
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Multi-Task Deep Reinforcement Learning with PopArt

Matteo Hessel
DeepMind

Hubert Soyer
DeepMind

Lasse Espeholt
DeepMind

Wojciech Czarnecki
DeepMind

Simon Schmitt
DeepMind

Hado van Hasselt
DeepMind

Abstract

The reinforcement learning (RL) community has made great
strides in designing algorithms capable of exceeding human
performance on specific tasks. These algorithms are mostly
trained one task at the time, each new task requiring to train
a brand new agent instance. This means the learning algo-
rithm is general, but each solution is not; each agent can only
solve the one task it was trained on. In this work, we study the
problem of learning to master not one but multiple sequential-
decision tasks at once. A general issue in multi-task learning
is that a balance must be found between the needs of multiple
tasks competing for the limited resources of a single learn-
ing system. Many learning algorithms can get distracted by
certain tasks in the set of tasks to solve. Such tasks appear
more salient to the learning process, for instance because of
the density or magnitude of the in-task rewards. This causes
the algorithm to focus on those salient tasks at the expense of
generality. We propose to automatically adapt the contribu-
tion of each task to the agent’s updates, so that all tasks have
a similar impact on the learning dynamics. This resulted in
state of the art performance on learning to play all games in a
set of 57 diverse Atari games. Excitingly, our method learned
a single trained policy - with a single set of weights - that
exceeds median human performance. To our knowledge, this
was the first time a single agent surpassed human-level per-
formance on this multi-task domain. The same approach also
demonstrated state of the art performance on a set of 30 tasks
in the 3D reinforcement learning platform DeepMind Lab.

Introduction
In recent years, the field of deep reinforcement learning (RL)
has enjoyed many successes. Deep RL agents have been ap-
plied to board games such as Go (Silver et al. 2016) and
chess (Silver et al. 2017), continuous control tasks (Lillicrap
et al. 2016; Duan et al. 2016), classic video-games such as
Atari (Mnih et al. 2015; Hessel et al. 2018; Gruslys et al.
2018; Schulman et al. 2015; 2017; Bacon, Harb, and Precup
2017), and 3D first person environments (Mnih et al. 2016;
Jaderberg et al. 2016). While the results are impressive, they
were achieved on one task at the time, each new task requir-
ing to train a brand new agent instance from scratch.

Multi-task and transfer learning remain important open
problems in deep RL. There are at least four different strains

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of multi-task reinforcement learning that have been explored
in the literature: off-policy learning of many predictions
about the same stream of experience (Schmidhuber 1990;
Sutton et al. 2011; Jaderberg et al. 2016), continual learn-
ing in a sequence of tasks (Ring 1994; Thrun 1996; 2012;
Rusu et al. 2016), distillation of task-specific experts into a
single shared model (Parisotto, Ba, and Salakhutdinov 2015;
Rusu et al. 2015; Schmitt et al. 2018; Teh et al. 2017),
and parallel learning of multiple tasks at once (Sharma and
Ravindran 2017; Caruana 1998). We will focus on the latter.

Parallel multi-task learning has recently achieved remark-
able success in enabling a single system to learn a large
number of diverse tasks. The Importance Weighted Actor-
Learner Architecture, henceforth IMPALA (Espeholt et al.
2018), achieved a 59.7% median human normalised score
across 57 Atari games, and a 49.4% mean human normalised
score across 30 DeepMind Lab levels. These results are state
of the art for multi-task RL, but they are far from the human-
level performance demonstrated by deep RL agents on the
same domains, when trained on each task individually.

Part of why multi-task learning is much harder than sin-
gle task learning is that a balance must be found between
the needs of multiple tasks, that compete for the limited
resources of a single learning system (for instance, for its
limited representation capacity). We observed that the naive
transposition of common RL algorithms to the multi-task
setting may not perform well in this respect. More specif-
ically, the saliency of a task for the agent increases with
the scale of the returns observed in that task, and these may
differ arbitrarily across tasks. This affects value-based algo-
rithms such as Q-learning (Watkins 1989), as well as policy-
based algorithms such as REINFORCE (Williams 1992).

The problem of scaling individual rewards appropriately
is not novel, and has often been addressed through re-
ward clipping (Mnih et al. 2015). This heuristic changes the
agent’s objective, e.g., if all rewards are non-negative the
algorithm optimises frequency of rewards rather than their
cumulative sum. If the two objectives are sufficiently well
aligned, clipping can be effective. However, the scale of re-
turns also depends on the rewards’ sparsity. This implies
that, even with reward clipping, in a multi-task setting the
magnitude of updates can still differ significantly between
tasks, causing some tasks to have a larger impact on the
learning dynamics than other equally important ones.

3796

Note that both the sparsity and the magnitude of rewards
collected in an environment are inherently non-stationary,
because the agent is learning to actively maximise the total
amount of rewards it can collect. These non-stationary learn-
ing dynamics make it impossible to normalise the learning
updates a priori, even if we would be willing to pour signif-
icant domain knowledge into the design of the algorithm.

To summarise, in IMPALA the magnitude of updates re-
sulting from experience gathered in each environment de-
pends on: 1) the scale of rewards, 2) the sparsity of rewards,
3) the competence of the agent. In this paper we use PopArt
normalisation (van Hasselt et al. 2016) to derive an actor-
critic update invariant to these factors, enabling large per-
formance improvements in parallel multi-task agents. We
demonstrated this on the Atari-57 benchmark, where a sin-
gle agent achieved a median normalised score of 110% and
on DmLab-30, where it achieved a mean score of 72.8%.

