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Abstract

This work considers the trade-off between accuracy and test-
time computational cost of deep neural networks (DNNs)
via anytime predictions from auxiliary predictions. Specif-
ically, we optimize auxiliary losses jointly in an adaptive
weighted sum, where the weights are inversely proportional
to average of each loss. Intuitively, this balances the losses
to have the same scale. We demonstrate theoretical consider-
ations that motivate this approach from multiple viewpoints,
including connecting it to optimizing the geometric mean of
the expectation of each loss, an objective that ignores the
scale of losses. Experimentally, the adaptive weights induce
more competitive anytime predictions on multiple recogni-
tion data-sets and models than non-adaptive approaches in-
cluding weighing all losses equally. In particular, anytime
neural networks (ANNs) can achieve the same accuracy faster
using adaptive weights on a small network than using static
constant weights on a large one. For problems with high per-
formance saturation, we also show a sequence of exponen-
tially deepening ANNs can achieve near-optimal anytime re-
sults at any budget, at the cost of a const fraction of extra
computation.

1 Introduction
Recent years have seen advancement in visual recogni-
tion tasks by increasingly accurate convolutional neural
networks, from AlexNet (Krizhevsky, Sutskever, and Hin-
ton 2012) and VGG (Simonyan and Zisserman 2015), to
ResNet (He et al. 2016), ResNeXt (Xie et al. 2017), and
DenseNet (Huang et al. 2017). As models become more
accurate and computationally expensive, it becomes more
difficult for applications to choose between slow predictors
with high accuracy and fast predictors with low accuracy.
Some applications also desire multiple trade-offs between
computation and accuracy, because they have computational
budgets that may vary at test time. E.g., web servers for fa-
cial recognition or spam filtering may have higher load dur-
ing the afternoon than at midnight. Autonomous vehicles
need faster object detection when moving rapidly than when
it is stationary. Furthermore, real-time and latency sensitive
applications may desire fast predictions on easy samples and
slow but accurate predictions on difficult ones.
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Figure 1: The common ANN training strategy increases final
errors from the optimal (green vs. blue), which decreases
exponentially slowly. By learning to focus more on the final
auxiliary losses, the proposed adaptive loss weights make a
small ANN (orange) to outperform a large one (green) that
has non-adaptive weights.

An anytime predictor (Horvitz 1987; Boddy and Dean
1989; Zilberstein 1996; Grubb and Bagnell 2012; Huang et
al. 2018) can automatically trade off between computation
and accuracy. For each test sample, an anytime predictor
produces a fast and crude initial prediction and continues
to refine it as budget allows, so that at any test-time bud-
get, the anytime predictor has a valid result for the sample,
and the more budget is spent, the better the prediction. Any-
time predictors are different from cascaded predictors (Vi-
ola and Jones 2001; Xu et al. 2014; Cai, Saberian, and Vas-
concelos 2015; Bolukbasi et al. 2017; Guan et al. 2017) for
budgeted prediction, which aim to minimize average test-
time computational cost without sacrificing average accu-
racy: a different task (with relation to anytime prediction).
Cascades achieve this by early exiting on easy samples to
save computation for difficult ones, but cascades cannot in-
crementally improve individual samples after an exit. Fur-
thermore, early exit policy of cascades can be combined
with existing anytime predictors (Bolukbasi et al. 2017;
Guan et al. 2017). Hence, we consider cascades to be or-
thogonal to anytime predictions.
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Figure 2: Anytime neural networks contain auxiliary predic-
tions and losses, ŷi and `i, for intermediate feature unit fi.

