
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Counting and Sampling from Markov Equivalent DAGs Using Clique Trees

AmirEmad Ghassami,1 Saber Salehkaleybar,2 Negar Kiyavash,3 Kun Zhang4

1Department of ECE, University of Illinois at Urbana-Champaign, Urbana, IL, USA
2Electrical Engineering Department, Sharif University of Technology, Tehran, Iran

3Departments of ECE and ISE, University of Illinois at Urbana-Champaign, Urbana, IL, USA
4Department of Philosophy, Carnegie Mellon University, Pittsburgh, USA

1ghassam2@illinois.edu, 2saleh@sharif.edu, 3kiyavash@illinois.edu, 4kunz1@cmu.edu

Abstract
A directed acyclic graph (DAG) is the most common graphi-
cal model for representing causal relationships among a set of
variables. When restricted to using only observational data,
the structure of the ground truth DAG is identifiable only
up to Markov equivalence, based on conditional indepen-
dence relations among the variables. Therefore, the number
of DAGs equivalent to the ground truth DAG is an indicator
of the causal complexity of the underlying structure–roughly
speaking, it shows how many interventions or how much ad-
ditional information is further needed to recover the under-
lying DAG. In this paper, we propose a new technique for
counting the number of DAGs in a Markov equivalence class.
Our approach is based on the clique tree representation of
chordal graphs. We show that in the case of bounded degree
graphs, the proposed algorithm is polynomial time. We fur-
ther demonstrate that this technique can be utilized for uni-
form sampling from a Markov equivalence class, which pro-
vides a stochastic way to enumerate DAGs in the equivalence
class and may be needed for finding the best DAG or for
causal inference given the equivalence class as input. We also
extend our counting and sampling method to the case where
prior knowledge about the underlying DAG is available, and
present applications of this extension in causal experiment
design and estimating the causal effect of joint interventions.

1 Introduction
A directed acyclic graph (DAG) is a commonly used graph-
ical model to represent causal relationships among a set of
variables (Pearl 2009). In a DAG representation, a directed
edge X → Y indicates that variable X is a direct cause of
variable Y relative to the considered variable set. Such a rep-
resentation has numerous applications in fields ranging from
biology (Sachs et al. 2005) and genetics (Zhang et al. 2013)
to machine learning (Peters, Janzing, and Schölkopf 2017;
Koller and Friedman 2009).

The general approach to learning a causal structure is
to use statistical data from variables to find a DAG, which
is maximally consistent with the conditional independen-
cies estimated from data. This is due to the fact that under
Markov property and faithfulness assumption, d-separation
of variables in a DAG is equivalent to conditional inde-
pendencies of the variables in the underlying joint prob-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ability distribution (Spirtes, Glymour, and Scheines 2000;
Pearl 2009). However, a DAG representation of a set of con-
ditional independencies in most cases is not unique. This
restricts the learning of the structure to the Markov equiva-
lences of the underlying DAG. The set of Markov equivalent
DAGs is referred to as a Markov equivalence class (MEC).
A MEC is commonly represented by a mixed graph called
essential graph, which can contain both directed and undi-
rected edges (Spirtes, Glymour, and Scheines 2000).

In general, there is no preference amongst the elements of
MEC, as they all represent the same set of conditional inde-
pendencies. Therefore, for a given dataset (or a joint prob-
ability distribution), the size of the MEC, i.e., the number
of its elements, can be seen as a metric for the causal com-
plexity of the underlying structure–this complexity indicates
how many interventional experiments or how much addi-
tional information (e.g., knowledge about the causal mech-
anisms) is needed to further fully learn the DAG structure,
which was only partially recovered from mere observation.

For the general problem of enumerating MECs, Steinsky
proposed recursive enumeration formulas for the number
of labelled essential graphs, in which the enumeration pa-
rameters are the number of vertices, chain components, and
cliques (Steinsky 2013). This approach is not focused on a
certain given MEC. For the problem of finding the size of
a given MEC, an existing solution is to use Markov chain
methods (He et al. 2013; Bernstein and Tetali 2017). Ac-
cording to this method, a Markov chain is constructed over
the elements of the MEC whose properties ensure that the
stationary distribution is uniform over all the elements. The
rate of convergence and computational issues hinders practi-
cal application of Markov chain methods. Recently, an exact
solution for finding the size of a given MEC was proposed
(He, Jia, and Yu 2015), in which the main idea was noting
that subclasses of the MEC with a fixed unique root variable
partition the class. The authors show that there are five types
of MECs whose sizes can be calculated with five formulas,
and for any other MEC, it can be partitioned recursively into
smaller subclasses until the sizes of all subclasses can be
calculated from the five formulas. An accelerated version of
the method in (He, Jia, and Yu 2015) is proposed in (He and
Yu 2016), which is based on the concept of core graphs.

In this paper, we propose a new counting approach, in
which the counting is performed on the clique tree represen-

