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Abstract

Generative Adversarial Networks (GANs) have demonstrated
a strong ability to fit complex distributions since they were
presented, especially in the field of generating natural images.
Linear interpolation in the noise space produces a continu-
ously changing in the image space, which is an impressive
property of GANs. However, there is no special consideration
on this property in the objective function of GANs or its de-
rived models. This paper analyzes the perturbation on the in-
put of the generator and its influence on the generated images.
A smooth generator is then developed by investigating the
tolerable input perturbation. We further integrate this smooth
generator with a gradient penalized discriminator, and design
smooth GAN that generates stable and high-quality images.
Experiments on real-world image datasets demonstrate the
necessity of studying smooth generator and the effectiveness
of the proposed algorithm.

Introduction
Deep generative models have attracted increasing attention
from researchers, especially in the task of natural image
generation. Representative techniques include Variational
Auto-Encoder (VAE) (Kingma and Welling 2013), Pixel-
CNN (van den Oord et al. 2016), and Generative Adver-
sarial Networks (GANs) (Goodfellow et al. 2014). Genera-
tive Adversarial Networks (GANs) (Goodfellow et al. 2014)
translate Gaussian inputs into natural images by discover-
ing the equilibrium within a max-min game. The genera-
tor in vanilla GANs is to transform noisy vectors into im-
ages, while the discriminator aims to distinguish the gener-
ated samples from real samples. Convincing images gener-
ated from noisy vectors through GANs could be employed to
augment image datasets, which would alleviate the shortage
of training data in some tasks. Moreover, image-to-image
translation (Chen et al. 2018; 2019) based on GANs also
gets its popularity.

However, vanilla GANs have flaws in its stability, and
we have seen many promising works to alleviate this prob-
lem by modifying the network frameworks or proposing im-
proved loss functions (Radford, Metz, and Chintala 2015;
Nguyen et al. 2017; Karras et al. 2017; Mao et al. 2017;
Berthelot, Schumm, and Metz 2017a; Arjovsky, Chintala,
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(a) Interpolation image shows blur and distorted images.

(b) Smooth interpolation shows clear and high-quality images.

Figure 1: Interpolation images generated from WGAN-GP
(Gulrajani et al. 2017) (a) and the proposed smooth GAN
(b).

and Bottou 2017; Gulrajani et al. 2017). Besides, a consider-
able body of work has been conducted to arbitrarily manip-
ulate generated images according to different factors, e.g.,
the category, illumination, and style (Chen et al. 2016). Be-
yond meaningless noise input in GANs, interpretable fea-
tures can be discovered by investigating label information
in conditional GANs (Mirza and Osindero 2014), exploring
the mutual information between elements of input in info-
GAN (Chen et al. 2016) or leveraging the discriminator on
latent space in AAE (Makhzani et al. 2015).

Noise vector inputs for GANs can be taken as low-
dimensional representations of images. As widely accepted
in representation learning, the closeness of two data points
is supposed to be preserved before and after transforma-
tion. Most of these improved GANs methods implicitly as-
sume that the generator would translate linear interpolation
in the input noise space to semantic interpolation in the out-
put image space (Bojanowski et al. 2017). Although this
kind of experimental result showing interesting visual ef-
fects attracts readers’ attention, the quality of images gener-
ated through interpolations could be very noisy and fragile,
and some of these images would look obviously unnatural
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or even meaningless, as demonstrated in Figure 1(a). Efforts
are spent towards generating high-quality images or stabiliz-
ing the training of GANs, and how to ensure the success of
semantic interpolation in GANs has rarely been investigated.