This work studies how to convert well-known DNN ar-
chitectures to produce competitive anytime predictions. We
form anytime neural networks (ANNs) by appending aux-
iliary predictions and losses to DNNs, as we will detail in
Sec. 3 and Fig. 2. Inference-time prediction then can be
stopped at the latest prediction layer that is within the bud-
get. Note that this work deals with the case where it is not
known apriori where the interrupt during inference time
will occur. We define the optimal at each auxiliary loss as
the result from training the ANN only for that loss to con-
vergence. Then our objective is to have near-optimal final
predictions and competitive early ones. Near-optimal final
accuracy is imperative for anytime predictors, because, as
demonstrated in Fig. 1, accuracy gains are often exponen-
tially more expensive as model sizes grow, so that reduc-
ing 1% error rate could take 50% extra computation. Un-
fortunately, existing anytime predictors often optimize the
anytime losses in static weighted sums (Lee et al. 2015;
Zamir et al. 2017; Huang et al. 2018) that poorly optimize
final predictions, as we will show in Sec. 3 and Sec. 5.

Instead, we optimize the losses in an adaptive weighted
sum, where the weight of a loss is inversely proportional to
the empirical mean of the loss on the training set. Intuitively,
this normalizes losses to have the same scale, so that the op-
timization leads each loss to be about the same relative to
its optimal. We provide multiple theoretical considerations
to motivate such weights. First of all, when the losses are
mean square errors, our approach is maximizing the like-
lihood of a model where the prediction targets have Gaus-
sian noises. Secondly, inspired by the maximum likelihood
estimation, we optimize the model parameters and the loss
weights jointly, with log-barriers on the weights to avoid the
trivial solution of zero weights. Finally, we find the joint op-
timization equivalent to optimizing the geometric mean of
the expected training losses, an objective that treats the rela-
tive improvement of each loss equally. Empirically, we show
on multiple models and visual recognition data-sets that the
proposed adaptive weights outperform natural, non-adaptive
weighting schemes as follows. We compare small ANNs us-
ing our adaptive weights against ANNs that are 50 ∼ 100%

larger but use non-adaptive weights. The small ANNs can
reach the same final accuracy as the larger ones, and reach
each accuracy level faster.

Early and late accuracy in an ANN are often anti-
correlated (e.g., Fig. 7 in (Huang et al. 2018) shows ANNs
with better final predictions have worse early ones). To
mitigate this fundamental issue we propose to assemble
ANNs of exponentially increasing depths. If ANNs are near-
optimal in a late fraction of their layers, the exponential en-
semble only pays a constant fraction of additional compu-
tation to be near-optimal at every test-time budget. In addi-
tion, exponential ensembles outperform linear ensembles of
networks, which are commonly used baselines for existing
works (Zamir et al. 2017; Huang et al. 2018). In summary
our contributions are:

• We derive an adaptive weight scheme for training losses in
ANNs from multiple theoretical considerations, and show
that experimentally this scheme achieves near-optimal fi-
nal accuracy and competitive anytime ones on multiple
data-sets and models.

• We assemble ANNs of exponentially increasing depths to
achieve near-optimal anytime predictions at every budget
at the cost of a constant fraction of additional consumed
budget.

2 Related Works
Meta-algorithms for anytime and budgeted prediction.
Anytime and budgeted prediction has a rich history in learn-
ing literature. (Weinberger et al. 2009; Xu, Weinberger,
and Chapelle 2012; Xu et al. 2013) sequentially gener-
ate features to empower the final predictor. (Reyzin 2011;
Grubb and Bagnell 2012; Hu et al. 2016) apply boosting
and greedy methods to order feature and predictor com-
putation. (Karayev et al. 2012; Odena, Lawson, and Olah
2017) form Markov Decision Processes for computation of
weak predictors and features, and learn policies to order
them. However, these meta-algorithms are not easily com-
patible with complex and accurate predictors like DNNs,
because the anytime predictions without DNNs are inaccu-
rate, and there are no intermediate results during the com-
putation of the DNNs. Cascade designs for budgeted pre-
diction (Viola and Jones 2001; Lefakis and Fleuret 2010;
Chen et al. 2012; Xu et al. 2014; Cai, Saberian, and Vascon-
celos 2015; Nan and Saligrama 2017; Bolukbasi et al. 2017;
Guan et al. 2017) reduce the average test-time computation
by early exiting on easy samples and saving computation for
difficult ones. As cascades build upon existing anytime pre-
dictors, or combine multiple predictors, they are orthogonal
to learning ANNs end-to-end.

