nowcasting. In Ad-
vances in neural information processing systems, 802–810.
Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.-Y.; Wong,
W.-k.; and Woo, W.-c. 2017. Deep learning for precipitation
nowcasting: A benchmark and a new model. In Advances in
Neural Information Processing Systems, 5617–5627.
Tong, Y.; Chen, Y.; Zhou, Z.; Chen, L.; Wang, J.; Yang, Q.;
Ye, J.; and Lv, W. 2017. The simpler the better: a unified
approach to predicting original taxi demands based on large-
scale online platforms. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, 1653–1662. ACM.
Yan, S.; Xiong, Y.; and Lin, D. 2018. Spatial temporal graph
convolutional networks for skeleton-based action recogni-
tion. In 2018 AAAI Conference on Artificial Intelligence
(AAAI’18).
Yao, H.; Tang, X.; Wei, H.; Zheng, G.; Yu, Y.; and Li, Z.
2018a. Modeling spatial-temporal dynamics for traffic pre-
diction. arXiv preprint arXiv:1803.01254.
Yao, H.; Wu, F.; Ke, J.; Tang, X.; Jia, Y.; Lu, S.; Gong, P.;
Ye, J.; and Li, Z. 2018b. Deep multi-view spatial-temporal
network for taxi demand prediction. In 2018 AAAI Confer-
ence on Artificial Intelligence (AAAI’18).
Yu, R.; Li, Y.; Shahabi, C.; Demiryurek, U.; and Liu, Y.
2017. Deep learning: A generic approach for extreme con-
dition traffic forecasting. In SIAM International Conference
on Data Mining (SDM).
Yu, B.; Yin, H.; and Zhu, Z. 2018. Spatio-temporal graph
convolutional networks: A deep learning framework for traf-
fic forecasting. In IJCAI’18).
Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X.; and Li, T. 2018a.
Predicting citywide crowd flows using deep spatio-temporal
residual networks. Artificial Intelligence 259:147–166.
Zhang, X.; He, L.; Chen, K.; Luo, Y.; Zhou, J.; and Wang,
F. 2018b. Multi-view graph convolutional network and its
applications on neuroimage analysis for parkinson’s disease.
arXiv preprint arXiv:1805.08801.
Zhang, J.; Zheng, Y.; and Qi, D. 2017. Deep spatio-temporal
residual networks for citywide crowd flows prediction. In
AAAI, 1655–1661.

3663


