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Abstract

Regularized loss minimization, where a statistical model is
obtained from minimizing the sum of a loss function and
weighted regularization terms, is still in widespread use in
machine learning. The statistical performance of the result-
ing models depends on the choice of weights (regulariza-
tion parameters) that are typically tuned by cross-validation.
For finding the best regularization parameters, the regularized
minimization problem needs to be solved for the whole pa-
rameter domain. A practically more feasible approach is cov-
ering the parameter domain with approximate solutions of the
loss minimization problem for some prescribed approxima-
tion accuracy. The problem of computing such a covering is
known as the approximate solution gamut problem. Existing
algorithms for the solution gamut problem suffer from several
problems. For instance, they require a grid on the parameter
domain whose spacing is difficult to determine in practice,
and they are not generic in the sense that they rely on problem
specific plug-in functions. Here, we show that a well-known
algorithm from vector optimization, namely the Benson al-
gorithm, can be used directly for computing approximate so-
lution gamuts while avoiding the problems of existing algo-
rithms. Experiments for the Elastic Net on real world data
sets demonstrate the effectiveness of Benson’s algorithm for
regularization parameter tracking.

1 Introduction
Regularized optimization problems of the form

min
x∈Rn

`(x) +
∑q
i=1 αiri(x)

s.t. g(x) ≤ 0
(P)

are still used extensively in the day-to-day practice of ma-
chine learning. Here, ` : Rn → R is a loss function, the
ri : Rn → R, i = 1, . . . , q are regularization terms, and
the αi ≥ 0 are the corresponding regularization parameters.
Sometimes, the problem is constrained, and here the con-
straints are given by a function g : Rn → Rm.

In many machine learning applications Problem (P) is
convex, i.e., all the functions `, ri, g are convex. The op-
timal solution xα of Problem (P) describes some machine
learning model, for instance the weights of a support vec-
tor machine, and depends on the regularization parameters
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α = (α1, . . . , αq). Thus it is important to choose good
values for these parameters. The regularization parameters
are typically optimized using some measure for the gener-
alization error of the model on validation data, while xα
is computed from training data. Optimizing the regulariza-
tion parameters is almost always a highly non-convex prob-
lem, even if Problem (P) is convex. This, essentially, leaves
only searching for optimal parameters over the whole pa-
rameter domain. An exhaustive search would require com-
puting xα for all possible parameter values. The gamut of
these solutions is called the full solution gamut. Since it is
almost never tractable to compute the full solution gamut,
approximation methods and heuristics are typically used in
practice. In a search heuristic, the parameter domain is sam-
pled with a finite number α1, . . . , αk of parameter vectors,
an optimal solution xj , j = 1, . . . , k is computed for all
these vectors, and the best among them is chosen. A naive
search approach, called Grid Search, samples the parameter
domain in a structured way on a grid. As (Bergstra and Ben-
gio 2012) have pointed out, it is highly beneficial to sample
the parameter domain randomly in an unstructured fashion,
if the different parameter dimensions are not equally impor-
tant, see Figure 1. In this case, Random Search needs signif-
icantly fewer samples for achieving the same approximation
error. The main disadvantage of both search approaches is
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Figure 1: Optimization of f(x, y) = g(x) + h(y) ≈ g(x).
Above each square, the function g is shown in blue, left to
each square, h is shown in orange. With Grid Search (left),
nine trial parameters only check three values of g. With Ran-
dom Search (right), nine trial parameters check nine differ-
ent values of the more important function g (cf. (Bergstra
and Bengio 2012, Figure 1)).
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that no guarantees on the approximation error can be given,
i.e., there exists no stopping rule that determines a good grid
spacing or number of random samples.