Neural networks with early auxiliary predictions. Mul-
tiple works have addressed training DNNs with early aux-
iliary predictions for various purposes. (Lee et al. 2015;
Szegedy et al. 2017; Zhao et al. 2017; Larsson, Maire,
and Shakhnarovich 2017) use them to regularize the net-
works for faster and better convergence. (Bengio et al. 2009;
Zamir et al. 2017) set the auxiliary predictions from easy
to hard for curriculum learning. (Xie and Tu 2015; Chen
and Koltun 2017) make pixel level predictions in images,

3813



and find learning early predictions in coarse scales also im-
prove the fine resolution predictions. (Huang et al. 2018)
shows the crucial importance of maintaining multi-scale fea-
tures for high quality early classifications. The above works
use manually-tuned static weights to combine the auxiliary
losses, or change the weights only once (Chen and Koltun
2017). This work proposes adaptive weights to balance the
losses to the same scales online, and provides multiple the-
oretical motivations. We empirically show adaptive losses
induce better ANNs on multiple models, including the state-
of-the-art anytime predictor for image recognition, MSD-
Net (Huang et al. 2018).

Model compression. Many works have studied how to
compress neural networks. (Li et al. 2017; Liu et al. 2017)
prune network weights and connections. (Hubara et al. 2016;
Rastegari et al. 2016; Iandola et al. 2016) quantize weights
within networks to reduce computation and memory foot-
print. (Wang et al. 2017; Veit and Belongie 2017) dynami-
cally skip network computation based on samples. (Ba and
Caruana 2014; Hinton, Vinyals, and Dean 2014) transfer
knowledge of deep networks into shallow ones by chang-
ing the training target of shallow networks. These works are
orthogonal to ours, because they train a separate model for
each trade-off between computation and accuracy, but we
train a single model to handle all possible trade-offs.

3 Optimizing Anytime Predictors
As illustrated in Fig. 2, a feed-forward network consists of
a sequence of transformations f1, ..., fL of feature maps.
Starting with the input feature map x0, each subsequent fea-
ture map is generated by xi = fi(xi−1). Typical DNNs
use the final feature map xL to produce predictions, and
hence require the completion of the whole network for re-
sults. Anytime neural networks (ANNs) instead introduce
auxiliary predictions and losses using the intermediate fea-
ture maps x1, ..., xL−1, and thus, have early predictions that
are improving with computation.

Weighted sum objective. Let the intermediate predic-
tions be ŷi = gi(xi) for some function gi, and let the corre-
sponding expected loss be `i = E(x0,y)∼D[`(y, ŷi)], where
D is the distribution of the data, and ` is some loss such as
cross-entropy. Let θ be the parameter of the ANN, and de-
fine the optimal loss at prediction ŷi to be `i∗ = minθ `i(θ).
Then the goal of anytime prediction is to seek a universal
θ∗ ∈ ∩Li=1{θ′ : θ′ = arg minθ `i(θ)}. Such an ideal θ∗ does
not exist in general as this is a multi-objective optimization,
which only has Pareto front, a set containing all solutions
such that improving one `i necessitates degrading others.
Finding all solutions in the Pareto front for ANNs is not
practical or useful, since this requires training multiple mod-
els, but each ANN only runs one. Hence, following previous
works on anytime models (Lee et al. 2015; Zamir et al. 2017;
Huang et al. 2018), we optimize the losses in a weighted
sum minθ

∑L
i=1Bi`i(θ), where Bi is the weight of the loss

`i. We call the choices of Bi weight schemes.
Static weight schemes. Previous works often use static

weight schemes as part of their formulation. (Lee et al. 2015;
Xie and Tu 2015; Huang et al. 2018) use CONST scheme

Figure 3: Relative Percentage Increase in Training Loss vs.
depths (lower is better). CONST scheme is increasingly
worse than the optimal at deep layers. AdaLoss performs
about equally well on all layers in comparison to the OPT.