3664

tation of the graph. Compared to (He, Jia, and Yu 2015), our
method provides us with a more systematic way for find-
ing the orientation of the edges in a rooted subclass, and
enables us to use the memory in an efficient way in the im-
plementation of the algorithm. Also, using clique tree repre-
sentation enables us to divide the graph into smaller pieces,
and perform counting on each piece separately (Theorem
2). We will show that for bounded degree graphs, the pro-
posed solution is capable of computing the size of the MEC
in polynomial time. The counting technique can be utilized
for two main goals: (a) Uniform sampling, and (b) Apply-
ing prior knowledge. As will be explained, for these goals,
it is essential in our approach to have the ability of explicitly
controlling the performed orientations in the given essential
graph. Therefore, neither the aforementioned five formulas
presented in (He, Jia, and Yu 2015), nor the accelerated tech-
nique in (He and Yu 2016) are suitable for these purposes.
(a) Uniform sampling: In Section 4, we show that our
counting technique can be used to uniformly sample from
a given MEC. This can be utilized in many scenarios; fol-
lowings are two examples. 1. Evaluating effect of an action
in a causal system. For instance, in a network of users, one
may be interested in finding out conveying a news to which
user leads to the maximum spread of the news. This ques-
tion could be answered if the causal structure was known,
but we often do not have the exact causal DAG. Instead,
we can resort to uniformly sampling from the corresponding
MEC and evaluate the effect of the action on the samples.
2. Given a DAG from a MEC, there are simple algorithms
for generating the essential graph corresponding to the
MEC (Meek 1995; Andersson, Madigan, and Perlman 1997;
Chickering 2002). However, for MECs with large size, it is
not computationally feasible to form every DAG represented
by the essential graph. In (Hoyer and Hyttinen 2009) the au-
thors require to evaluate the score of all DAGs in MEC to
find the one with the highest score. Evaluating scores on uni-
form samples provides an estimate of the maximum score.
(b) Applying prior knowledge: In Section 5, we further ex-
tend our counting and sampling techniques to the case that
prior knowledge regarding the orientation of a subset of the
edges in the structure is available. Such prior knowledge
may come from imposing a partial ordering of variables be-
fore conducting causal structure learning from both observa-
tional and interventional data (Scheines et al. 1998; Hauser
and Bühlmann 2012; Wang et al. 2017), or from certain
model restrictions (Hoyer et al. 2012; Rothenhäusler, Ernest,
and Bühlmann 2018; Eigenmann, Nandy, and Maathuis
2017). We will show that rooted subclasses of the MEC al-
low us to understand whether a set of edges with unknown
directions can be oriented to agree with the prior, and if so,
how many DAGs in the MEC are consistent with such an ori-
entation. We present the following two applications: 1. The
authors in (Nandy, Maathuis, and Richardson 2017) pro-
posed a method for estimating the causal effect of joint inter-
ventions from observational data. Their method requires ex-
tracting possible valid parent sets of the intervention nodes
from the essential graph, along with their multiplicity. They
proposed the joint-IDA method for this goal, which is expo-
nential in the size of the chain component of the essential

graph, and hence, becomes infeasible for large components.
In Section 5, we show that counting with prior knowledge
can solve the issue of extracting possible parent sets. 2. In
Section 6, we provide another specific scenario in which
our proposed methodology is useful. This application is con-
cerned with finding the best set of variables to intervene on
when we are restricted to a certain budget for the number of
interventions (Ghassami et al. 2018a).

2 Definitions and Problem Description
For the definitions in this section, we mainly follow (An-
dersson, Madigan, and Perlman 1997). A graph G is a pair
(V (G), E(G)), where V (G) is a finite set of vertices and
E(G), the set of edges, is a subset of (V × V) \ {(a, a) :
a ∈ V }. An edge (a, b) ∈ E whose opposite (b, a) ∈ E
is called an undirected edge and we write a − b ∈ G. An
edge (a, b) ∈ E whose opposite (b, a) 6∈ E is called a di-
rected edge, and we write a → b ∈ G. A graph is called a
chain graph if it contains no partially directed cycles. After
removing all directed edges of a chain graph, the compo-
nents of the remaining undirected graph are called the chain
components of the chain graph. A v-structure of G is a triple
(a, b, c), with induced subgraph a→ b← c. Under Markov
condition and faithfulness assumptions, a directed acyclic
graph (DAG) represents the conditional independences of a
distribution on variables corresponding to its vertices. Two
DAGs are called Markov equivalent if they represent the
same set of conditional independence relations. The follow-
ing result due to (Verma and Pearl 1990) provides a graphi-
cal test for Markov equivalence.

Lemma 1. (Verma and Pearl 1990) Two DAGs are Markov
equivalent iff they have the same skeleton and v-structures.

We denote the Markov equivalence class (MEC) contain-
ing DAG D by [D]. A MEC can be represented by a graph
G∗, called essential graph, which is defined as G∗ = ∪(D :
D ∈ [D]). We denote the MEC corresponding to essential
graph G∗ by MEC(G∗). Essential graphs are also referred
to as completed partially directed acyclic graphs (CPDAGs)
(Chickering 2002), and maximally oriented graphs (Meek
1995). Authors in (Andersson, Madigan, and Perlman 1997)
proposed a graphical criterion for characterizing an essential
graph. They showed that an essential graph is a chain graph
in which every chain component is chordal. As a corollary
of Lemma 1, no DAG in a MEC can contain a v-structure in
the subgraphs corresponding to chain components.

We refer to the number of elements of a MEC as the
size of the MEC, and we denote the size of MEC(G∗) by
Size(G∗). Let {G1, ..., Gc} denote the chain components of
G∗. Size(G∗) can be calculated from the size of chain com-
ponents using the following equation (Gillispie and Perlman
2002; He and Geng 2008):

Size(G∗) =

c∏
i=1

Size(Gi). (1)

Therefore, counting can be done separately in each chain
component. Hence, without loss of generality, we can focus
on the problem of finding the size of a MEC for which the

3665

essential graph is a chain component, i.e., an undirected con-
nected chordal graph (UCCG), in which none of the mem-
bers of the MEC are allowed to contain any v-structures.

In order to solve this problem, the authors of (He, Jia, and
Yu 2015) showed that there are five types of MECs whose
sizes can be calculated with five formulas, and that for any
other MEC, it can be partitioned recursively into smaller
subclasses until the sizes of all subclasses can be calculated
from the five formulas. In the following we explain the parti-
tioning method as it is relevant to this work as well. Let G be
a UCCG and D be a DAG in MEC(G). A vertex v ∈ V (G)
is the root in D if its in-degree is zero.
Definition 1. Let G be a UCCG. The v-rooted subclass of
MEC(G) is the set of all v-rooted DAGs in MEC(G). This
subclass can be represented by the v-rooted essential graph
G(v) = ∪(D : D ∈ v-rooted subclass).