In this paper, we propose a smooth deep image gener-
ator that can suppress the influence of input perturbations
on generated images. By investigating the connections be-
tween input noises and generated images, we theoretically
present the most serious input perturbation that can be tol-
erated for an output image of desired precision. A gradient-
based loss function is then introduced to reduce the variation
of generated images caused by perturbations on input noises,
which encourages a smooth interpolation of images. Com-
bining a discriminator with gradient penalty, we show the
smooth generator will be beneficial for improving the qual-
ity of interpolation samples, as demonstrated in Figure 1(b).
Experimental results on real-world datasets MNIST (LeCun
et al. 1998), CIFAR-10 (Krizhevsky and Hinton 2009), and
CelebA (Liu et al. 2015) demonstrate the generator pro-
duced by the proposed method is essential for the success
of smooth and high-quality interpolation of images.

Related Work
In this section, we briefly introduce related works on gener-
ative adversarial networks (GANs).

Although the GANs model has powerful image genera-
tion capabilities, the model was often trapped in the prob-
lem of unstable training and difficulty in convergence. Some
methods have been proposed to solve this problem. DC-
GAN (Radford, Metz, and Chintala 2015) introduced a net-
work structure that works well and is stable. WGAN (Ar-
jovsky, Chintala, and Bottou 2017) proved the defect of
vanilla adversarial loss and proposed Wasserstein distance
to measure the distance between the generated data distri-
bution and the real data distribution. However, the weight
clip used in WGAN to ensure the Lipschitz continuous of
D leads to the loss of the capacity of neural networks. To
solve this problem, WGAN-GP (Gulrajani et al. 2017) pro-
posed gradient penalty instead of weight clip operation to
satisfy Lipschitz continuous condition. BEGAN (Berthelot,
Schumm, and Metz 2017a) proposed a novel concept of
equilibrium that can help GANs to achieve considerable re-
sults using standard training methods that do not incorporate
tricks. At the same time, similar to the Wasserstein distance,
this degree of equilibrium can estimate the degree of con-
vergence of the model. MMD GAN (Li et al. 2017b) con-
nected moment matching network and GANs and achieved
competitive performances with state-of-the art GANs. Kim
et al. (Kim and Bengio 2016) and VGAN (Zhai et al. 2016)
integrated GANs with the energy-based model and improved
the performance of generative models.

GANs have achieved remarkable results in image gen-
eration. LapGAN (Denton et al. 2015) generated high-
resolution images from low resolution one with the help
of the Laplacian pyramid framework. Furthermore, Prog-
GAN (Karras et al. 2017) proposed to train generator
and discriminator progressively at upscale resolution lev-
els, which can produce extremely high-quality 2k resolu-
tion images. In semi-supervised learning, TripleGAN (Li et

al. 2017a) introduced a classifier C to perform generation
tasks under semi-supervised conditions. DCGAN (Radford,
Metz, and Chintala 2015) introduced interpolation in latent
space generate the smooth transition in image space. How-
ever, there is no insurance for the sign of smooth transition
in the adversarial Loss. As a result, this paper analyzes the
constraint required by the smooth transition in image space
and introduces a method to enhance this sign of GANs.

Proposed Method
In this section, we analyze the conditions required by the
smooth transition in image space and develop a smooth gen-
erator within GANs.

Generative Adversarial Nets
A discriminator D and a generator G play a max-min game
in GANs, in which the discriminator D is responsible for
distinguishing real samples from generated samples, while
the generator G is to deceive the discriminator D. When the
game achieves equilibrium, the generator G would be able
to fit complicated distribution of real samples.

Formally given the sample x from the real distribution
Pd and the noise z drawn from noise distribution Pz (e.g.,
Gaussian or uniform distribution), the optimal generator G
transforming the noise distribution to the real data distribu-
tion can be solved from the following min-max optimization
problem:

min
G

max
D

E
x∼Pd

[log(D(x))] + E
z∼Pz

[log(D(G(z)))]. (1)

We denote the distribution of generated sample G(z) as PG.
By alternately optimizing the generator G and the discrim-
inator D in the min-max problem, we expect that the dif-
ference between the generated distribution PG and the real
data distribution Pd would be gradually consistent with each
other.