Related Work. The problem of missing approximation
guarantees for the generic search methods led to a research
focus on special instances of Problem (P) that we briefly
review here. The special case of only one regularization
term, i.e., the case q = 1, was first studied in the semi-
nal work of (Efron et al. 2004) who observed that the full
solution gamut of the Lasso is a piecewise linear function.
The full solution gamut for problems with only one reg-
ularization term, i.e., the optimal solution xα as a func-
tion of the single regularization parameter α, is traditionally
called the regularization path. In (Rosset and Zhu 2007),
a fairly general theory of piecewise linear regularization
paths has been developed and exact path following algo-
rithms have been devised. Important special cases are sup-
port vector machines whose regularization paths have been
studied in (Hastie et al. 2004; Zhu et al. 2003), support vec-
tor regression (Wang, Yeung, and Lochovsky 2006), and the
generalized Lasso (Tibshirani and Taylor 2011). Early on it
was known, see for example (Allgower and Georg 1993;
Bach, Thibaux, and Jordan 2004; Hastie et al. 2004), that
exact regularization path following algorithms suffer from
numerical instabilities as they repeatedly need to invert a
matrix whose condition number can be poor, especially
when using kernels. It also turned out (Gärtner, Jaggi, and
Maria 2012; Mairal and Yu 2012) that the combinatorial
(and thus also computational) complexity of exact regu-
larization paths can be exponential in the number of data
points. These shortcomings that also show up in practice
sparked interest in the development of more robust and ef-
ficient approximate path algorithms (Friedman et al. 2007;
Rosset 2004). By now numerically robust, approximate reg-
ularization path following algorithms are known for many
problems including support vector machines (Giesen, Jaggi,
and Laue 2012a; Giesen et al. 2012), the Lasso (Mairal and
Yu 2012), and regularized matrix factorization and comple-
tion problems (Giesen, Jaggi, and Laue 2012b; Giesen et al.
2012). For a prescribed accuracy ε > 0, these algorithms
compute a piecewise constant approximation of the solution
path, which is called an ε-approximate solution gamut.

The idea of approximate solution gamuts was carried fur-
ther and extended to higher dimensions, i.e., q > 1 in Prob-
lem (P), by (Blechschmidt, Giesen, and Laue 2015). The ba-
sic algorithmic idea of this work is computing a solution xα
to Problem (P) for some parameter vector α and determining
the region in the parameter domain, where xα is at least an
ε-approximate solution. The algorithm then iterates over the
complement of the union of the regions that are already cov-
ered by some ε-approximate solution. At every iteration, one
element of the ε-approximate solution gamut is computed.
The algorithm stops once the whole parameter domain is
covered. Key features of this Solution Gamut method are
a well-defined stopping criterion for a desired approxima-
tion guarantee, and its efficiency that results from adapting
to the complexity of the solution space. Fewer solutions are
computed in parameter regions where the solution does not

change much. Unfortunately, the Solution Gamut method
still needs a grid on the parameter domain. In contrast to
Grid Search, here the grid is only used for testing whether a
given solution is still an ε-approximate solution at the grid
point. Therefore, it is enough to compute function values at
the grid points which, in general, is much cheaper than solv-
ing optimization problems. For providing the guarantee that
the whole parameter domain is covered by ε-approximate
solutions, the grid spacing has to be chosen carefully. In the-
ory, a sufficient spacing can be derived from smoothness
properties, i.e., Lipschitz constants, of Problem (P), but in
practice it is non-trivial to get the grid spacing right. An-
other drawback is that for checking if a solution is an ε-
approximate solution, the algorithm needs to compute not
only solutions to Problem (P), but also solutions to its La-
grangian dual problem. Furthermore, it requires problem-
specific plug-in functions.

Contributions In this paper, we show that a variant
of Benson’s vector optimization algorithm (Benson 1998;
Löhne, Rudloff, and Ulus 2014) naturally allows comput-
ing ε-approximate solution gamuts in a way that combines
the advantages of previous approaches. Benson’s algorithm
comes with a clear stopping criterion and also adapts to
the problem structure like the Solution Gamut method, but
is grid/lattice-free in contrast to the latter. Furthermore, it
works out of the box for all instances of the generic Prob-
lem (P) and does not rely on problem-specific plug-in func-
tions. It is easy to parallelize (Bücker et al. 2018) and does
not need to solve dual problems. We summarize the advan-
tages of Benson’s algorithm in Table 1 and compare it to the
established approaches.