Background
Reinforcement learning (RL) is a framework for learning
and decision-making under uncertainty (Sutton and Barto
2018). A learning system - the agent - must learn to inter-
act with the environment it is embedded in, so as to max-
imise a scalar reward signal. The RL problem is often for-
malised as a Markov decision process (Bellman 1957): a
tuple (S,A, p, γ), where S,A are finite sets of states and
actions, p denotes the dynamics, such that p(r, s′ | s, a) is
the probability of observing reward r and state s′ when ex-
ecuting action a in state s, and γ ∈ [0, 1] discounts future
rewards. The policy maps states s ∈ S to probability dis-
tributions over actions π(A|S = s), thus specifying the be-
haviour of the agent. The returnGt = Rt+1+γRt+2+. . . is
the γ-discounted sum of rewards collected by an agent from
state St onward under policy π. We define action values and
state values as qπ(s, a) = Eπ[Gt | St = s,At = a] and
vπ(s) = Eπ[Gt | St = s], respectively. The agent’s objec-
tive is to find a policy to maximise such values.

In multi-task reinforcement learning, a single agent must
learn to master N different environments T = {Di =
(Si,Ai, pi, γ)}Ni=1, each with its own distinct dynamics
(Brunskill and Li 2013). Particularly interesting is the case
in which the action space and transition dynamics are at
least partially shared. For instance, the environments might
follow the same physical rules, while the set of intercon-
nected states and obtainable rewards differ. We may for-
malise this as a single larger MDP, whose state space is
S = {{(sj , i)}sj∈Si}Ni=1. The task index i may be latent,
or may be exposed to the agent’s policy. In this paper, we
use the task index at training time, for the value estimates
used to compute the policy updates, but not at testing time:
our algorithm will return a single general policy π(A|S)
which is only function of the individual environment’s
state S and not conditioned directly on task index i. This
is more challenging than the standard multi-task learning
setup, which typically allows conditioning the model on the
task index even at evaluation (Romera-Paredes et al. 2013;
Collobert and Weston 2008), because our agents will need
to infer what task to solve purely from the stream of raw
observations and/or early rewards in the episode.

Actor-critic
In our experiments, we use an actor-critic algorithm to
learn a policy πη(A|S) and a value estimate vθ(s), which
are both outputs of a deep neural network. We update the
agent’s policy by using REINFORCE-style stochastic gradi-
ent (Gt − vθ(St))∇η log π(At|St) (Williams 1992), where
vθ(St) is used as a baseline to reduce variance. In addition
we use a multi-step return Gvt that bootstraps on the value
estimates after a limited number of transitions, both to re-
duce variance further and to allow us to update the policy
before Gt fully resolves at the end of an episode. The value
function vθ(S) is instead updated to minimise the squared
loss with respect to the (truncated and bootstrapped) return:

∆θ ∝ −∇θ(Gvt−vθ(St))2 = (Gvt−vθ(St))∇θvθ(St) (1)

∆η ∝ (Gπt − vθ(St))∇η log(πη(At|St)) , (2)

where Gvt and Gπt are stochastic estimates of vπ(St) and
qπ(St, At), respectively. Note how both updates depend lin-
early on the scale of returns, which, as previously argued, de-
pend on scale/sparsity of rewards, and agent’s competence.

Efficient multi-task learning in simulation
We use the IMPALA agent architecture (Espeholt et al.
2018), proposed for reinforcement learning in simulated en-
vironments. In IMPALA the agent is distributed across mul-
tiple threads, processes or machines. Several actors run on
CPU generating rollouts of experience, consisting of a fixed
number of interactions (100 in our experiments) with their
own copy of the environment, and then enqueue the roll-
outs in a shared queue. Actors receive the latest copy of the
network’s parameters from the learner before each rollout.
A single GPU learner processes rollouts from all actors, in
batches, and updates a deep network. The network is a deep
convolutional ResNet (He et al. 2015), followed by a LSTM
recurrent layer (Hochreiter and Schmidhuber 1997). Policy
and values are all linear functions of the LSTM’s output.

Despite the large network used for estimating policy πη
and values vθ, the decoupled nature of the agent enables
to process data very efficiently: in the order of hundreds
of thousands frames per second (Espeholt et al. 2018). The
setup easily supports the multi-task setting by simply assign-
ing different environments to each of the actors and then run-
ning the single policy π(S|A) on each of them. The data in
the queue can also be easily labelled with the task id, if use-
ful at training time. Note that an efficient implementation of
IMPALA is available open-source 1, and that, while we use
this agent for our experiments, our approach can be applied
to other data parallel multi-task agents (e.g. A3C).

Off-policy corrections
Because we use a distributed queue-based learning setup, the
data consumed by the learning algorithm might be slightly
off-policy, as the policy parameters change between acting
and learning. We can use importance sampling corrections
ρt = π(At|St)/µ(At|St) to compensate for this (Precup,

1www.github.com/deepmind/scalable agent

3797

Sutton, and Singh 2000). In particular, we can write the n-
step return as Gt = Rt+1 + γRt+2 + . . . + γnv(St+n) =

v(St) +
∑t+n−1
k=t γk−tδk, where δt = Rt+1 + γv(St+1) −

v(St), and then apply appropriate importance sampling cor-
rections to each error term (Sutton et al. 2014) to get Gt =

v(St)+
∑t+n−1
k=t γk−t(

∏k
i=t ρi)δk. This is unbiased, but has

high variance. To reduce variance, we can further clip most
of the importance-sampling ratios, e.g., as ct = min(1, ρt).
This leads to the v-trace return (Espeholt et al. 2018)