For instance, for UCCG G in Figure 1(a), G(v1) and G(v2)

are depicted in Figures 1(c) and 1(g), respectively.
Lemma 2. (He, Jia, and Yu 2015) Let G be a UCCG. For
any v ∈ V (G), the v-rooted subclass is not empty and the
set of all v-rooted subclasses partitions MEC(G).

From Lemma 2 we have

Size(G) =
∑

v∈V (G)

Size(G(v)). (2)

Therefore, using equations (1) and (2), we have Size(G∗) =∏c
i=1

∑
v∈V (Gi)

Size(G
(v)
i). He et al. showed that G(v) is a

chain graph with chordal chain components, and introduced
an algorithm for generating this essential graph. Therefore,
using the last equation, Size(G∗) can be obtained recur-
sively. The authors of (He, Jia, and Yu 2015) did not char-
acterize the complexity, but reported that their experiments
suggested that when the number of vertices is small or the
graph is sparse, the proposed approach is efficient.

3 Calculating the size of a MEC
In this section, we present our proposed method for calcu-
lating the size of the MEC corresponding to a given UCCG.
We first introduce some machinery required in our approach
for representing chordal graphs via clique trees. The defini-
tions and propositions are mostly sourced from (Blair and
Peyton 1993; Vandenberghe and Andersen 2015).

For a given UCCG, G, let KG = {K1, · · · ,Km} denote
the set containing the maximal cliques of G, and let T =
(KG, E(T)) be a tree on KG, referred to as a clique tree.
Definition 2 (Clique-intersection property). A clique tree T
satisfies the clique-intersection property if for every pair of
distinct cliques K,K ′ ∈ KG, the set K ∩K ′ is contained in
every clique on the path connecting K and K ′ in the tree.
Proposition 1. (Blair and Peyton 1993) A connected graph
G is chordal if and only if there exists a clique tree for G,
which satisfies the clique-intersection property.
Definition 3 (Induced-subtree property). A clique tree T =
(KG, E(T)) satisfies the induced-subtree property if for ev-
ery vertex v ∈ V (G), the set of cliques containing v induces
a subtree of T , denoted by Tv .

Proposition 2. (Blair and Peyton 1993) The clique-
intersection and induced-subtree properties are equivalent.

Since we work with a UCCG, by Propositions 1 and 2,
there exists a clique tree on KG, which satisfies the clique-
intersection and induced-subtree properties. Efficient algo-
rithms for generating such a tree is presented in (Blair and
Peyton 1993; Vandenberghe and Andersen 2015). In the se-
quel, whenever we refer to clique tree T = (KG, E(T)),
we assume it satisfies the clique-intersection and induced-
subtree properties. Note that such a tree is not necessarily
unique, yet we fix one and perform all operations on it. For
the given UCCG, similar to (He, Jia, and Yu 2015), we par-
tition the corresponding MEC by its rooted subclasses, and
calculate the size of each subclass separately. However, we
use the clique tree representation of the UCCG for counting.
Our approach enables us to use the memory in the counting
process to make the counting more efficient, and provides us
with a systematic approach for finding the orientations.

For the r-rooted essential graph G(r), we arbitrarily
choose one of the cliques containing r as the root of the
tree T = (KG, E(T)), and denote this rooted clique tree
by T (r). Setting a vertex as the root in a tree determines the
parent of all vertices of the tree. For clique K in T (r), de-
note its parent clique by Pa(K) . Following (Vandenberghe
and Andersen 2015), we can partition each non-root clique
into a separator set Sep(K) = K ∩ Pa(K), and a residual
set Res(K) = K \ Sep(K). For the root clique, the con-
vention is to define Sep(K) = ∅, and Res(K) = K. The
induced-subtree property implies the following result.

Proposition 3. (Vandenberghe and Andersen 2015) Let G
be the given UCCG, and let T (r) be the rooted clique tree,
(i) The clique residuals partition V (G),
(ii) For each u ∈ V (G), denote the clique for which u is
in its residual set by Ku, and the induced subtree of cliques
containing u by Tu. Ku is the root of Tu. The other vertices
of Tu are the cliques that contain u in their separator set.
(iii) The clique separators Sep(K), where K ranges over all
non-root cliques, are the minimal vertex separators of G.

Note that sets Sep(K) and Res(K) depend on the choice
of root. However, all clique trees have the same vertices
(namely, maximal cliques of G) and the same clique sep-
arators (namely, the minimal vertex separators of G). Also,
since there are at most p cliques in a chordal graph with p
vertices, there are at most p − 1 edges in a clique tree and
hence, at most p− 1 minimal vertex separators.

With a small deviation from the standard convention,
in our approach, for the root clique of T (r), we define
Sep(K) = {r}, and Res(K) = K \{r}. Recall from Propo-
sition 3 that for each u ∈ V (G), Ku denotes the clique for
which u is in its residual set, and this clique is unique. We
will need the following results for our orientation approach.
All the proofs are provided in (Ghassami et al. 2018b).

Lemma 3. If u→ v ∈ G(r), then u ∈ Sep(Kv).

Corollary 1. If u→ v ∈ G(r), then v 6∈ Sep(Ku).

Lemma 3 states that parents of any vertex v are elements
of Sep(Kv). But, not all elements of Sep(Kv) are necessarily

3666

(")

($) (%)

&′

&
()

(*

(*

()

(+(,

(, (+
(, (+

(-) (ℎ)

&′′

(*

()

(, (+

(*
(,, (+

()
(,, (+

(0)

(,
(+

(1)

2)

2,
2′

(*
(,, (+

(,
(), (+

(3)

2)

2,
(*

()

(+

(*
(+

()
(+

(4)

2”)

2”,

Figure 1: Graphs related to Example 1.

parents of v. Our objective is to find a necessary and suffi-
cient condition to determine the parents of a vertex.