Table 1: Comparison of methods.
Grid Random Solution Benson

Search Search Gamut Alg.

lattice-free 7 3 7 3
adaptive 7 3 3 3
parallelizable 3 3 7 3
stopping rule 7 7 3 3

Outline In the next section, we study the parameterized
Problem (P) in a vector optimization setting, allowing us to
apply a simplified variant of Benson’s algorithm that we in-
troduce in Secton 3. Thereafter, in Section 4, we report on
experimental results for the Elastic Net on various real world
data sets that corroborate the effectiveness of Benson’s al-
gorithm. Experimentally, our implementation of Benson’s
algorithm matches the asymptotic lower bound on the so-
lution gamut complexity that has been proven by (Blech-
schmidt, Giesen, and Laue 2015). But our approach yields a
much better constant. In fact, it needs to solve about an order
of magnitude fewer optimization problems than the Solution
Gamut method for the same approximation guarantees. Sim-
ilar results also hold true for Ridge Regression and the Lasso
that both feature only one regularization term.
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2 The Solution Gamut and its Relation to
Vector Optimization

We begin by recapitulating the definition of the solution
gamut for the considered class of optimization problems and
show its direct relation to the solution concept in the field of
vector optimization

Solution Gamut. By re-scaling the objective function of
Problem (P), we can assume that (P) is given as

min
x∈X

fw(x) = w0 `(x) +

q∑
i=1

wi ri(x) , (Pw)

with feasible set X = {x ∈ Rn | g(x) ≤ 0}, and regu-
larization parameters w = (w0, w1, . . . , wq) ∈ S ⊆ Rq+1,
where

S =
{
w ∈ Rq+1

∣∣ wi ≥ 0 for all i ,
∑q
i=0 wi = 1

}
defines the q-dimensional standard simplex. For a given pa-
rameter w ∈ S, we denote by xw a global optimal solution
to Problem (Pw).

Definition 2.1. Let ε > 0 be given. We call some func-
tion x̄ : S → Rn an ε-approximative solution gamut of
Problem (Pw), if for all w ∈ S

g(x̄(w)) ≤ 0 and fw(x̄(w))− fw(xw) ≤ ε . �

Remark 2.2. The ε-approximative solution gamut in (Blech-
schmidt, Giesen, and Laue 2015) is piecewise constant. �
Remark 2.3. For ε = 0, Definition 2.1 yields the so-called
full solution gamut. Notice that the computation of full so-
lution gamuts is only possible for special cases (e.g. LARS
algorithm for the Lasso (Efron et al. 2004)). �

Vector Optimization. For our approach, we consider the
convex vector optimization problem related to (Pw), namely

min
x∈X

F (x) =
[
`(x), r1(x), . . . , rq(x)

]T
w.r.t. ≤Rq+1

+

(VP)

whose objective function F : Rn → Rq+1 is vector-valued
and minimized w.r.t. the component-wise partial order-
ing ≤Rq+1

+
on Rq+1:

y1 ≤Rq+1
+

y2 if and only if y2 − y1 ∈ Rq+1
+ ,

where Rq+1
+ = {y ∈ Rq+1 | yi ≥ 0, i = 1, . . . , q + 1}. In

the following, the feasible set X of (VP) is assumed to be
non-empty.

Connection to the Solution Gamut Problem. Our main
contribution is the observation that the full solution gamut
of Problem (Pw) is the set of so-called weak minimizers of
Problem (VP).

Definition 2.4. A point x∗ ∈ X is called a weak minimizer
of Problem (VP) if ({F (x∗)} − intRq+1

+ ) ∩ F (X ) = ∅,
where F (X ) = {F (x) ∈ Rq+1 | x ∈ X} is the image of the
feasible set. �

The connection between the full solution gamut and the
set of weak minimizers becomes intuitively clear, if one con-
siders the geometry of the problems. The upper image of
Problem (VP) is the set

P = closure(F (X ) + Rq+1
+ ) .

An optimal solution to Problem (Pw) with parametersw ∈ S
is then just a weak minimizer of Problem (VP) and vice
versa (see e.g., (Jahn 2011)). Let xw be an optimal solu-
tion of Problem (Pw) for parameters w ∈ S, then F (xw) is
a boundary point of the convex and closed set P and there
exists a supporting hyperplane in F (xw) with normal vec-
tor w (see also Figure 3 (left)). Conversely, the image of any
weak minimizer of Problem (VP) is a boundary point of P
with some normal vector w ∈ S.

Approximate Solutions. Motivated by our application in
regularization parameter tracking, we are aiming at a finite
representation of the full solution gamut of Problem (Pw) or,
equivalently, the set of weak minimizers of Problem (VP).
Finite representations are possible for special cases, see
(Hamel, Löhne, and Rudloff 2014), but not for a general con-
vex vector optimization problem. Therefore, we will con-
sider ε-approximate solutions.
Definition 2.5. Let c ∈ intRq+1

+ be arbitrary but fixed and
assume that Problem (VP) is bounded, i.e., P ⊆ {y}+Rq+1

+

holds for some y ∈ Rq+1. Then a nonempty, finite set X ∗ ⊆
X is called an ε-infimizer if

convF (X ∗) + Rq+1
+ − ε c ⊇ P .