Gv−tracet = v(St) +

t+n−1∑
k=t

γk−t

(
k∏
i=t

ci

)
δk (3)

A very similar target was proposed for the ABQ(ζ) algo-
rithm (Mahmood 2017), where the product ρtλt was consid-
ered and then the trace parameter λt was chosen to be adap-
tive to lead to exactly the same behaviour that ct = ρtλt =
min(1, ρt). This shows that this form of clipping does not
impair the validity of the off-policy corrections, in the same
sense that bootstrapping in general does not change the se-
mantics of a return. The returns used by the value and policy
updates defined in Equation 1 and 2 are then

Gvt = Gv−tracet and Gπt = Rt+1 + γGv−tracet+1 . (4)

This is the same algorithm as used by Espeholt et al.
(2018) in the experiments on the IMPALA architecture.

Adaptive normalisation
In this section we use PopArt normalisation (van Hasselt et
al. 2016), which was introduced for value-based RL, to de-
rive a scale invariant algorithm for actor-critic agents. For
simplicity, we first consider the single-task setting, then we
extend it to the multi-task setting (the focus of this work).

Scale invariant updates
In order to normalise both baseline and policy gradient up-
dates, we first parameterise the value estimate vµ,σ,θ(S) as
the linear transformation of a suitably normalised value pre-
diction nθ(S). We further assume that the normalised value
prediction is itself the output of a linear function, for in-
stance the last fully connected layer of a deep neural net:

vµ,σ,θ(s) = σ · nθ(s) + µ = σ · (w>fθ\{w,b}(s) + b︸ ︷︷ ︸
= nθ(s)

) + µ .

(5)
As proposed by van Hasselt et al., µ and σ can be updated so
as to track mean and standard deviation of the values. First
and second moments of can be estimated online as

µt = (1−β)µt−1 +βGvt , νt = (1−β)νt−1 +β(Gvt)
2,

(6)
and then used to derive the estimated standard deviation as
σt =

√
νt − µ2

t . Note that the fixed decay rate β determines
the horizon used to compute the statistics. We can then use
the normalised value estimate nθ(S) and the statistics µ and
σ to normalise the actor-critic loss, both in its value and pol-
icy component; this results in the scale-invariant updates:

∆θ ∝
(
Gvt − µ
σ

− nθ(St)
)
∇θnθ(St) , (7)

∆η ∝
(
Gπt − µ
σ

− nθ(St)
)
∇η log πη(At|St) . (8)

If we optimise the new objective naively, we are at risk of
making the problem harder: the normalised targets for val-
ues are non-stationary, since they depend on statistics µ and
σ. The PopArt normalisation algorithm prevents this, by up-
dating the last layer of the normalised value network to pre-
serve unnormalised value estimates vµ,σ,θ, under any change
in the statistics µ→ µ′ and σ → σ′:

w′ =
σ

σ′
w , b′ =

σb+ µ− µ′

σ′
. (9)

This extends PopArt’s scale-invariant updates to the actor-
critic setting, and can help to make tuning hyperparameters
easier, but it is not sufficient to tackle the challenging multi-
task RL setting that we are interested in this paper. For this,
a single pair of normalisation statistics is not sufficient.

Scale invariant updates for multi-task learning
Let Di be an environment in some finite set T = {Di}Ni=1,
and let π(S|A) be a task-agnostic policy, that takes a state
S from any of the environments Di, and maps it to a proba-
bility distribution onto the shared action space A. Consider
now a multi-task value function v(S) with N outputs, one
for each task. We can use for v the same parametrisation as
in Equation 5, but with vectors of statistics µ,σ ∈ RN , and
a vector-valued function nθ(s) = (n1θ(s), . . . , n

N
θ (s))>

vµ,σ,θ(S) = σ�nθ(S)+µ = σ�(Wfθ\{W,b}(S)+b)+µ
(10)

where W and b denote the parameters of the last fully con-
nected layer in nθ(s). Given a rollout {Si,k, Ak, Ri,k}t+nk=t ,
generated under task-agnostic policy πη(A|S) in environ-
ment Di, we can adapt the updates in Equation 7 and 8 to
provide scale invariant updates also in the multi-task setting:

∆θ ∝

(
Gv,it − µi

σi
− niθ(St)

)
∇θniθ(St) , (11)

∆η ∝

(
Gπ,it − µi

σi
− niθ(St)

)
∇η log πη(At|St) , (12)

where the targets G·,it use the value estimates for environ-
ment Di for bootstrapping. For each rollout, only the ith
head in the value net is updated, while the same policy net-
work is updated irrespectively of the task, using the appro-
priate rescaling for updates to parameters η. As in the single-
task case, when updating the statistics µ and σ we also need
to updateW and b to preserve unnormalised outputs,

w′i =
σi
σ′i
wi , b′i =

σibi + µi − µ′i
σ′i

, (13)

where wi is the ith row of matrix W , and µi, σi, bi are the
ith elements of the corresponding parameter vectors. Note
that in all updates only the values, but not the policy, are
conditioned on the task index, which ensures that the result-
ing agent can then be run in a fully task agnostic way, since
values are only used to reduce the variance of the policy up-
dates at training time but not needed for action selection.

3798

Figure 1: Summary of results: aggregate scores for IMPALA and PopArt-IMPALA. We report median human normalised score
for Atari-57, and mean capped human normalised score for DmLab-30. In Atari, Random and Human refer to whether the
trained agent is evaluated with random or human starts. In DmLab-30, test score includes evaluation on the held-out levels.