Lemma 4. If u → v ∈ G(r), then for every vertex w ∈
Res(Kv), u→ w ∈ G(r).

Lemma 4 implies that for every clique K, any vertex
u ∈ Sep(K) either has directed edges to all elements of
Res(K) in G(r), or has no directed edges to any of the ele-
ments of Res(K). For clique K, we define the emission set,
Em(K), as the subset of Sep(K), which has directed edges
to all elements of Res(K) in G(r). Lemmas 3 and 4 lead to
the following corollary.

Corollary 2. Em(Kv) is the set of parents of v in G(r).

This means that the necessary and sufficient condition
for u to be a parent of v is u ∈ Em(Kv). Therefore, for
any clique K, we need to characterize its emission set. We
will show that vertices in Em(K) are the subset of Sep(K),
which satisfy the following emission condition:

Definition 4 (Emission condition for a vertex). We say ver-
tex v satisfies the emission condition in clique K if v ∈
Sep(K), and Em(Kv) 6⊆ Sep(K).

As a convention, we assume that the root variable r satis-
fies the emission condition in all the cliques containing it.

Theorem 1. u → v ∈ G(r) if and only if u satisfies the
emission condition in clique Kv in T (r).

Note that for a clique K, in order to find Em(K) us-
ing Definition 4, we need to learn the emission set of some
cliques on the higher levels of the tree. Hence, the emission
sets must be identified on the tree from top to bottom.

After setting vertex r as the root, Theorem 1 allows us
to find the orientation of directed edges in G(r) as follows.
First, we form T (r). Then, for each K ∈ KG, starting from
top to bottom of T (r), we identify all vertices which sat-
isfy the emission condition to obtain Em(K). Finally, in
each clique K, we orient the edges from all the variables
in Em(K) towards all the variables in Res(K).

Example 1. Assume the UCCG in Figure 1(a) is the given
essential graph. Setting vertex v1 as the root of G (by sym-
metry, v4 is similar), the corresponding clique tree T (v1) is
shown in Figure 1(b), where in each clique, the first and the
second rows represent the separator and the residual sets,
respectively. In this clique tree, we obtain Em(K1) = {v1},

Algorithm 1 MEC Size Calculator
1: Input: Essential graph G∗, with chain components
2: {G1, · · ·Gc}.
3: Return:

∏c
i=1 SIZE(Gi)

4:
5: function SIZE(G)
6: Construct a clique tree T = (KG, E(T)).
7: if T ∈Memory then
8: Load [T, SizeT], Return: SizeT
9: else

10: for v ∈ V (G) do
11: Set a clique K ∈ Tv as the root to form T (v).
12: SizeT (v) = RS(G,T (v),K, Sep(K)).
13: end for
14: Save [T,

∑
v∈V SizeT (v)], Return

∑
v SizeT (v)

15: end if
16: end function

and Em(K2) = {v2, v3}. Hence, the directed edges are
v1 → v2, v1 → v3, v2 → v4, and v3 → v4. This results
in G(v1) in Figure 1(c), which is an essential graph with a
single chain component G′, (Figure 1(d)). Setting vertex v2

as the root (by symmetry, v3 is similar), the corresponding
clique tree T ′(v2) is shown in Figure 1(e). In this clique tree,
Em(K ′) = {v2} and hence, the directed edge is v2 → v3.
This results in a directed graph, thus, Size(G′(v2)) = 1.
Similarly, Size(G′(v3)) = 1. Therefore, using equation (2),
we have Size(G(v1)) = Size(G′(v2)) + Size(G′(v3)) =
2. Similarly, we have Size(G(v4)) = 2. With a simi-
lar procedure we have Size(G(v2)) = Size(G′′(v1)) +
Size(G′′(v3)) + Size(G′′(v4)) = 3. and Size(G(v3)) = 3
(See (Ghassami et al. 2018b) for the detailed explanation).
Finally, using equation (2), we obtain that Size(G) =∑

i Size(G
(vi)) = 10.

3.1 Algorithm
In this subsection, we present an efficient approach for the
counting process. In a rooted clique tree T (r), for any clique
K, let T (K) be the maximal subtree of T (r) with K as its
root, and let Res(T (K)) :=

⋃
K′∈T (K) Res(K ′). Also, for

vertex sets S1, S2 ⊆ V , let [S1, S2] be the set of edges with
one end point in S1 and the other end point in S2.

Lemma 5. For all K, [Sep(K),Res(T (K))] is an edge cut.

We need the following definition in our algorithm.

Definition 5 (Emission condition for a clique). Clique K
satisfies the emission condition if Em(K) = Sep(K).

Remark 1. Theorem 1 implies that clique K satisfies the
emission condition if and only if all elements in Sep(K) sat-
isfy the emission condition in K.