An ε-infimizer X ∗ of (VP) is called a weak ε-solution
to (VP) if it only consists of weak minimizers. �

An ε-solution X ∗ provides both, an inner and an outer
polyhedral approximation of the upper image P by finitely
many minimizers. Setting Pε = convF (X ∗) + Rq+1

+ , we
have

Pε − ε c ⊇ P ⊇ Pε .
Figure 2 illustrates these inclusions.

`(x)

r(x)

Pε − ε c ⊇ P ⊇ Pε

Figure 2: Approximate Solutions.

In the following, we focus on computing ε-solutions of
Problem (VP) for a prescribed accuracy ε > 0. By similar
arguments as for the relation between weak minimizers and
the full solution gamut, such an ε-solution directly provides
an ε-approximative solution gamut for Problem (Pw).
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I0 ⊆ P

w0
w1

I0 ⊆ I1 ⊆ P

Figure 3: Left: Initialization of Algorithm 1 with weighted-sum scalarization (Pw) for w = w0, where the dashed red line is
defined by {y | wTy = F (xw)}. Middle and right: First iteration of Algorithm 1 with regularization parameter w = w1.

3 Benson’s Algorithm
In this section, we present an algorithm for solving Prob-
lem (VP), whose initial ideas go back to (Benson 1998).
Since the solution gamut problem does not require the most
general formulation of Problem (VP), we will adapt the
ideas behind Benson’s algorithm and end up with a particu-
larly simple and easy to implement variant.
Remark 3.1. Benson’s algorithm essentially exists in two
variants—a primal and a dual formulation. While in the orig-
inal work (Benson 1998), the primal algorithm has been
derived, we will use and refine a dual scheme, whose idea
goes back to (Ehrgott, Löhne, and Shao 2012). More details
for primal and dual variants can be found, e.g., in (Hamel,
Löhne, and Rudloff 2014) and (Löhne, Rudloff, and Ulus
2014). �

Benson’s algorithm is especially well-suited for problems
with q � n, i.e., like in our context, when there are many
more variables than regularization terms, because it oper-
ates in the image space of the problem. The algorithm is
iterative and, under the following conditions, returns a weak
ε-solution on termination—cf. (Löhne, Rudloff, and Ulus
2014, Theorems 4.9 and 4.14): (i) Problem (Pw) has an op-
timal solution for all w ∈ S and (ii) the feasible set X has
a non-empty interior (Slater’s condition). These conditions
clearly are fulfilled for the problems we consider in the fol-
lowing, where all functions `, ri are defined by norms (coer-
cive and continuous) and X = Rq+1

+ .
Since for the algorithm polyhedra play a crucial role, re-

member that each nonempty convex, polyhedral set A ⊆
Rq+1 either can be defined as the intersection of finitely
many half-spaces, i.e.,

A =

r⋂
i=1

{
y ∈ Rq+1 | (wi)Ty ≥ bi

}
(1)

for some r ∈ N, wi ∈ Rq+1 \ {0}, and bi ∈ R, or by

A = conv{v1, . . . , vs}+ cone{d1, . . . , dt} , (2)

with s ∈ N \ {0}, t ∈ N, points vi ∈ Rq+1, and directions
dj ∈ Rq+1 \ {0}. We call (1) an H-representation and (2) a
V-representation of A, respectively.

The Algorithm. The now discussed (dual) variant of Ben-
son’s algorithm approximates the upper image P of Prob-
lem (VP) by computing a growing sequence of inner ap-
proximation polyhedra Ij = {y ∈ Rq+1 | (wj)Ty ≥ bj}.
After an initial inner approximation I0 of P has been com-
puted, the algorithm iteratively improves this approximation
such that

I0 ⊆ I1 ⊆ . . . ⊆ Ij ⊆ . . . ⊆ P .

Thereby, the algorithm relies on scalarizations of Prob-
lem (VP), where the vector optimization problem is replaced
by a suitable scalar optimization problem. This will be done
by using the so-called weighted-sum scalarization (Pw) (see
Section 2) with good choices for the regularization parame-
ter w. How those w are chosen is described in Algorithm 1.
An illustration of the initialization and the first iteration of
the algorithm is given by Figure 3.