Smooth Generator
In the noise-to-image generation task, it is difficult to know
what type of perturbation could happen in practice. Hence
we consider the general perturbation on pixels, and Eu-
clidean distance is adopted for the measurement. Consider-
ing a continuous translation or rotation, generated images
are still expected to evolve smoothly, and thus pixel values
should avoid sudden changes. Given the input noise vector
z and the generator G, the generated image can be written
as G(z). We suppose that the value of the i-th pixel on the
imageG(z) is determined byGi(z), whereGi(·) is reduced
from G(·). A smooth generator is then expected to have the
following pixel-wise property:∣∣Gi(z + δ)−Gi(z)

∣∣ < ε (2)

where δ stands for a small perturbation over input noise z,
and ε > 0 is a small constant number. Since linear interpo-
lation around z in the noise space can be approximated as
imposing perturbation δ on z, Eq. (2) would encourage the
image generated from noise interpolation would not be far
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from the original image. In addition, Eq. (2) can be helpful
to improve the robustness of the generator, so that it would
not be easily disabled by adversarial noise inputs with slight
perturbations. However, it is difficult to straightforwardly in-
tegrate Eq. (2) into objective function of GANs, because of
the unspecified δ. We next proceed to analyze the appropri-
ate δ that satisfies Eq. (2) in the following theorem.
Theorem 1. Fix ε > 0. Given z ∈ Rd as the noise input of
generator Gi, if the perturbation δ ∈ Rd satisfies

‖δ‖q <
ε

maxẑ∈Bp(z,R) ‖∇ẑGi(ẑ)‖p
, (3)

with 1
p + 1

q = 1, we have
∣∣Gi(z + δ)−Gi(z)

∣∣ < ε.

Proof. Without loss of generality, we first suppose Gi(z) ≤
Gi(z+ δ). Our aim is then to demonstrate what condition δ
should obey to realize

0 ≤ Gi(z + δ)−Gi(z) < ε. (4)

By the main theorem of calculus, we have

Gi(z + δ) = Gi(z) +

∫ 1

0

〈∇zGi(z + tδ), δ〉dt, (5)

so that

0 ≤ Gi(z + δ)−Gi(z) =

∫ 1

0

〈∇zGi(z + tδ), δ〉dt. (6)

Consider the fact that∫ 1

0

〈∇zGi(z + tδ), δ〉dt

≤ ‖δ‖q
∫ 1

0

‖∇zGi(z + tδ)‖pdt,
(7)

where holder inequality is applied and q-norm is dual to the
p-norm with 1

p + 1
q = 1. Suppose that ẑ = z + tδ lies in

a sphere centered at z with a radius R, and we define the
sphere as Bp(z, R) = {ẑ ∈ Rd | ‖z − ẑ‖p ≤ R}. Hence,
we have∫ 1

0

‖∇zG(z + tδ)‖pdt ≤ max
ẑ∈Bp(z,R)

‖∇ẑGi(ẑ)‖p. (8)

By combining Eqs. (7) and (8), Eq. (6) can be re-written as

0 ≤ Gi(z + δ)−Gi(z) ≤ ‖δ‖q max
ẑ∈Bp(z,R)

‖∇ẑGi(ẑ)‖p.

(9)
If the right side of Eq. (9) is always upper bounded by ε,

i.e.,

‖δ‖q max
ẑ∈Bp(z,R)

‖∇ẑGi(ẑ)‖p < ε, (10)

we can achieve the conclusion that 0 < Gi(z+δ)−Gi(z) <
ε. According to Eq. (10), δ should satisfy

‖δ‖q <
ε

maxẑ∈Bp(z,R) ‖∇ẑGi(ẑ)‖p
. (11)

By setting z := z+δ and δ := −δ, we we can get the same
constraint (i.e., Eq. (11)) over δ to achieve −ε < Gi(z +
δ)−Gi(z). The proof is completed.