In the recursive approach, once the algorithm finds all the
directed edges in G(r), it removes all the oriented edges for
the next stage and restarts with the undirected components,
i.e., the edges that it removes are the directed edges. There-
fore, we require an edge cut in which all the edges are di-
rected. This is satisfied by cliques with emission condition:

3667

Function RS(G,T,Kroot, Sep(Kroot))

1: Initiate: SizeT = 1, Explore = Kroot.
2: Orient from Sep(Kroot) to Res(Kroot) in G.
3: G̃ := Subgraph of G induced on vertices in T minus

edges among vertices in Sep(Kroot).
4: while Explore 6= ∅ do
5: for K ∈ Ch(Explore) do
6: Form Em(K).
7: if K satisfies emission condition then
8: T = T\T (K)

9: Remove [Sep(K),Res(T (K))] and com-
10: ponents containing Res(T (K)) from G̃.
11: if (T (K), Sep(K)) ∈Memory then
12: Load [(T (K), Sep(K)), SizeT (K)]
13: SizeT = SizeT × SizeT (K)

14: else
15: SizeT (K) = RS(G,T (K),K, Sep(K))
16: Save [(T (K), Sep(K)), SizeT (K)]
17: SizeT = SizeT × SizeT (K)

18: end if
19: else
20: Orient from Em(K) to Res(K) in G and G̃.
21: end if
22: end for
23: Explore = Ch(Explore)
24: end while
25: Return: SizeT ×

∏
G′∈undirected components of G̃ SIZE(G′).

Theorem 2. If clique K satisfies the emission condition,
[Sep(K),Res(T (K))] is a directed edge cut.

Therefore, by Theorem 2, if clique K satisfies the emis-
sion condition, in the clique tree, we can learn the orienta-
tions in trees T (r) \ T (K) and T (K) separately. This prop-
erty helps us to perform our counting process efficiently by
utilizing the memory in the process. More specifically, if
rooted clique trees T (r1) and T (r2) share a rooted subtree
whose root clique satisfies the emission condition, it suffices
to perform the counting in this subtree only once. Based on
this observation, we propose the counting approach whose
pseudocode is presented in Algorithm 1.

The input to Algorithm 1 is an essential graph G∗, and it
returns Size(G∗) by computing equation (1), through calling
function SIZE(·) for each chain component of G∗. In Func-
tion SIZE(·), first the clique tree corresponding to the input
UCCG is constructed. If this tree has not yet appeared in the
memory, for every vertex v of the input UCCG, the function
forms T (v) and calculates the number of v-rooted DAGs in
the MEC by calling the rooted-size function RS(·) (lines 10-
13). Finally, it saves and returns the sum of the sizes.

The function RS checks whether each clique K of each
level of the input rooted tree satisfies the emission condition
(lines 7). We assume that all the variables in Kroot satisfy
the emission condition in all the cliques containing them.
If emission condition was satisfied, it removes the rooted
subtree T (K) from the tree and the corresponding subgraph
from the graph (lines 8-10), and checks whether the size of
T (K) with its current separator set is already in the memory.

r p 20 30 40 50 60

0.2
T1 0.50 2.26 6.65 19.55 55.59
T2 0.27 2.61 20.68 219.98 >3600

T2/T1 0.54 1.15 3.11 11.25 >65

0.25
T1 0.51 2.27 7.56 25.46 59.21
T2 0.40 8.77 101.84 1760.21 >3600

T2/T1 0.78 3.86 13.47 69.12 >60

Table 1: Average run time (in seconds).

If so, the function loads it as SizeT (K) (lines 12); else, RS
calls itself on the rooted clique tree T (K) to obtain SizeT (K) ,
and then saves SizeT (K) in the memory (lines 15 and 16). If
the clique K does not satisfy the emission condition, it sim-
ply orients edges from Em(K) to Res(K) (lines 20). Finally,
in the resulting essential graph, it calls the function SIZE(·)
for each undirected component (lines 25).

For bounded degree graphs, the proposed approach runs
in polynomial time:
Theorem 3. Let p and ∆ be the number of vertices and max-
imum degree of a graph G. The computational complexity of
MEC size calculator on G is in the order of O(p∆+2).

Remark 2. From Definition 4, it is clear that if Sep(Kv) ∩
Sep(K) = ∅, then v ∈ Sep(K) satisfies the emission condi-
tion in clique K. We can use this property for locally orient-
ing edges without finding emission set Em(Kv).

3.2 Simulation Results
We generated 100 random UCCGs of order p = 20, · · · , 60
with r×

(
p
2

)
as the number of edges based on the procedure

proposed in (He, Jia, and Yu 2015), where parameter r con-
trols the graph density. We compared the proposed algorithm
with the counting algorithm in (He, Jia, and Yu 2015) in Ta-
ble 1. Note that, as we mentioned earlier, since the counting
methods are utilized for the purpose of sampling and apply-
ing prior knowledge, the five formulas in (He, Jia, and Yu
2015) are not implemented in either of the counting algo-
rithms. The parameters T1 and T2 denote the average run
time (in seconds) of the proposed algorithm and the count-
ing algorithm in (He, Jia, and Yu 2015), respectively. For
dense graphs, our algorithm is at least 60 times faster. Fur-
thermore, our experiments showed that for the case of com-
plete graphs or sparse graphs with number of edges of order
O(p), the proposed algorithm runs much faster then the case
of graphs with moderate density.

4 Uniform Sampling from a MEC
In this section, we introduce a sampler for generating ran-
dom DAGs from a MEC. The sampler is based on the count-
ing method presented in Section 3. The main idea is to
choose a vertex as the root according to the portion of mem-
bers of the MEC having that vertex as the root, i.e., in UCCG
G, vertex v should be picked as the root with probability
Size(G(v))/Size(G).

The pseudocode of our uniform sampler is presented in
Algorithm 2, which uses functions SIZE(·) and RS(·) of
Section 3.1. The input to the sampler is an essential graph
G∗, with chain components G = {G1, · · ·Gc}. For each

3668

Algorithm 2 Uniform Sampler
Input: Essential graph G∗, with chain components

G = {G1, · · ·Gc}.
while G 6= ∅ do

Pick an element G ∈ G, and update G = G \G.
Run ROOTED(G).

end while
Return: G∗

function ROOTED(G)
Construct a clique tree T = (KG, E(T)).

Set v∈V(G) as the root with prob. RS(G,T (v),K,Sep(K))
SIZE(G) .