Algorithm 1 Benson Algorithm
Input: Problem data (F , g), direction c, accuracy ε
Output: V-rep. Ipoi and H-rep. I of Pε

1: function BENSONALGORITHM
2: T ← ∅
3: w0 ← ( 1

q+1 , . . . ,
1
q+1 )T

4: x0 ← arg min(Pw0)
5: Ipoi ← {F (x0)}
6: compute H-representation I of Ipoi
7: repeat
8: choose w ∈ I \ T
9: xw ← arg min(Pw)

10: compute dc(xw) as in Equation (3)
11: if dc(xw) > ε then
12: Ipoi ← Ipoi ∪ {F (xw)}
13: update the H-representation I of Ipoi
14: else
15: T ← T ∪ {w}
16: end if
17: until I \ T = ∅
18: end function
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Table 2: Comparison of the minimum test MSE and number of solved optimization problems for the considered methods.
Data Set Grid Search Benson Algorithm Random Search Solution Gamut

# Opt. MSE # Opt. MSE # Opt. MSE # Opt. MSE

ALLAML 5151 0.0530 26 0.0544 168 0.0557 1141 0.0546
arcene 5151 0.6385 53 0.6460 71 0.7126 180 0.6565
GLI-85 5151 0.1030 55 0.1041 70 0.1057 562 0.1051
GLIOMA 5151 0.1919 57 0.1943 125 0.1992 575 0.1964
Prostate-GE 5151 0.0698 39 0.0701 2736 0.0708 1026 0.0702
SMK-CAN-187 5151 0.1600 51 0.1628 290 0.1668 128 0.1673
Carcinom 5151 1.8218 44 1.8543 155 1.8770 550 1.8661
14cancer 5151 7.8481 68 7.8725 61 7.8992 309 7.8763

Algorithm 1 consists of two crucial phases, the initializa-
tion and the main iteration, which we now describe in more
detail.

Initialization. For computing an initial inner approxima-
tion I0 of the upper image P , one can use the weighted-sum
scalarization with weights w0 = ( 1

q+1 , . . . ,
1
q+1 )T ∈ Rq+1.

Problem (Pw) then returns a solution x0, whose image point
F (x0) ∈ ∂P lies on the boundary of the upper image. We
set

I0 = {F (x0)}+ Rq+1 .

Figure 3 (left) illustrates this process.

Benson Iteration. At the beginning of each iteration, Ij
is given by a V-representation and has to be converted into
an H-representation. This is done by facet enumeration,
see (Bremner, Fukuda, and Marzetta 1998). Then, we se-
lect one hyperplane {y ∈ Rq+1 | wTy = b} of the cur-
rent approximation Ij , represented by its normal vector w,
and solve the scalarized problem (Pw). The distance, the
hyperplane is moved in w-direction, is just b − wTF (xw).
But since we compute an ε-approximation w.r.t. the direc-
tion c, we have to take the angle between w and c into ac-
count. Therefore, the distance, the hyperplane is moved in
c-direction, is given by

dc(x
w) =

cTw

‖c‖2 ‖w‖2

(
b− wTF (xw)

)
. (3)

If dc(xw) > ε, we add the optimal solution xw of (Pw) to
our inner approximation and obtain

Ij+1 = conv (Ij ∪ F (xw)) + Rq+1
+ .

If otherwise dc(xw) ≤ ε, we continue with checking the
next hyperplane of the inner approximation.
Remark 3.2 (Outer Approximation). By saving the moved
hyperplanes of each iteration, it would also be possible to
generate an outer approximation of the upper image P with-
out further costs—cf. (Löhne, Rudloff, and Ulus 2014, Re-
mark 4.3(2)). But since we aim for feasible solutions, this
step is omitted here. �

4 Experiments
In our implementation of Algorithm 1, we used Gurobi
(Gurobi Optimization 2016) for solving the scalarized
problems (Pw). Facet enumeration is done by bensolve
tools (Ciripoi, Löhne, and Weißing 2018). We fixed the di-
rection parameter c = (1, . . . , 1)T.