Atari-57 Atari-57 (unclipped) DmLab-30

Agent Random Human Random Human Train Test

IMPALA 59.7% 28.5% 0.3% 1.0% 60.6% 58.4%

PopArt-IMPALA 110.7% 101.5% 107.0% 93.7% 73.5% 72.8%

Experiments
We evaluated our approach in two challenging multi-task
benchmarks, Atari-57 and DmLab-30, based on Atari and
DeepMind Lab respectively, and introduced by Espeholt et
al. We also consider a new benchmark, consisting of the
same 57 Atari games as Atari-57, but with the original un-
clipped reward scheme. We demonstrate state of the art per-
formance on all three benchmarks. In all cases, to meaning-
fully aggregate scores across many diverse tasks, we nor-
malise scores based on the scores achieved by a human
player and by a random agent on that same task, as common
in literature (van Hasselt, Guez, and Silver 2016). All exper-
iments use population-based training (PBT) to adapt hyper-
parameters as training progresses (Jaderberg et al. 2017).

Domains
Atari-57 is a collection of 57 classic Atari 2600 games. The
ALE (Bellemare et al. 2013), exposes them as RL envi-
ronments. Most prior work has focused on training agents
for individual games (Mnih et al. 2015; Hessel et al. 2018;
Gruslys et al. 2018; Schulman et al. 2015; 2017; Bacon,
Harb, and Precup 2017). Multi-task learning on this plat-
form has not been as successful due to large number of envi-
ronments, inconsistent dynamics and very different reward
structure. Prior work on multi-task RL in the ALE has there-
fore focused on smaller subsets of games (Rusu et al. 2015;
Sharma and Ravindran 2017). Atari has a particularly di-
verse reward structure. Consequently, it is a perfect domain
to fully assess how well can our agents deal with extreme
differences in the scale of returns. Thus, we train all agents
both with and without reward clipping, to compare perfor-
mance degradation as returns get more diverse in the un-
clipped version of the environment. In both cases, at the end
of training, we test agents both with random-starts (Mnih
et al. 2015) and human-starts (Nair et al. 2015); aggregate
results are reported in Table 1 accordingly.

DmLab-30 is a benchmark consisting of 30 different vi-
sually rich, partially observable RL environments (Beattie
et al. 2016). This benchmark has strong internal consis-
tency (all levels are played with a first person camera in a
3D environment with consistent dynamics). However, the
tasks themselves are quite diverse, and were designed to
test distinct skills in RL agents: among these navigation,
memory, planning, laser-tagging, and language grounding.
The levels can also differ visually in non-trivial ways, as
they include both natural environments and maze-like lev-
els. Two levels (rooms collect good objects and

rooms exploit deferred effects) have held out
test versions, therefore Table 1 reports both train and test ag-
gregate scores. We observed that the original IMPALA agent
suffers from an artificial bottleneck in performance, due to
the fact that some of the tasks cannot be solved with the ac-
tion set available to the agent. As first step, we thus fix this
issue by equipping it with a larger action set, resulting in a
stronger IMPALA baseline than reported in the original pa-
per. We also run multiple independent PBT experiments, to
assess the variability of results across multiple replications.

Atari-57 results
Figures 1 and 2 show the median human normalised perfor-
mance across the entire set of 57 Atari games in the ALE,
when training agent with and without reward clipping, re-
spectively. The curves are plotted as function of the total
number of frames seen by each agent.

PopArt-IMPALA (orange line) achieved a median perfor-
mance of 110% with reward clipping and a median perfor-
mance of 101% in the unclipped version of Atari-57. Re-
call that here we are measuring the median performance of
a single trained agent across all games, rather than the me-
dian over the performance of a set of individually trained
agents as it has been more common in the Atari domain. To
our knowledge, both agents are the first to surpass median
human performance across the entire set of 57 Atari games.

The IMPALA agent (blue line) performed much worse.
The baseline barely reached 60% with reward clipping, and
the median performance is close to 0% in the unclipped
setup. The large decrease in the performance of the base-
line IMPALA agent once clipping was removed is in stark
contrast with what we observed for PopArt-IMPALA, that
achieved almost the same performance in the two training
regimes.

Since the level-specific value predictions used by multi-
task PopArt effectively increase the capacity of the network,
we also ran an additional experiment to disentangle the con-
tribution of the increased network capacity from the contri-
bution of the adaptive normalisation. For this purpose, we
trained a second baseline, that used level specific value pre-
dictions, but did not use PopArt to adaptively normalise the
learning updates. Experiments showed that such MultiHead-
IMPALA agent (pink line) actually performed slightly worse
than the original IMPALA, both with and without clipping,
confirming that the performance boost of PopArt-IMPALA
is indeed due to the adaptive rescaling.

We highlight that in our experiments a single instance of
multi-task PopArt-IMPALA has processed the same amount

3799

0 2 4 6 8 10 12
Environment Frames 1e9

0

20

40

60

80

100

120
M

e
d
ia

n
 H

u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Atari-57 (clipped)

PopArt-IMPALA

MultiHead-IMPALA

IMPALA

Figure 1: Atari-57 (reward clipping): Median human nor-
malised score across all Atari levels, as function of the total
number of frames seen by the agents across all levels. We
compare PopArt-IMPALA to IMPALA and to an additional
baseline, MultiHead-IMPALA, that uses task-specific value
predictions but no adaptive normalisation. All three agent
are trained with the clipped reward scheme.

of frames as a collection of 57 expert DQN agents (57 ×
200M = 1.14×1010), while achieving better performance.
Despite the large CPU requirements, on a cloud service,
training multi-task PopArt-IMPALA can also be competi-
tive in terms of costs, since it exceeds the performance of a
vanilla-DQN in just 2.5 days, with a smaller GPU footprint.