For every clique K in T (v), form Em(K).
Orient from Em(K) to Res(K) in G∗ and G.
G = G ∪ {chain components of G}.

end function

chain component G ∈ G, we set v ∈ V (G) as the root
with probability RS(G,T (v),K, Sep(K))/SIZE(G), where
K ∈ Tv , and then we orient the edges in G∗ as in Algorithm
1. We remove G and add the created chain components to G,
and repeat until all edges are oriented.

Example 2. For the UCCG in Figure 1(a), as observed in
Example 1, Size(G(v1)) = Size(G(v4)) = 2, Size(G(v2)) =
Size(G(v3)) = 3, and Size(G) = 10. Therefore, we set ver-
tices v1, v2, v3, and v4 as the root with probabilities 2/10,
3/10, 3/10, and 2/10, respectively. Suppose v2 is chosen
as the root. Then as seen in Example 1, Size(G′′(v1)) =
Size(G′′(v3)) = Size(G′′(v4)) = 1. Therefore, in G′′, we set
either of the vertices as the root with equal probability to
obtain the final DAG.

Theorem 4. The sampler in Algorithm 2 is uniform.

As a corollary of Theorem 3, for bounded degree graphs,
the proposed sampler runs in polynomial time.

Corollary 3. The computational complexity of the uniform
sampler is in the order of O(∆p∆+2).

5 Counting and Sampling with Prior
Knowledge

Although in structure learning from observational data the
orientation of some edges may remain unresolved, in many
applications, an expert may have prior knowledge regard-
ing the direction of some of the unresolved edges. In this
section, we extend the counting and sampling methods to
the case that such prior knowledge about the orientation of
a subset of the edges is available. Specifically, we require
that in the counting task, only DAGs which are consistent
with the prior knowledge are counted, and in the sampling
task, we force all the generated sample DAGs to be consis-
tent with the prior knowledge. Note that the prior knowledge
may not be necessarily realizable, that is, there may not exist
any DAGs in the corresponding MEC with the required ori-
entations. In this case, the counting should return zero and
the sampling should return an empty set.

!"
#"

#$

#%#&

!&
#"

#$

#%#&

!%
#"

#$

#%#&

Figure 2: Graphs related to Example 3.

5.1 Counting with Prior Knowledge
We present the available prior knowledge in the form of a
hypothesis graph H = (V (H), E(H)). Consider an essen-
tial graph G∗. For G∗, we call a hypothesis realizable if there
exists a member of MEC(G∗) with directed edges consistent
with the hypothesis. In other words, a hypothesis is realiz-
able if the rest of the edges in G∗ can be oriented without
creating any v-structures or cycles. More formally:

Definition 6. For an essential graph G∗, a hypothesis graph
H = (V (H), E(H)) is called realizable if there exists a
DAG D in MEC(G∗), for which E(D) ⊆ E(H).

For essential graph G∗, let SizeH(G∗) denote the num-
ber of the elements of MEC(G∗), which are consistent
with hypothesis H , i.e., SizeH(G∗) = |{D : D ∈
MEC(G∗), E(D) ⊆ E(H)}|. Hypothesis H is realizable
if SizeH(G∗) 6= 0. As mentioned earlier, each chain com-
ponent G of a chain graph contains exactly one root vari-
able. We utilize this property to check the realizability and
calculate SizeH(G∗) for a hypothesis graph H . Consider es-
sential graph G∗ with chain components G = {G1, · · ·Cc}.
Following the same line of reasoning as in equation (1), we
have SizeH(G∗) =

∏c
i=1 SizeH(Gi). Also, akin to equation

(2), for any G ∈ G, SizeH(G) =
∑

v∈V (G) SizeH(G(v)).
Therefore, in order to extend the pseudocode to the case of
prior knowledge, we modify functions SIZE(·) and RS(·) to
get H as an extra input. In our proposed pseudocode, the ori-
entation task is performed in lines 2 and 20 of function RS.
Let S be the set of directed edges of form (u, v), oriented in
either line 2 or 20. In function RS, after each of lines 2 and
20, we check the following:

if S 6⊆ E(H) then Return: 0 end if
This guarantees that, any DAG considered in the counting
will be consistent with the hypothesis H .

Example 3. Consider the three hypothesis graphs in Fig-
ure 2 for the essential graph in Figure 1(a). For hy-
pothesis H1, SizeH1

(G(v1)) = 2, SizeH1
(G(v2)) = 1,

and SizeH1(G(v3)) = SizeH1(G(v4)) = 0. Therefore,
we have three DAGs consistent with hypothesis H1, i.e.,
SizeH1

(G) = 3. For hypothesis H2, SizeH2
(G(v2)) =

SizeH2
(G(v3)) = 2, and SizeH2

(G(v1)) = SizeH2
(G(v4)) =

0, Therefore, four DAGs are consistent with hypothesis H2,
i.e., SizeH2

(G) = 4. Hypothesis H3 is not realizable.

One noteworthy application of checking the realiz-
ability of a hypothesis is in the context of estimating
the causal effect of interventions from observational data
(Maathuis, Kalisch, and Bühlmann 2009; Nandy, Maathuis,
and Richardson 2017). This could be used for instance,
to predict the effect of gene knockouts on other genes or

3669

some phenotype of interest, based on observational gene ex-
pression profiles. The authors of (Maathuis, Kalisch, and
Bühlmann 2009; Nandy, Maathuis, and Richardson 2017)
proposed a method called (joint-)IDA for estimating the av-
erage causal effect, which as a main step requires extracting
possible valid parent sets of the intervention nodes from the
essential graph, with the multiplicity information of the sets.
To this end, a semi-local method was proposed in (Nandy,
Maathuis, and Richardson 2017), which is exponential in
the size of the chain component of the essential graph. This
renders the approach infeasible for large components. Using
our proposed method to address this problem, we can fix a
configuration for the parents of the intervention target and
count the number of consistent DAGs.