The Elastic Net. We apply Benson’s algorithm to the
problem of linear regression, where we consider the Elastic
Net regularization (Zou and Hastie 2005). The correspond-
ing optimization problem reads as

min
x∈Rn

1

2
‖Ax− b‖22 + β ‖x‖1 +

α

2
‖x‖22 , (EN)

where A ∈ Rm×n, b ∈ Rm, and the regularization parame-
ters are α, β ∈ R+. Thus, we have q = 2.
Remark 4.1. Setting β = 0 in Problem (EN) yields Ridge
regression, while α = 0 results in Lasso regression. Both
scenarios have q = 1 regularization parameter and are later
used to study the complexity of Benson’s algorithm. �

Data Sets. A common application for the Elastic net is mi-
croarray classification and gene selection (Zou and Hastie
2005, Section 6). In typical microarray data sets, there are
thousands of genes but only a few samples. The Elastic Net
turned out to be well-suited for such datasets since it com-
bines the advantages of variable selection (L1-norm) and
grouped selection (L2-norm), especially for the m � n
case.

For our experiments, we use the following data sets,
which are well-known from the literature:

• ALLAML with m = 7,129 features and n = 72 instances,

• arcene with m = 10,000 and n = 200,

• GLI-85 with m = 22,283 and n = 85,

• GLIOMA with m = 4,434 and n = 50,

• Prostate-GE with m = 5,966 and n = 102,

• SMK-CAN-187 with m = 19,993 and n = 187,

• Carcinom with m = 9,182 and n = 174,

• 14cancer with m = 16,063 and n = 198.
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Figure 4: Shown are the test MSE values for the SMK-CAN-187 (left) and 14cancer (right) data sets. The results of the
fine-mesh Grid Search are depicted by colors. The iterates of Benson’s algorithm are illustrated by red points, and red stars
indicate the best resp. the three best parameter combinations. All of them are located in the dark blue areas of low MSE.

Data Preparation. For all data sets, 70% of the data have
been used for training, and 30% have been hold out for test-
ing. We localize and standardize the training data, such that
the response is centered and the predictors are standardized:
mtrain∑
i=1

btraini = 0 ,

mtrain∑
i=1

Atrain
i,j = 0 ,

mtrain∑
i=1

(
Atrain
i,j

)2
= 1 ,

for j = 1, . . . , n. We then re-use the training parameters
(mean and standard derivation) to scale the test data sets,
since they should be treated as new, unseen data.

Experimental Setup. Our aim is finding regularization
parameters α, β for Problem (EN), such that its optimal so-
lution xα,β yields a low mean squared error (MSE) on the
test data set. For this purpose, we compare Benson’s algo-
rithm with Grid Search, Random Search, and the Solution
Gamut method of (Blechschmidt, Giesen, and Laue 2015).
We proceed as follows: First, we re-scale Problem (EN)
such that α, β ∈ [0, 1] (compare Section 2),

min
x∈Rn

1− α− β
2

‖Ax− b‖22 + β ‖x‖1 +
α

2
‖x‖22 . (EN′)

Second, we compute a fine-mesh solution with Grid Search
by solving (EN′) for all α, β ∈ {0, 0.01, 0.02, . . . , 1}. The
minimum test MSE for the fine-mesh solution is used as a
baseline. We then run Benson’s algorithm with approxima-
tion errors ε = 0.1 (for the first six data sets) and ε = 1
(for the last two data sets), resp., depending on the scale of
the objective function values. After reporting the resulting
minimum MSE, we run Random Search (averaged over 10
runs for each data set) and the Solution Gamut method until
they reach at least the same MSE as Benson’s algorithm. We
report the minimum MSE for both methods that has been
obtained until this iteration.
Remark 4.2. We only use the fine-mesh Grid Search for gen-
erating a baseline. Coarse grids are omitted in the compar-
ison, since, in general, Random Search is superior to Grid
Search (cf. (Bergstra and Bengio 2012)). �

Remark 4.3. Notice that Random Search and the Solution
Gamut method get a big advantage by knowing the test MSE
to be reached. Especially Random Search would not have a
useful stopping criterion otherwise, in contrast to the Solu-
tion Gamut method and Benson’s algorithm. �

Results. Table 2 reports the results of our experiments.
As can be seen, the minimum MSE computed by Ben-
son’s algorithm reaches the fine-mesh Grid Search MSE up
to 0.3–2.6% (on average 1.3%) by only having solved ap-
prox. 1/100 of the number of optimization problems. On
most examples, Random Search also performs well, but
overall loses to Benson’s algorithm. The biggest limitation
of Random Search is the missing stopping criterion.