Normalisation statistics
It is insightful to observe the different normalisation statis-
tics across games, and how they adapt during the course of
training. Figure 3 (top row) plots the shift µ for a selection
of Atari games, in the unclipped training regime. The scale
σ is visualised within the same figure by shading the area
in the range [µ − σ, µ + σ]. We observed that the statistics
differed by orders of magnitude across the different games:
in crazy climber the shift exceeded 2500, while in
bowling it never went above 15. The adaptivity of the pro-
posed normalisation emerged clearly in crazy climber
and qbert, where the statistics spanned multiple orders
of magnitude during training. The bottom row in Figure 3
shows the corresponding agent’s undiscounted episode re-
turn: it followed the same patterns as the statistics (with
differences in magnitude due to discounting). Note how the
statistics even tracked the instabilities in the agent’s perfor-
mance, as in qbert, ensuring that appropriate scaling was
preserved throughout the experiment.

DmLab-30 results
Figure 4 shows, as a function of the total number of frames
processed by each agent, the mean human normalised per-
formance across all 30 DeepMind Lab levels, where each
level’s score is capped at 100% . For all agents, we ran three
independent PBT experiments. In Figure 4 we plot the learn-
ing curves for each experiment and, for each agent, fill in the
area between the best and worse of these three experiment.

0 2 4 6 8 10 12
Environment Frames 1e9

−20

0

20

40

60

80

100

120

M
e
d
ia

n
 H

u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

Atari-57 (unclipped)

PopArt-IMPALA

MultiHead-IMPALA

IMPALA

Figure 2: Atari-57 (unclipped): Median human normalised
score across all Atari levels, as a function of the total num-
ber of frames seen by the agents across all levels. We here
compare the same set of agents as in Figure 1, but now all
agents are trained without using reward clipping. The ap-
proximately flat lines corresponding to the baselines mean
no learning at all on at least 50% of the games.

breakout crazy_climber qbert seaquest
U

nd
is

co
un

te
d

R
et

ur
n

[μ
-σ

, μ
+σ

]

Environment Frames Environment Frames Environment Frames Environment Frames

Figure 3: Normalisation statistics: Top: learned statistics,
without reward clipping, for four distinct Atari games. The
shaded region is [µ − σ, µ + σ]. Bottom: undiscounted re-
turns.

Compared to the original paper, our IMPALA baseline
used a richer action set, that included more possible hori-
zontal rotations (±10 and ±60 in the corresponding dimen-
sion of the native DeepMind Lab space), and vertical ro-
tations (±10). Fine-grained horizontal control is useful on
lasertag levels, while vertical rotations are necessary for
a few psychlab levels. Note that this new baseline (solid
blue in Figure 4) performed much better than the original
IMPALA agent, which we also trained and reported for com-
pleteness (dashed blue). Including PopArt normalisation (in
orange) on top of our baseline resulted in largely improved
scores. Note how agents achieved clearly separated perfor-
mance levels, with the new action set dominating the origi-
nal paper’s one, and with PopArt-IMPALA dominating IM-
PALA for all three replications of the experiment.

3800

0 2 4 6 8 10
Environment Frames 1e9

0

10

20

30

40

50

60

70

80
M

e
a
n
 C

a
p
p
e
d
 H

u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

DmLab-30

PopArt-IMPALA

IMPALA

IMPALA-original

Figure 4: DmLab-30: Mean capped human normalised score
of IMPALA (blue) and PopArt-IMPALA (orange), across
the DmLab-30 benchmark as function of the number of
frames (summed across all levels). Shaded region is bounded
by best and worse run among 3 PBT experiments. For ref-
erence, we also plot the performance of IMPALA with the
limited action set from the original paper (dashed).

Extensions
In this section, we explore the combination of the proposed
PopArt-IMPALA agent with pixel control (Jaderberg et al.
2016), to further improve data efficiency, and make train-
ing IMPALA-like agents on large multi-task benchmarks
cheaper and more practical. Pixel control is an unsuper-
vised auxiliary task introduced to help learning good state
representations. As shown in Figure 5, the combination of
PopArt-IMPALA with pixel control (red line) matched the
final performance of the vanilla PopArt-IMPALA (orange
line) within a fraction of the data (∼ 2B frames). This
was on top of the large improvement in data efficiency al-
ready provided by PopArt, meaning that the pixel control
augmented PopArt-IMPALA required less than 1/10-th of
the data to match our own IMPALA baseline’s performance
(and 1/30-th of the frames to match the original published
IMPALA). Importantly, since both PopArt and Pixel Control
only add a very small computational cost, this improvement
in data efficiency directly translated in a large reduction
of the cost of training IMPALA agents on large multi-task
benchmarks. Note, finally, that other orthogonal advances in
deep RL could also be combined to further improve perfor-
mance, similarly to what was done by Rainbow (Hessel et al.
2018), in the context of value-based reinforcement learning.