Figure 4: Ensemble of exponentially deepening anytime
neural network (EANN) computes its ANNs in order of their
depths. An anytime result is used if it is better than all pre-
vious ones on a validation set (layers in light blue).

that sets Bi = 1 for all i. (Zamir et al. 2017) use LIN-
EAR scheme that sets B1 to BL to linearly increase from
0.25 to 1. However, as we will show in Sec. 5.2, these static
schemes not only cannot adjust weights in a data and model-
dependent manner, but also may significantly degrade pre-
dictions at later layers.

Qualitative weight scheme comparison. Before we for-
mally introduce our proposed adaptive weights, we first
shed light on how existing static weights suffer. We ex-
periment with a ResNet of 15 basic residual blocks on CI-
FAR100 (Krizhevsky, Nair, and Hinton 2009) data-set (See
Sec. 5 for data-set details). An anytime predictor is attached
to each residual block, and we estimate the optimal per-
formance (OPT) in training cross entropy of predictor i by
training a network that has weight only on `i to convergence.
Then for each weight scheme we train an ANN to measure
the relative increase in training loss at each depth i from
the OPT. In Fig. 3, we observe that the intuitive CONST
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scheme has high relative losses in late layers. This indicates
that there is not enough weights in the late layers, though
losses have the same Bi. We also note that balancing the
weights is non-trivial. For instance, if we put half of the total
weights in the final layer and distribute the other half evenly,
we get the “Half-End” scheme. As expected, the final loss
is improved, but this is at the cost of significant increases of
early training losses. In contrast, the adaptive weight scheme
that we propose next (AdaLoss), achieves roughly even rel-
ative increases in training losses automatically, and is much
better than the CONST scheme in the late layers.

Adaptive Loss Balancing (AdaLoss). Given all losses
are of the same form (cross-entropy), it may be surprising
that better performance is achieved with differing weights.
Because early features typically have less predictive power
than later ones, early losses are naturally on a larger scale
and possess larger gradients. Hence, if we weigh losses
equally, early losses and gradients often dominate later ones,
and the optimization becomes focused on the early losses. To
automatically balance the weights among the losses of dif-
ferent scales, we propose an adaptive loss balancing scheme
(AdaLoss). Specifically, we keep an exponential average of
each loss ˆ̀

i during training, and set Bi ∝ 1
ˆ̀
i
. This is in-

spired by (Chen and Koltun 2017), which scales the losses
to the same scale only once during training, and provides a
brief intuitive argument: the adaptive weights set the losses
to be on the same scale. We next present multiple theoretical
justifications for AdaLoss.

Before considering general cases, we first consider a
simple example, where the loss function `(y, ŷ) = ‖y −
ŷ‖22 is the square loss. For this example, we model each
y|x to be sampled from the multiplication of L indepen-
dent Gaussian distributions, N (ŷi, σ

2
i I) for i = 1, ..., L,

where ŷi(x; θ) is the ith prediction, and σ2
i ∈ R+, i.e.,

Pr(y|x; θ, σ2
1 , ..., σ

2
L) ∝

∏L
i=1

1√
σ2
i

exp(−‖y−ŷi‖
2
2

2σ2
i

). Then

we compute the empirical expected log-likelihood for a
maximum likelihood estimator (MLE):

Ê
[

ln(Pr(y|x))
]
∝ Ê

[ L∑
i=1

(−‖y − ŷi‖
2
2

σ2
i

− lnσ2
i )
]

(1)