By minimizing the denominator in Eq. (3), the model is
expected to tolerate larger perturbation δ under fixed differ-
ence ε on the i-th pixel. If all pixels of the generated image
are simultaneously investigated, we then have

L = min
G

max
ẑ∈Bp(z,R)

‖∇ẑG(ẑ)‖p. (12)

However, maxẑ∈Bp(z,R) ‖∇ẑG(ẑ)‖p is difficult to calcu-
late. Since ẑ lies in a local region around z, it is reasonable
to assume that there is a data point ẑ ∼ Pz that can well
approximate ẑ. Hence, we can reformulate Eq. (12) as

L = min
G

E
z∼Pz

‖∇zG(z)‖p. (13)

Though minimizing ‖∇zG(z)‖p will increase the pertur-
bation δ that can be tolerated by the generator, it is inappro-
priate to expect an enormously large value of δ, which could
damage the diversity of generated images. If the generator is
extremely insensitive to changes in the input, linear interpo-
lation in noise space would always lead to the same output.
As a result, we introduce a constant number k as a margin to
constrain the value of ‖∇zG(z)‖p,

L = E
z∼Pz

max(0, ‖∇zG(z)‖2p − k). (14)

If the value of ‖∇zG(z)‖p is larger than k, there will be
penalty on the generator. Otherwise, we think the value of
‖∇zG(z)‖p is sufficient to bring in an appropriate δ for
the generator. This hinge loss is advantageous over classi-
cal squared loss that expects the gradient magnitude to be
exactly k, as it is unreasonable to set the same gradient mag-
nitude for data points from distribution Pz .

Smooth GAN
So far, we mainly focus on the smoothness of generated im-
ages while neglecting their quality. Considering the genera-
tion network and the discriminant network within the frame-
work of GANs, we suggest the proposed smooth generator
is beneficial for improving the quality of generated images.

Well-trained deep neural networks have been recently
found vulnerable to adversarial examples that are impercep-
tible to human. Most of the studies on adversarial examples
are for image classification problem. But in image genera-
tion task, we can easily discover failure generations of well-
trained generators as well. The noises resulting in these fail-
ure cases can thus be regarded as adversarial noise input.
WGAN-GP (Arjovsky, Chintala, and Bottou 2017) is a re-
cent promising variant of vanilla GAN,

min
D

E
z∼Pz

[D(G(z))]− E
x∼Pd

[D(x)]. (15)

Loss function of WGAN-GP reflects the image quality,
which is distinct from loss of vanilla GAN to measure how
well it fools the discriminator. The first term in Eq. (15) is
relevant to the real sample and has no connection with the
generator. Larger value ofD(G(z)) in Eq. (15) therefore in-
dicates high quality of generated images. If noise vector z
generates a high-quality image, we expect that its neighbor-
ing point z + δ would generate an image of high quality as
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well. To decrease the quality gap between images generated
from closed noise inputs, we need to ensure that D(G(z))
would not drop significantly when the input variates, i.e.,∣∣D[G(z + δ)]−D[G(z)]

∣∣ < ε. (16)

In the following theorem, we analyze what conditions the
perturbation δ should satisfy to guarantee the image quality.
Theorem 2. Fix ε > 0. Consider generator G and discrimi-
natorD in GANs. Given a noise input z ∈ Rd, the generated
image is x̂ = G(ẑ). If the perturbation δ ∈ Rd satisfies

‖δ‖q <
ε

maxẑ∈Bp(z,R) ‖∇x̂D(x̂)‖p‖∇ẑG(ẑ)‖p
, (17)

with 1
p + 1

q = 1, we have
∣∣D[G(z + δ)]−D[G(z)]

∣∣ < ε.