Implementation notes
We implemented all agents in TensorFlow. For each batch
of rollouts processed by the learner, we averaged the Gvt
targets within a rollout, and for each rollout in the batch
we performed one online update of PopArt’s normalisation
statistics with decay β = 3 × 10−4. Note that β didn’t re-
quire any tuning. To prevent numerical issues, we clipped
the scale σ in the range [0.0001, 1e6]. We did not back-
propagate gradients into µ and σ, exclusively updated as

0 2 4 6 8 10
Environment Frames 1e9

0

10

20

30

40

50

60

70

80

M
e
a
n
 C

a
p
p
e
d
 H

u
m

a
n
 N

o
rm

a
lis

e
d
 S

co
re

0.1

IMPALA-original@10B

IMPALA@10B

PopArt-IMPALA@10B

DmLab-30

PopArt-IMPALA

Pixel-PopArt-IMPALA

Figure 5: DmLab-30 (with pixel control): Mean capped hu-
man normalised score of PopArt-IMPALA with pixel con-
trol (red), across the DmLab-30 benchmark as function of
the total number of frames across all tasks. Shaded region is
bounded by best and worse run among 3 PBT experiments.
Dotted lines mark the point where Pixel-PopArt-IMPALA
matches PopArt-IMPALA and the two IMPALA baselines.

in Equation 6. The weights W of the last layer of the
value function were updated according to Equation 13 and
11. Note that we first applied the actor-critic updates (11),
then updated the statistics (6), finally applied output pre-
serving updates (13). For more just-in-time rescaling of
updates we can invert this order, but this wasn’t neces-
sary. In all experiments we used population-based training
(PBT) to adapt hyperparameters during the course of train-
ing (Jaderberg et al. 2017). As in the IMPALA paper, we
used PBT to tune learning rate, entropy cost, the
optimiser’s epsilon, and—in the Atari experiments—the
max gradient norm. In Atari-57 we used populations of
24 instances, in DmLab-30 just 8 instances. For other hyper-
parameters we used the values from (Espeholt et al. 2018).

Discussion
In this paper we propose a scale-invariant actor-critic al-
gorithm that enables significantly improved performance in
multi-task reinforcement learning settings. Being able to ac-
quire knowledge about a wide range of facts and skills has
been long considered an essential feature for an RL agent
to demonstrate flexible intelligent behaviour (Sutton et al.
2011; Degris and Modayil 2012; Legg and Hutter 2007;
Schmidhuber 2013). To ask our algorithms to be capable of
mastering multiple tasks is therefore a natural step as we
progress towards increasingly powerful agents.

The wide-spread adoption of deep learning in RL is quite
timely in this regard, since sharing parts of a neural net-
work across multiple tasks is also a powerful way of build-
ing robust representations. This is particularly important for
RL, because rewards on individual tasks can be sparse, and
therefore sharing representations across tasks can be vital
to bootstrap learning. Several agents (Jaderberg et al. 2016;
Lample and Chaplot 2016; Shelhamer et al. 2016; Mirowski

3801

et al. 2016) demonstrated this by improving performance on
a single external task by learning off-policy about auxiliary
tasks defined on the same stream of experience (e.g. pixel
control, immediate reward prediction or auto-encoding).

Multi-task learning, as considered in this paper, where we
get to execute, in parallel, the policies learned for each task,
has potential additional benefits, including deep exploration
(Osband et al. 2016), and policy composition (Mankowitz
et al. 2018; Todorov 2009; Fernández and Veloso 2006). By
learning on-policy about tasks, it may also be easier to scale
to much more diverse tasks: if we only learn about some task
off-policy from experience generated pursuing a very differ-
ent one, we might never observe any reward. A limitation of
our approach is that it can be complicated, and expensive,
to implement parallel learning outside of simulation. How-
ever, recent work on parallel training of real world robots
(Levine et al. 2016) suggests that this is not necessarily an
insurmountable obstacle if sufficient resources are available.

Adoption of parallel multi-task RL has up to now been
fairly limited. That the scaling issues considered in this pa-
per, may have been a factor in the limited adoption is in-
dicated by the wider use of this kind of learning in su-
pervised settings (Johnson et al. 2017; Lu et al. 2016;
Misra et al. 2016; Hashimoto et al. 2016), where loss func-
tions are naturally well scaled (e.g. cross entropy), or can
be easily scaled thanks to the stationarity of the training dis-
tribution. We therefore hope and believe that the work pre-
sented here can enable more research on multi-task RL.

We also believe that PopArt’s adaptive normalisation can
be combined with other research in multi-task RL, that pre-
viously did not scale as effectively to large numbers of di-
verse tasks. Among the ideas that may be fruitfully com-
bined we highlight policy distillation (Parisotto, Ba, and
Salakhutdinov 2015; Rusu et al. 2015; Schmitt et al. 2018;
Teh et al. 2017) and active sampling of the task distribu-
tion the agent trains on (Sharma and Ravindran 2017). The
combination of PopArt-IMPALA with forms of active sam-
pling might be particularly promising since it may allow
to make more efficient use of the parallel data generation,
focusing it on the task most amenable for learning. Elas-
tic weight consolidation (Kirkpatrick et al. 2017) and other
work from the continual learning literature (Ring 1994;
Mcclelland, Mcnaughton, and O’Reilly 1995) might also
be adapted to parallel learning setups to reduce interference
(Mccloskey and Cohen 1989; French 1999) among tasks.

References
Bacon, P.; Harb, J.; and Precup, D. 2017. The option-critic archi-
tecture. AAAI Conference on Artificial Intelligence.
Beattie, C.; Leibo, J. Z.; Teplyashin, D.; Ward, T.; Wainwright, M.;
Küttler, H.; Lefrancq, A.; Green, S.; Valdés, V.; Sadik, A.; Schrit-
twieser, J.; Anderson, K.; York, S.; Cant, M.; Cain, A.; Bolton,
A.; Gaffney, S.; King, H.; Hassabis, D.; Legg, S.; and Petersen, S.
2016. Deepmind lab. CoRR abs/1612.03801.
Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M. 2013.
The arcade learning environment: An evaluation platform for gen-
eral agents. JAIR.
Bellman, R. 1957. A markovian decision process. Journal of
Mathematics and Mechanics.