=

L∑
i=1

(−
˜̀
i

σ2
i

− lnσ2
i ), (2)

where Ê is averaging over samples, and ˜̀
i is the empiri-

cal estimate of `i. If we fix θ and optimize over σ2
i , we get

σ2
i = ˜̀

i. As computing the empirical means is expensive
over large data-sets, AdaLoss replaces ˜̀

i with ˆ̀
i, the expo-

nential moving average of the losses, and sets Bi ∝ ˆ̀−1
i ≈

σ−2i so as to solve the MLE online by jointly updating θ and
Bi. We note that the naturally appeared lnσ2

i terms in Eq. 2
are log-barriers preventing Bi = 0.

Inspired by this observation, we form the following joint
optimization over θ and Bi for general losses without prob-

ability models:

min
θ,B1,...,BL

L∑
i=1

(Bi`i(θ)− λ lnBi), (3)

where λ > 0 is a hyper parameter to balance between the
log-barriers and weighted losses. Under the optimal condi-
tion, Bi = λ

`i
. AdaLoss estimates this with Bi ∝ ˆ̀

i(θ)
−1.

We can also eliminate Bi from Eq. 3 under the optimal con-
dition, and we transform Eq. 3 to the following problem:

min
θ

L∑
i=1

ln `i(θ). (4)

This is equivalent to minimizing the geometric mean of the
expected training losses, and it differs from minimizing the
expected geometric mean of losses, as ln and expectation
are not commutable. Eq. 4 discards any constant scaling of
losses automatically discarded as constant offsets, so that the
scale difference between the early and late losses are auto-
matically reconciled. Geometric mean is also known as the
canonical mean for multiple positive quantities of various
scales. AdaLoss optimizes Eq. 4, since the objective gradi-
ent is

∑L
i=1

∇`i(θ)
`i(θ)

. AdaLoss wants to weigh each `i(θ) by
exactly 1

`i(θ)
, and estimates the weight by 1

ˆ̀
i(θ)

. This con-
cludes our theoretical considerations for AdaLoss.

4 Sequence of Exponentially Deepening
Anytime Neural Networks (EANN)

In practice, we often observe ANNs using AdaLoss to be
much more competitive in their later half than the early half
on validation sets, such as in Table. 1 of Sec. 5.2. Fortu-
nately, we can leverage this effect to form competitive any-
time predictors at every budget, with a constant fraction
of additional computation. Specifically, we assemble ANNs
whose depths grow exponentially. Each ANN only starts
computing if the smaller ones are finished, and its predic-
tions are used if they are better than the best existing ones in
validation. We call this ensemble an EANN, as illustrated in
Fig. 4. An EANN only delays the computation of any large
ANN by at most a constant fraction of computation, be-
cause the earlier networks are exponentially smaller. Hence,
if each ANN is near-optimal in later predictions, then we can
achieve near-optimal accuracy at any test-time interruption,
with the extra computation. Formally, the following propo-
sition characterizes the exponential base and the increased
computational cost.
Proposition 4.1. Let b > 1. Assume for any L, any ANN of
depth L has competitive anytime prediction at depth i > L

b
against the optimal of depth i. Then after B layers of com-
putation, EANN produces anytime predictions that are com-
petitive against the optimal of depth B

C for some C > 1,
such that supB C = 2 + 1

b−1 , and C has expectation

EB∼uniform(1,L)[C] ≤ 1− 1
2b + 1+ln(b)

b−1 .

This proposition says that an EANN is competitive at any
budgetB against the optimal of the cost BC . Furthermore, the
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stronger each anytime model is, i.e., the larger b becomes,
the smaller the computation inflation, C, is: as b approaches
∞, supB C, shrinks to 2, and E[C], shrinks to 1. Moreover,
if we have M number of parallel workers instead of one, we
can speed up EANNs by computing ANNs in parallel in a
first-in-first-out schedule, so that we effectively increase the
constant b to bM for computing C. It is also worth noting
that if we form the sequence using regular networks instead
of ANNs, then we will lose the ability to output frequently,
since at budget B, we only produce Θ(log(B)) intermediate
predictions instead of the Θ(B) predictions in an EANN.
We will further have a larger cost inflation, C, such that
supB C ≥ 4 and E[C] ≥ 1.5 +

√
2 ≈ 2.91, so that the

average cost inflation is at least about 2.91. We defer the
proofs to the appendix.