Proof. Without loss of generality, we first supposeD[G(z+
δ)] ≥ D[G(z)]. Following the proof of Theorem 1, we can
draw a similar conclusion,

0 ≤ D[G(z + δ)]−D[G(z)]

≤ ‖δ‖q max
ẑ∈Bp(z,R)

‖∇ẑD[G(ẑ)]‖p. (18)

According to the chain rule, we have

∇ẑD[G(ẑ)] = ∇x̂D(x̂)∇ẑG(ẑ), (19)

where x̂ = G(ẑ) is the generated image. Given the fact that

‖∇x̂D(x̂)∇ẑG(ẑ)‖p ≤ ‖∇x̂D(x̂)‖p‖∇ẑG(ẑ)‖p, (20)

where 1
p + 1

q = 1, Eq. (18) can be re-written as

‖δ‖q max
ẑ∈Bp(z,R)

‖∇ẑD[G(ẑ)]‖p

≤‖δ‖q max
ẑ∈Bp(z,R)

‖∇x̂D(x̂)‖p‖∇ẑG(ẑ)‖p.
(21)

If the right side of Eq. (21) is always upper bounded by ε,
i.e.

‖δ‖q max
ẑ∈Bp(z,R)

‖∇x̂D(x̂)‖p‖∇ẑG(ẑ)‖p < ε, (22)

we then have

‖δ‖q <
ε

maxẑ∈Bp(z,R) ‖∇x̂D(x̂)‖p‖∇ẑG(ẑ)‖p
. (23)

In the similar approach, we can get the same constraint (i.e.,
Eq. (23)) over δ to achieve−ε <

∣∣D[G(z+δ)]−D[G(z)]
∣∣.

The proof is completed.

Based on Theorem 2, we propose to minimize

max
ẑ∈Bp(z,R)

‖∇x̂D(x̂)‖p‖∇ẑG(ẑ)‖p, (24)

so that the upper bound over δ will be enlarged and GANs
model is expect to tolerate more drastic perturbation. Since
it is difficult to discover the optimal ẑ ∈ Bp(z, R), we sup-
pose that there is an approximated ẑ sampled from the dis-
tribution Pz as well. The loss function can then be reformu-
lated as,

min
G,D

E
z∼Pz

‖∇xD(x)‖p‖∇zG(z)‖p, (25)

Algorithm 1 Smooth GAN

Require: The number of critic iterations per generator iter-
ation ncritic, the batch size m, Adam hyperparameters
α, β1, and β2, the loss balanced coefficient λ, γ.

Require: initial discriminator parameters w0, initial gener-
ator parameters θ0.
repeat

1: for t = 1, ..., ncritic do
2: for i = 1, ...,m do
3: Sample real data x ∼ Pd, latent variable z ∼ Pz , a

random number t ∼ U [0, 1].
4: Calculate fake sampleGθ(z), interpolation sample

x̃← tx+ (1− t)Gθ(z)

5: Calculate the loss function L(i)
D ← Dw[Gθ(z)] −

Dw(x) + λ(‖∇x̃D(x̃)‖2 − 1)2;
6: end for
7: Update discriminator parameters

w ← Adam(∇w 1
m

∑m
i=1 L

(i)
D , w, α, β1, β2)

8: end for
9: Sample a batch of latent variables {z(i)}mi=1 ∼ Pz .

10: Calculate the loss function
L
(i)
G ← −Dw[Gθ(z)] + γmax(0, ‖∇zG(z)‖22 − k);

11: Update generator parameters
θ ← Adam(∇θ 1

m

∑m
i=1 L

(i)
G , θ, α, β1, β2)

until θ has converged
Ensure: A smooth generator network G.

where x ∼ PG is the generated sample G(z). Two terms
‖∇xD(x)‖p and ‖∇zG(z)‖p are involved in Eq. (25).
WGAN-GP (Gulrajani et al. 2017) proposed gradient-
penalty,