Brunskill, E., and Li, L. 2013. Sample complexity of multi-task
reinforcement learning. CoRR abs/1309.6821.

Caruana, R. 1998. Multitask learning. In Learning to learn. Kluwer
Academic Publishers.

Collobert, R., and Weston, J. 2008. A unified architecture for
natural language processing: Deep neural networks with multitask
learning. In ICML.

Degris, T., and Modayil, J. 2012. Scaling-up knowledge for a
cognizant robot. In AAAI Spring Symposium: Designing Intelligent
Robots.

Duan, Y.; Chen, X.; Houthooft, R.; Schulman, J.; and Abbeel, P.
2016. Benchmarking deep reinforcement learning for continuous
control. In ICML.

Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih, V.; Ward,
T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning, I.; Legg, S.; and
Kavukcuoglu, K. 2018. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In ICML.

Fernández, F., and Veloso, M. 2006. Probabilistic policy reuse in a
reinforcement learning agent. In AAMAS.

French, R. M. 1999. Catastrophic forgetting in connectionist net-
works. Trends in cognitive sciences.

Gruslys, A.; Azar, M. G.; Bellemare, M. G.; and Munos, R. 2018.
The reactor: A sample-efficient actor-critic architecture. ICLR.

Hashimoto, K.; Xiong, C.; Tsuruoka, Y.; and Socher, R. 2016.
A joint many-task model: Growing a neural network for multiple
NLP tasks. CoRR abs/1611.01587.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385.

Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostrovski, G.;
Dabney, W.; Horgan, D.; Piot, B.; Azar, M. G.; and Silver, D. 2018.
Rainbow: Combining improvements in deep reinforcement learn-
ing. AAAI Conference on Artificial Intelligence.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term mem-
ory. Neural computation.

Jaderberg, M.; Mnih, V.; Czarnecki, W. M.; Schaul, T.; Leibo, J. Z.;
Silver, D.; and Kavukcuoglu, K. 2016. Reinforcement learning
with unsupervised auxiliary tasks. CoRR abs/1611.05397.

Jaderberg, M.; Dalibard, V.; Osindero, S.; Czarnecki, W. M.; Don-
ahue, J.; Razavi, A.; Vinyals, O.; Green, T.; Dunning, I.; Simonyan,
K.; Fernando, C.; and Kavukcuoglu, K. 2017. Population based
training of neural networks. CoRR abs/1711.09846.

Johnson, M.; Schuster, M.; Le, Q. V.; Krikun, M.; Wu, Y.; Chen,
Z.; Thorat, N.; Viégas, F. B.; Wattenberg, M.; Corrado, G.; Hughes,
M.; and Dean, J. 2017. Google’s multilingual neural machine trans-
lation system: Enabling zero-shot translation. Transactions of the
Association for Computational Linguistics 5.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins,
G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; Hassabis, D.; Clopath, C.; Kumaran, D.; and Had-
sell, R. 2017. Overcoming catastrophic forgetting in neural net-
works. PNAS.

Lample, G., and Chaplot, D. S. 2016. Playing FPS games with
deep reinforcement learning. CoRR abs/1609.05521.

Legg, S., and Hutter, M. 2007. Universal intelligence: A definition
of machine intelligence. Minds Mach.

Levine, S.; Pastor, P.; Krizhevsky, A.; and Quillen, D. 2016. Learn-
ing hand-eye coordination for robotic grasping with large-scale
data collection. In ISER.

3802

Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.;
Silver, D.; and Wierstra, D. 2016. Continuous control with deep
reinforcement learning. In ICLR.

Lu, Y.; Kumar, A.; Zhai, S.; Cheng, Y.; Javidi, T.; and Feris,
R. S. 2016. Fully-adaptive feature sharing in multi-task net-
works with applications in person attribute classification. CoRR
abs/1611.05377.

Mahmood, A. 2017. Incremental off-policy reinforcement learning
algorithms. Ph.D. UAlberta.

Mankowitz, D. J.; Zı́dek, A.; Barreto, A.; Horgan, D.; Hessel, M.;
Quan, J.; Oh, J.; van Hasselt, H.; Silver, D.; and Schaul, T. 2018.
Unicorn: Continual learning with a universal, off-policy agent.
CoRR abs/1802.08294.

Mcclelland, J. L.; Mcnaughton, B. L.; and O’Reilly, R. C. 1995.
Why there are complementary learning systems in the hippocam-
pus and neocortex: Insights from the successes and failures of con-
nectionist models of learning and memory. Psychological Review.

Mccloskey, M., and Cohen, N. J. 1989. Catastrophic interference
in connectionist networks: The sequential learning problem. The
Psychology of Learning and Motivation.

Mirowski, P.; Pascanu, R.; Viola, F.; Soyer, H.; Ballard, A. J.; Ban-
ino, A.; Denil, M.; Goroshin, R.; Sifre, L.; Kavukcuoglu, K.; Ku-
maran, D.; and Hadsell, R. 2016. Learning to navigate in complex
environments. CoRR abs/1611.03673.