5 Experiments
We list the key questions that our experiments aim to answer.

• How do anytime predictions trained with adaptive weights
compare against those trained with static constant weights
(over different architectures)? (Sec. 5.2)

• How do underlying DNN architectures affect ANNs?
(Sec. 5.2)

• How can sub-par early predictions in ANNs be mitigated
by ANN ensembles? (Sec. 5.3)

• How does data-set difficulty affect the adaptive weights
scheme? (Sec. 5.4)

5.1 Data-sets and Training Details
Data-sets. We experiment on CIFAR10, CI-
FAR100 (Krizhevsky, Nair, and Hinton 2009), SVHN (Net-
zer et al. 2011)1 and ILSVRC (Russakovsky et al. 2015)2.

Training details. We optimize the models using stochas-
tic gradient descent, with initial learning rate of 0.1, mo-
mentum of 0.9 and a weight decay of 1e-4. On CIFAR and
SVHN, we divide the learning rate by 10 at 1/2 and 3/4 of
the total epochs. We train for 300 epochs on CIFAR and 60
epochs on SVHN. On ILSVRC, we train for 90 epochs, and
divide the learning rate by 10 at epoch 30 and 60. We evalu-
ate test error using single-crop.

Base models. We compare our proposed AdaLoss
weights against the intuitive CONST weights. On CIFAR

1Both CIFAR data-sets consist of 32x32 colored images. CI-
FAR10 and CIFAR100 have 10 and 100 classes, and each have
50000 training and 10000 testing images. We held out the last 5000
training samples in CIFAR10 and CIFAR100 for validation; the
same parameters are then used in other models. We adopt the stan-
dard augmentation from (Lee et al. 2015; He et al. 2016). SVHN
contains around 600000 training and around 26032 testing 32x32
images of numeric digits from the Google Street Views. We adopt
the same pad-and-crop augmentations of CIFAR for SVHN, and
also add Gaussian blur.

2ILSVRC2012 (Russakovsky et al. 2015) is a visual recognition
data-set containing around 1.2 million natural and 50000 validation
images for 1000 classes. We report the top-1 error rates on the val-
idation set using a single-crop of size 224x224, after scaling the
smaller side of the image to 256, following (He et al. 2016).

1/4 1/2 3/4 1
OPT 0.00 0.00 0.00 0.00

CONST 15.07 16.40 18.76 18.90
LINEAR 25.67 13.02 12.97 12.65

ADALOSS 32.99 9.97 3.96 2.73

Table 1: Average relative percentage increase in error from
the OPT on CIFAR and SVHN at 1/4, 1/2, 3/4 and 1 of the
total cost. E.g., the bottom right entry means that if OPT has
a 10% final error rate, then AdaLoss has about 10.27%.

1/4 1/2 3/4 1
ResANN50+C 54.34 35.61 27.23 25.14
ResANN50+A 54.98 34.92 26.59 24.42

DenseANN169+C 48.15 45.00 29.09 25.60
DenseANN169+A 47.17 44.64 28.22 24.07

MSDNet38 33.9 28.0 25.7 24.3
MSDNet38+A 35.75 28.04 25.82 23.99

Table 2: Test error rates at different fraction of the to-
tal costs on ResANN50, DenseANN169, and MSDNet38
on ILSVRC. The post-fix +C and +A stand for CONST
and AdaLoss respectively. Published results of MSD-
Net38 (Huang et al. 2018) uses CONST.

and SVHN, we also compare AdaLoss against LINEAR
and OPT, defined in Sec. 3. We evaluate the weights on
multiple models including ResNet (He et al. 2016) and
DenseNet (Huang et al. 2017), and MSDNet (Huang et al.
2018). For ResNet and DenseNet, we augment them with
auxiliary predictors and losses, and call the resulting mod-
els ResANN and DenseANN, and defer the details of these
models to the appendix Sec. B.