LGPoD = E
x̃∼Px

[(‖∇x̃D(x̃)‖2 − 1)2], (26)

where Px consists of both real sample distribution Pd and
generated sample distribution PG. By concentrating on gen-
erated samples x ∼ PG, Eq. (26) encourages ‖∇xD(x)‖2
to go towards 1, and has been proved to successfully con-
strain the norm of the gradient of discriminator ‖∇xD(x)‖2
in experiments. The remaining term ‖∇zG(z)‖p in Eq. (25)
is therefore our only focus. In a similar approach, we en-
courage the norm of the gradient of generator to stay at a
lower level and reformulate Eq. (25) to

LGPoG = E
z∼Pz

max(0, ‖∇zG(z)‖22 − k), (27)

where we set p = q = 2. This equation is exactly the same
as Eq. (14).

By integrating Eqs. (26) and (27) with WGAN, we obtain
the resulting objective function:

L = E
z∼Pz

[D(G(z))]− E
x∼Pd

[D(x)]

+ λ E
x̃∼Px

[(‖∇x̃D(x̃)‖2 − 1)2]

+ γ E
z∼Pz

max(0, ‖∇zG(z)‖22 − k),

(28)
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Figure 2: Illustration of image interpolations on the MNIST dataset generated from WGAN-GP (Gulrajani et al. 2017) (left)
and the proposed method (middle and right).

where λ and γ constant numbers to balance different terms
in the function. Our complete algorithm pipeline is summa-
rized in Algorithm 1.

Experimental Results
In this section, we conduct comprehensive experiments on a
toy dataset and three real-world image datasets, MNIST (Le-
Cun et al. 1998), CIFAR-10 (Krizhevsky and Hinton 2009),
and CelebA (Liu et al. 2015).

Datasets and Settings
In this part, we introduce the real image datasets used in
the experiments and the corresponding experimental settings
and network structure. In addition, all the images are nor-
malized to pixel values in [−1,+1]. We utilize different net-
work architectures on different datasets that was detailed in
following. The common points are: i) no nonlinear activation
was attached to the end of discriminators; ii) the minibatch
used in training process is 64 for both generator and discrim-
inators; iii) Adam optimizer with learning rate 0.0001 and
momentum 0.5; iv) noise dimension of 128 for generator; v)
weights initialized from Gaussian: N (0; 0.01).

MNIST (LeCun et al. 1998) is a handwritten digits
dataset (from 0 to 9) composed of 28 × 28 pixel greyscale
images from ten categories. The whole dataset of 70,000 im-
ages is split into 60,000 and 10,000 images for training and
test, respectively. In the experiments on the MNIST dataset,
we consider the 10,000 images in test set as valid set in the
calculation of FID.

CIFAR-10 (Krizhevsky and Hinton 2009) is a dataset
that consists of 32×32 pixel RGB color images drawn from
10 categories. There are 60,000 images in the CIFAR-10
dataset which are split into 50,000 training and 10,000 test-
ing images. We also calculate the FID with 3,000 images
that was randomly selected in the test set.

CelebA (Liu et al. 2015) is a dataset consist of 202,599
portraits of celebrities. We use the aligned and cropped ver-
sion, which preprocesses each image to a size of 64 × 64
pixels. 3,000 examples are randomly selected as the test set
and the rest samples as the training set.

Evaluation Metrics
We evaluate the proposed method mainly in terms of n three
metrics well suited to the image domain.

Inception score (IS) (Salimans et al. 2016) rewarding
high-quality and high-variability of samples, can be ex-
pressed as: exp(Ex[DKL(p(y|x)‖p(y))]), where p(y) =

1
N

∑N
i=1 p(y|xi = G(zi)) is the margin distribution and

p(y|x) is the conditional distribution for samples. In this pa-
per, we estimate the IS using a Inception model (Szegedy et
al. 2016) pretrained in torchvision of PyTorch.