Misra, I.; Shrivastava, A.; Gupta, A.; and Hebert, M. 2016. Cross-
stitch networks for multi-task learning. CoRR abs/1604.03539.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.;
Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland, A. K.;
Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, I.;
King, H.; Kumaran, D.; Wierstra, D.; Legg, S.; and Hassabis, D.
2015. Human-level control through deep reinforcement learning.
Nature.

Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley,
T.; Silver, D.; and Kavukcuoglu, K. 2016. Asynchronous methods
for deep reinforcement learning. In ICML.

Nair, A.; Srinivasan, P.; Blackwell, S.; Alcicek, C.; Fearon, R.;
De Maria, A.; Panneershelvam, V.; Suleyman, M.; Beattie, C.; Pe-
tersen, S.; Legg, S.; Mnih, V.; Kavukcuoglu, K.; and Silver, D.
2015. Massively parallel methods for deep reinforcement learning.
arXiv preprint arXiv:1507.04296.

Osband, I.; Blundell, C.; Pritzel, A.; and Van Roy, B. 2016. Deep
exploration via bootstrapped DQN. In NIPS.

Parisotto, E.; Ba, L. J.; and Salakhutdinov, R. 2015. Actor-
mimic: Deep multitask and transfer reinforcement learning. CoRR
abs/1511.06342.

Precup, D.; Sutton, R. S.; and Singh, S. P. 2000. Eligibility traces
for off-policy policy evaluation. In ICML.

Ring, M. 1994. Continual learning in reinforcement environments.

Romera-Paredes, B.; Aung, H.; Bianchi-Berthouze, N.; and Pontil,
M. 2013. Multilinear multitask learning. In ICML.

Rusu, A. A.; Colmenarejo, S. G.; Gülçehre, Ç.; Desjardins, G.;
Kirkpatrick, J.; Pascanu, R.; Mnih, V.; Kavukcuoglu, K.; and Had-
sell, R. 2015. Policy distillation. CoRR abs/1511.06295.

Rusu, A. A.; Rabinowitz, N. C.; Desjardins, G.; Soyer, H.; Kirk-
patrick, J.; Kavukcuoglu, K.; Pascanu, R.; and Hadsell, R. 2016.
Progressive neural networks. CoRR abs/1606.04671.

Schmidhuber, J. 1990. An on-line algorithm for dynamic reinforce-
ment learning and planning in reactive environments. In IJCNN.

Schmidhuber, J. 2013. Powerplay: Training an increasingly gen-
eral problem solver by continually searching for the simplest still
unsolvable problem. In Frontiers in Psychology.
Schmitt, S.; Hudson, J. J.; Zı́dek, A.; Osindero, S.; Doersch, C.;
Czarnecki, W. M.; Leibo, J. Z.; Küttler, H.; Zisserman, A.; Si-
monyan, K.; and Eslami, S. M. A. 2018. Kickstarting deep re-
inforcement learning. CoRR abs/1803.03835.
Schulman, J.; Levine, S.; Moritz, P.; Jordan, M. I.; and Abbeel, P.
2015. Trust region policy optimization. CoRR abs/1502.05477.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and Klimov,
O. 2017. Proximal policy optimization algorithms. CoRR
abs/1707.06347.
Sharma, S., and Ravindran, B. 2017. Online multi-task learning
using active sampling. CoRR abs/1702.06053.
Shelhamer, E.; Mahmoudieh, P.; Argus, M.; and Darrell, T. 2016.
Loss is its own reward: Self-supervision for reinforcement learning.
CoRR abs/1612.07307.
Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.; van den
Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham, J.; Kalchbrenner,
N.; Sutskever, I.; Lillicrap, T.; Leach, M.; Kavukcuoglu, K.; Grae-
pel, T.; and Hassabis, D. 2016. Mastering the game of Go with
deep neural networks and tree search. Nature.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.;
Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; Lilli-
crap, T. P.; Simonyan, K.; and Hassabis, D. 2017. Mastering chess
and shogi by self-play with a general reinforcement learning algo-
rithm. CoRR abs/1712.01815.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learning: An
Introduction. MIT press.
Sutton, R. S.; Modayil, J.; Delp, M.; Degris, T.; Pilarski, P. M.;
White, A.; and Precup, D. 2011. Horde: A scalable real-time ar-
chitecture for learning knowledge from unsupervised sensorimotor
interaction. In AAMAS.
Sutton, R. S.; Mahmood, A. R.; Precup, D.; and van Hasselt, H.
2014. A new q(λ) with interim forward view and Monte Carlo
equivalence. In ICML.
Teh, Y. W.; Bapst, V.; Czarnecki, W. M.; Quan, J.; Kirkpatrick, J.;
Hadsell, R.; Heess, N.; and Pascanu, R. 2017. Distral: Robust
multitask reinforcement learning. CoRR abs/1707.04175.
Thrun, S. 1996. Is learning the n-th thing any easier than learning
the first? In NIPS.
Thrun, S. 2012. Explanation-based neural network learning: A
lifelong learning approach. Springer.
Todorov, E. 2009. Compositionality of optimal control laws. In
NIPS. Curran Associates, Inc.
van Hasselt, H.; Guez, A.; Hessel, M.; Mnih, V.; and Silver, D.
2016. Learning values across many orders of magnitude. In NIPS.
van Hasselt, H.; Guez, A.; and Silver, D. 2016. Deep reinforcement
learning with double Q-learning. In AAAI Conference on Artificial
Intelligence.
Watkins, C. J. C. H. 1989. Learning from Delayed Rewards. Ph.D.
Dissertation, King’s College, Cambridge, England.
Williams, R. 1992. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Mach. Learning.

3803