5.2 Sampling with Prior Knowledge
Suppose an experimenter is interested in generating sample
DAGs from a MEC. However, due to her prior knowledge,
she requires the generated samples to be consistent with a
given set of orientations for a subset of the edges. In this sub-
section, we modify our uniform sampler to apply to this sce-
nario. We define the problem statement formally as follows.
Given an essential graph G∗ and a hypothesis graph H for
G∗, we are interested in generating samples from MEC(G∗)
such that each sample is consistent with hypothesis H . Ad-
ditionally, we require the distribution of the samples to be
uniform conditioned on being consistent. That is, for each
sample DAG D ∈ MEC(G∗), P (D) = 1/SizeH(G∗), if
E(D) ⊆ E(H), and P (D) = 0, otherwise. The mentioned
equations for calculating SizeH(·) imply that we can use a
method similar to the case of the uniform sampler. That is,
we choose a vertex as the root according to the ratio of the
DAGs D ∈ MEC(G∗) which are consistent with H and have
the chosen vertex as the root, to the total number of consis-
tent DAGs. More precisely, in UCCG G, vertex v should be
picked as the root with probability SizeH(G(v))/SizeH(G).
In fact, the uniform sampler could be viewed as a special
case of sampler with prior knowledge with H = G∗. Hence,
the results related to the uniform sampler extend naturally.

6 Application to Intervention Design
In this section, we demonstrate that the proposed method for
calculating the size of MEC with prior knowledge can be uti-
lized to design an optimal intervention target in experimental
causal structure learning. We will use the setup in (Ghassami
et al. 2018a): Let G∗ be the given essential graph, and let k
be our intervention budget, i.e., the number of interventions
we are allowed to perform. Each intervention is on only a
single variable and the interventions are designed passively,
i.e., the result of one intervention is not used for the design
of the subsequent interventions. Let I denote the interven-
tion target set, which is the set of vertices that we intend to
intervene on. Intervening on a vertex v resolves the orien-
tation of all edges intersecting with v (Eberhardt, Glymour,
and Scheines), and then we can run Meek rules to learn
the maximal PDAG (Perković, Kalisch, and Maathuis 2017).
Let R(I, D) be the number of edges that their orientation is
resolved had the ground truth underlying DAG been D, and

10 20 30 40 50
Sample size (N)

0.05

0.1

0.15

0.2

0.25

SD
N

E

p=10
p=20
p=30

Figure 3: SD of the normalized error versus the sample size.

let R(I) be the average of R(I, D) over the elements of
the MEC, that is, R(I) = 1

Size(G∗)

∑
D∈MEC(G∗) R(I, D).

The problem of interest is finding the set I ⊆ V (G∗) with
|I| = k that maximizesR(·).

In (Ghassami et al. 2018a), it was proved that R(·) is a
sub-modular function and hence, a greedy algorithm recov-
ers an approximation to the optimum solution. Still, calculat-
ingR(I) for a given I remains as a challenge. For an inter-
vention target candidate, in order to calculateR(I), concep-
tually, we can list all DAGs in the MEC and then calculate
the average according to the formula forR(I). However, for
large graphs, listing all DAGs in the MEC is computationally
intensive. Note that the initial information provided by an
intervention is the orientation of the edges intersecting with
the intervention target. Hence, we propose to consider this
information as the prior knowledge and apply the method in
Section 5. Let H be the set of hypothesis graphs, in which
each element H has a distinct configuration for the edges in-
tersecting with the intervention target. If the maximum de-
gree of the graph is ∆, cardinality of H is at most 2k∆, and
hence, it does not grow with p. For a given hypothesis graph
H , let G∗H = {D : D ∈ MEC(G∗), E(D) ⊆ E(H)}
denote the set of members of the MEC, which are consis-
tent with hypothesis H . Using the set H, we can break the
expression ofR(I) into two sums as follows.

R(I)=
1

Size(G∗)

∑
H∈H

∑
D∈G∗

H

R(I, D)=
∑
H∈H

SizeH(G∗)

Size(G∗)
R(I, D).

(3)
Therefore, we only need to calculate at most 2k∆ values in-
stead of considering all elements of the MEC, which reduces
the complexity from super-exponential to constant in p.

6.1 Simulation Results
An alternative approach to calculating R(I) is to estimate
its value by evaluating uniform samples. We generated 100
random UCCGs of order p = 10, 20, 30, with r ×

(
p
2

)
edges, where r = 0.2. In each graph, we selected two vari-
ables randomly to intervene on. We obtained the exactR(I)
using equation (3). Furthermore, for a given sample size
N , we estimated R(I) from the aforementioned Monte-
Carlo approach using our proposed uniform sampler and
obtained empirical standard deviation of the normalized er-
ror (SDNE) over all graphs with the same size, defined as
SD(|R(I) − R̂(I)|/R(I)). Figure 3 depicts SDNE ver-
sus the number of samples. As can be seen, SDNE becomes
fairly low for sample sizes greater than 40.

3670

7 Conclusion
We proposed a new technique for calculating the size of a
MEC, which is based on the clique tree representation of
chordal graphs. We demonstrated that this technique can be
utilized for uniform sampling from a MEC, which provides
a stochastic way to enumerate DAGs in the class, which can
be used for estimating the optimum DAG, most suitable for a
certain desired property. We also extended our counting and
sampling method to the case where prior knowledge about
the structure is available, which can be utilized in applica-
tions such as causal intervention design.

Acknowledgments
This work was supported in part by MURI grant ARMY
W911NF-15-1-0479 and ONR grant W911NF-15-1-0479.