Frechet Inception Distance (FID) (Heusel et al. 2017)
described the distance between two distributions. FID is
computed as follow:

FID = ‖µg − µr‖22 + Tr(Σg + Σr − 2(ΣgΣr)
1
2 ), (29)

where (µg,Σg) and (µr,Σr) are the mean and covariance of
embedded samples from generated distribution Pg and real
image distribution Pr, respectively. In the paper, we regard
the feature maps obtained from a specific layer of the pre-
trained Inception model as the embedding of the samples.
FID is more sensitive to the diversity of samples belonging
to the same category and fixes the drawback of inception
score that is easily fooled by a model which generated only
one image per class. We describe the quality of models to-
gether with the FID and IS score.

Multi-scale Structural Similarity for Image Quality
(MS-SSIM) (Wang, Simoncelli, and Bovik 2003) was pro-
posed to measuring the similarity of two images. This met-
ric well suits to evaluate the quality of samples belonging to
one class. As a result, we apply it to describe the smooth-
ness of samples obtained from the interpolation opretion. If
two algorithms receive similar FID and IS socores, the sam-
ples could be equivalent on quality and diversity, and higher
MS-SSIM score means a smoother conversion process.

Interpolation
We implement the images interpolation on the MNIST and
CelebA datasets and show a few results in Figures (2) and
(3). We forward a series of noises obtained by linearly inter-
polating between two points in noise space into the model
and expect that the resulting images show smooth transposi-
tion in the image space.

In Figure 2, the left part and the middle part showing the
similar transposition are generated from models trained with
WGAN-GP and the Smooth GAN, respectively. The left part
shows more meaningless images (high lighted in red) during
the transposition. When changing an image from one class
to the other one, we want to keep the whole process smooth
and meaningful. As shown in the right part of Figure 2, these
images accomplish these transpositions by considering im-
age qualities and image semantics. For example, the number
‘6’ becomes ‘1’ firstly and then becomes ‘9’. Obviously, ‘1’
is more closed to ‘9’ than ‘6’. Interpolation results on the
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(a) Interpolation images generated from WGAN-GP.

(b) Interpolation images generated from the proposed Smooth GAN.

Figure 3: Image interpolations on the CelebA dataset.
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Figure 4: FID and sliced MS-SSIM obtained by different
models on the CIFAR-10 dataset.

other numbers also illustrate this phenomenon. In the results
on the CelebA dataset shown in Figure 3, we achieve great
quality while maintaining smoothness, which illustrates the
effectiveness of our approach.

Taken two images and their interpolation images gener-
ated from the linear interpolations in noise space as a inter-
polation slice, to illustrate the effectiveness of the proposed
method in a more convincing way, we generate several slides
on the CelebA dataset. We generated such slices based on
different models and calculated the FID and MS-SSIM of
these slices for comparison. Different from calculating the
MS-SSIM score over whole resulting images, we calculated
it for every interpolation slice independently. Higher MS-
SSIM values correspond to perceptually more similar im-
ages but also lower diversity and mode collapse (Odena,
Olah, and Shlens 2016; Fedus et al. 2017). Meanwhile,
higher FID score ensures the diversity and prevents the
GANs from mode collapse. As a result, considering together
with FID, the MS-SSIM score could focus on indicating the
similarity of images, which is consistent with smooth trans-
position in an interpolation slide. The sliced MS-SSIM score
used in this experiment can be described as:

N(N − 1)

2

N−1∑
i=1

N∑
j=i+1

MS− SSIM(Si, Sj), (30)

where Si is the i-th slide of samples in the resulting group.
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Figure 5: FID scores (a) and Wasserstein distance conver-
gence (b, c, d) under different values of k.

Now, we could estimate the effectiveness with FID and
sliced MS-SSIM. We report the FID and sliced MS-SSIM
obtained on the CelebA dataset in Figure 4. Our model not
only has the lowest FID score, but also its MS-SSIM score
exceeds all other models. This is consistent with our obser-
vations and demonstrates the effectiveness of our approach.