It also turns out that Benson’s algorithm is the clear win-
ner over the Solution Gamut method. On the average of the
problem instances that we considered, Benson’s algorithm
outperforms the Solution Gamut method by an order of mag-
nitude in the number of optimization problems to be solved.
Both approaches rely on a similar idea by exploiting the
structure of the underlying optimization problem to generate
good predictions. But due to the vector optimization setup,
Benson’s algorithm does not need a grid for the regulariza-
tion parameter space which ends up as a great benefit.

Figure 6 is an example, how Benson’s algorithm approxi-
mates the upper image of the corresponding vector optimiza-
tion problem. Among all vertices of the approximation, the
one with the best test MSE is chosen—see Figure 4 (right).

Case Study SMK-CAN-187. Figure 4 (left) shows the test
MSE represented by colors for the SMK-CAN-187 data set
for all feasible combinations of α, β ∈ [0, 1] on the fine-
mesh grid computed by Grid Search. The red points indi-
cate the chosen parameter combinations of Benson’s algo-
rithm, while the red star gives the best test MSE among
them. This example nicely shows that Benson’s algorithm
tends to choose more parameter combinations (α, β) in ar-
eas, where the value of the MSE changes, and less combi-
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Figure 5: Log-log complexity plots of Alg. 1 for the Elastic Net (left), Lasso regression (middle) and Ridge regression (right).
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Figure 6: Approximation of the upper image P for the
14cancer data set using Algorithm 1 with ε = 1.

nations in “flat” areas, to obtain an overall good approxima-
tion. I.e., it only generates one weight combination for the
big yellow area, where the predictor is zero, because the reg-
ularization terms are too dominant in Problem (EN′). Grid
Search almost uses one third of its iterations to explore this
area. This case is typical for most of the considered data sets.

Case Study 14cancer. Figure 4 (right) shows the test
MSE for the 14cancer data set. Here, we have a good ex-
ample that finding the best predictor among all solutions of
the regularized optimization problem is itself a non-convex
problem. There are three non-connected, dark blue areas,
where certain parameter combinations (α, β) yield predic-
tors with good test MSE. Benson’s algorithm computes an
ε-approximate solution for this data set in 68 iterations (red
points) and thereby is able to find a representative predictor
for each dark blue area (red stars). All of these three pre-
dictors yield a test MSE below 7.9500, while having dif-
ferent sparsity properties. From bottom to top, the three best
computed predictors have 1814, 445, and 79 non-zeros, resp.
Therefore, the user is able to decide between three similarly

good candidates of very different sparsity.
While this is the only example, where Random Search

needed slightly less iterations than Benson’s algorithm, it
was only able to find a good predictor from one of the three
interesting areas.

Complexity. In (Blechschmidt, Giesen, and Laue 2015),
a lower bound of Ω(ε−q/2) for the number of optimization
problems that need to be solved for an ε-approximate solu-
tion gamut has been proven. For the Elastic Net (EN), we
have q = 2 and thus a lower bound of Ω(1/ε) of neces-
sary optimization problems. In Figure 5 (left), one can see
that Benson’s algorithm experimentally matches this lower
bound.

Additionally, we carried out experiments for the Lasso
and Ridge regression with q = 1, implying a lower bound of
Ω(1/

√
ε). Benson’s algorithm also matches this bound—see

Figure 5 (middle and right).

5 Conclusion
We have shown that Benson’s vector optimization algorithm
can be used for regularization parameter tracking with pre-
scribed approximation guarantees. The fairly simple algo-
rithm that works out of the box and does not rely on problem
specific functions combines the advantages of previously
known regularization parameter tracking methods: (i) it has
a well-defined stopping criterion for a prescribed approxi-
mation guarantee, and (ii) it adapts to the problem structure
and works grid-free, which entails fewer optimization prob-
lems to be solved.

We demonstrated these advantages for the Elastic Net
problem on several real world data sets. It turned out that
Benson’s algorithm experimentally matches the theoreti-
cally known asymptotic lower bound on the number of op-
timization problems that need to be solved for a prescribed
approximation guarantee. It needs to solve about an order
of magnitude fewer optimization problems than the Solu-
tion Gamut method, the only other known algorithm with
well-defined stopping criterion. On average, it needs to solve
three times fewer optimization problems than the simple
Random Search.
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