References
Andersson, S. A.; Madigan, D.; and Perlman, M. D. 1997.
A characterization of Markov equivalence classes for acyclic
digraphs. The Annals of Statistics 25(2):505–541.
Bernstein, M., and Tetali, P. 2017. On sampling graphical
Markov models. arXiv preprint arXiv:1705.09717.
Blair, J. R., and Peyton, B. 1993. An introduction to chordal
graphs and clique trees. In Graph theory and sparse matrix
computation. Springer. 1–29.
Chickering, D. M. 2002. Optimal structure identification
with greedy search. JMLR 3(Nov):507–554.
Eberhardt, F.; Glymour, C.; and Scheines, R. On the number
of experiments sufficient and in the worst case necessary to
identify all causal relations among n variables. In UAI 2005.
Eigenmann, M. F.; Nandy, P.; and Maathuis, M. H. 2017.
Structure learning of linear gaussian structural equation
models with weak edges. arXiv preprint arXiv:1707.07560.
Ghassami, A.; Salehkaleybar, S.; Kiyavash, N.; and Barein-
boim, E. 2018a. Budgeted experiment design for causal
structure learning. In International Conference on Machine
Learning, 1719–1728.
Ghassami, A.; Salehkaleybar, S.; Kiyavash, N.; and Zhang,
K. 2018b. Counting and sampling from Markov equivalent
DAGs using clique trees. arXiv preprint arXiv:1802.01239.
Gillispie, S. B., and Perlman, M. D. 2002. The size dis-
tribution for Markov equivalence classes of acyclic digraph
models. Artificial Intelligence 141(1-2):137–155.
Hauser, A., and Bühlmann, P. 2012. Characterization
and greedy learning of interventional Markov equivalence
classes of directed acyclic graphs. Journal of Machine
Learning Research 13(Aug):2409–2464.
He, Y., and Geng, Z. 2008. Active learning of causal net-
works with intervention experiments and optimal designs.
Journal of Machine Learning Research 9(Nov):2523–2547.
He, Y., and Yu, B. 2016. Formulas for counting the sizes
of Markov equivalence classes of directed acyclic graphs.
arXiv preprint arXiv:1610.07921.
He, Y.; Jia, J.; Yu, B.; et al. 2013. Reversible MCMC
on Markov equivalence classes of sparse directed acyclic
graphs. The Annals of Statistics 41(4):1742–1779.

He, Y.; Jia, J.; and Yu, B. 2015. Counting and exploring sizes
of Markov equivalence classes of directed acyclic graphs.
Journal of Machine Learning Research 16(1):2589–2609.
Hoyer, P. O., and Hyttinen, A. 2009. Bayesian discovery of
linear acyclic causal models. In UAI 2009, 240–248.
Hoyer, P. O.; Hyvarinen, A.; Scheines, R.; Spirtes, P. L.;
Ramsey, J.; Lacerda, G.; and Shimizu, S. 2012. Causal dis-
covery of linear acyclic models with arbitrary distributions.
arXiv preprint arXiv:1206.3260.
Koller, D., and Friedman, N. 2009. Probabilistic graphical
models: principles and techniques. MIT press.
Maathuis, M. H.; Kalisch, M.; and Bühlmann. 2009. Esti-
mating high-dimensional intervention effects from observa-
tional data. The Annals of Statistics 37(6A):3133–3164.
Meek, C. 1995. Causal inference and causal explanation
with background knowledge. In UAI 1995, 403–410.
Nandy, P.; Maathuis, M. H.; and Richardson, T. S. 2017.
Estimating the effect of joint interventions from observa-
tional data in sparse high-dimensional settings. The Annals
of Statistics 45(2):647–674.
Pearl, J. 2009. Causality. Cambridge university press.
Perković, E.; Kalisch, M.; and Maathuis, M. H. 2017. Inter-
preting and using cpdags with background knowledge. arXiv
preprint arXiv:1707.02171.
Peters, J.; Janzing, D.; and Schölkopf, B. 2017. Elements of
causal inference: foundations and learning algorithms. MIT
press.
Rothenhäusler, D.; Ernest, J.; and Bühlmann, P. 2018.
Causal inference in partially linear structural equation mod-
els: identifiability and estimation. Ann. Stat. To appear.
Sachs, K.; Perez, O.; Pe’er, D.; Lauffenburger, D. A.;
and Nolan, G. P. 2005. Causal protein-signaling net-
works derived from multiparameter single-cell data. Science
308(5721):523–529.
Scheines, R.; Spirtes, P.; Glymour, C.; Meek, C.; and
Richardson, T. 1998. The TETRAD project: Constraint
based aids to causal model specification. Multivariate Be-
havioral Research 33(1):65–117.
Spirtes, P.; Glymour, C. N.; and Scheines, R. 2000. Causa-
tion, prediction, and search. MIT press.
Steinsky, B. 2013. Enumeration of labelled essential graphs.
Ars Combinatoria 111:485–494.
Vandenberghe, L., and Andersen, M. S. 2015. Chordal
graphs and semidefinite optimization. Foundations and
Trends R© in Optimization 1(4):241–433.
Verma, T., and Pearl, J. 1990. Equivalence and synthesis of
causal models. In UAI 1990, 220–227.
Wang, Y.; Solus, L.; Yang, K.; and Uhler, C. 2017.
Permutation-based causal inference algorithms with inter-
ventions. In NIPS 2017, 5822–5831.
Zhang, B.; Gaiteri, C.; Bodea, L.-G.; Wang, Z.; McElwee, J.;
Podtelezhnikov, A. A.; Zhang, C.; Xie, T.; Tran, L.; Dobrin,
R.; et al. 2013. Integrated systems approach identifies ge-
netic nodes and networks in late-onset alzheimer’s disease.
Cell 153(3):707–720.

3671