Hyperparemeter Analysis To illustrate the choice of the
value of k, we show FID scores and Wasserstein distance
convergence curves of experiments with different k values
on the CIFAR-10 dataset in Figure 5. Figure 5 (a) shows
the FID scores obtained from four k values, and K = 10
provides the best score. Figure 5 (b) shows that the experi-
ment with k = 10 achieves the best convergence. Setting k
to 3 will influence the training progress and achieve slightly
higher Wasserstein distance than Figure 5 (b) when network
convergence. The generator is failed to produce enough real-
istic images when setting k to 0.1; this is because too small
a k value will suppress the diversity of generator output.
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Figure 6: Samples generated from the proposed model trained on MNIST (left), CIFAR-10 (middle), and CelebA (right).
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Figure 7: FID distribution obtained on several subsets.

Moreover, a large value of k relaxes the constraint on the
gradient and can result in insufficient smoothness of the net-
work output. In our experiments, we used different k values
based on experimental results regarding different datasets.

Table 1: Incetion scores (higher is better) and FIDs (lower is
better) on the CIFAR-10 dataset.

Method IS ↑ FID ↓
DCGAN

6.40± .05 36.7(Radford, Metz, and Chintala 2015)
BEGAN

(Berthelot, Schumm, and Metz 2017b) 5.62± .07 32.3

WGAN
3.82± .06 42.8(Arjovsky, Chintala, and Bottou 2017)

D2GAN (Nguyen et al. 2017) 7.15± .07 30.6
WGAN-GP (Gulrajani et al. 2017) 7.36± .07 26.5

Smooth GAN (Ours) 7.66± .05 24.1

Image Generation

We conduct experiments on three real image datasets to in-
vestigate the capabilities of the proposed method. Table 1 re-
ports the inception scores and FIDs on the CIFAR-10 dataset
which obtained from the proposed model and baseline meth-
ods. In this results, the proposed method outperforms almost
state-of-the-art methods. Therefore, the proposed method
provides considerable quality on the three datasets.

Figure 6 shows several samples generated by the model
learned with the proposed method. The samples on the
MNIST dataset show a variety of numbers and styles. Dogs,
trucks, boats, and fish could also be found in the samples on
the CIFAR-10 dataset. Age and gender diversity can also be
observed in the results on the CelebA dataset. These results
confirm the capabilities of the proposed method.

Samples Quality Distribution

In this section, we introduce a way to describe the quality
distribution of samples and demonstrate the effectiveness of
the proposed method that can effectively reduce the num-
ber of low-quality images. FID is a good indicator to eval-
uate the quality of the generated samples. However, FID
only provides an average quality of the whole test images.
First, we generate a sufficient large set of images (50,000
in experiments). Next, we randomly sample 512 images to
form a subset and calculate the FID of this subset. We repeat
the second step 120 times and calculate their FID scores.
By comparing these FIDs obtained from subsets, we can
roughly estimate the quality distribution of the samples. Fig-
ure 7 shows the distribution of FID scores calculated over
subsets and obtained from three models. Compared to other
models, our model can obtain lower FID scores, while big-
ger value of FIDs are less. Moreover, the FID scores ob-
tained from the proposed model are mainly concentrated be-
tween 46 and 50, and only 8 scores of subset fall outside
this region, while the other two algorithms get a loose distri-
bution of FID scores. Therefore, our method can effectively
reduce the low-quality samples in the generated samples.

Conclusions

Here we analyze the relationship between perturbation on
the input of the generator and its influence on the output im-
ages. By investigating the tolerable input perturbation, we
develop a smooth generator. We further integrate this smooth
generator with a gradient penalized discriminator, and pro-
duce smooth GAN that generate stable and high-quality im-
ages. Experiments on real-world image datasets demonstrate
the necessity of studying smooth generator and show the
proposed method is capable of learning smooth GAN.
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