5.2 Weight Scheme Comparisons
AdaLoss vs. CONST on the same models. Table 1 presents
the average relative test error rate increase from OPT on 12
ResANNs on CIFAR10, CIFAR100 and SVHN3. As train-
ing an OPT for each depth is too expensive, we instead re-
port the average relative comparison at 1/4, 1/2, 3/4, and
1 of the total ANN costs. We observe that the CONST
scheme makes 15 ∼ 18% more errors than the OPT, and
the relative gap widens at later layers. The LINEAR scheme
also has about 13% relative gap in later layers. In con-
trast, AdaLoss enjoys small performance gaps in the later
half of layers. On ILSVRC, we compare AdaLoss against
CONST on ResANN50, DenseANN169, and MSDNet38,
which have similar final errors and total computational costs
(See Fig. 5f). In Table 2, we observe the trade-offs between
early and late accuracy on ResANN50 and MSDNet38. Fur-
thermore, DenseANN169 performs uniformly better with
AdaLoss than with CONST. Since comparing the weight
schemes requires evaluating ANNs at multiple budget limits,

3The 12 models are named by (n, c) drawn from
{7, 9, 13, 17, 25} × {16, 32} and {(9, 64), (9, 128)}, where
n represents the number of residual units in each of the three
blocks of the network, and c is the filter size of the first convolution.
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(a) ResANNs on CIFAR10 (b) ResANNs on CIFAR100 (c) ResANNs on SVHN

(d) ResANNs on ILSVRC (e) MSDNet on ILSVRC (f) ANNs comparison on ILSVRC

Figure 5: (a-e) Comparing small networks with AdaLoss versus big ones using CONST. With AdaLoss, the small networks
achieve the same accuracy levels faster than large networks with CONST. (f) ANNs performance are mostly decided by under-
lying models, but AdaLoss is beneficial regardless models.

and AdaLoss and CONST outperform each other at a sig-
nificant fraction of depths on most of our experiments, we
consider the two schemes incomparable on the same model.

Small networks with AdaLoss vs. large ones with
CONST. Our previous comparison between AdaLoss and
CONST on the same models is not fully conclusive, since
each scheme can outperform the other at a significant por-
tion of the total cost. To address this, we set the final er-
ror rate, model architecture type, and the filter size c as
constants, and vary the model depths so that AdaLoss and
CONST reach the target final error rate. Then we compare
the early predictions and the costs of models. On each of CI-
FAR10, 100 and SVHN, we compare six pairs of ResANNs,
where the CONST uses twice the computation as AdaLoss4.
Fig. 5a, 5b, and 5c show the averaged relative comparisons5,
and they show that the small ANNs with AdaLoss are bet-
ter anytime predictors than the large ones with CONST,
because both models have the same final accuracy (on CI-
FAR10, the small ones are even better), and the small models
reach the same error rates faster than the large ones. We have
similar observations on ILSVRC using ResANNs and MSD-
Nets in Fig. 5d and Fig. 5e. For instance, MSDNet (Huang et

4AdaLoss takes (n, c) from {7, 9, 13}×{16, 32}, and CONST
takes (n, c) from {13, 17, 25} × {16, 32}.

5The relative plots pivot at the final predictor from AdaLoss,
e.g., the location (0.5, 200) means having half the computation and
200% extra relative errors than the final predictor from AdaLoss

al. 2018) is the state-of-the-art anytime predictor. The pub-
lished MSDNet38 uses CONST, and has 24.3% error rate
using 6.6e9 total FLOPS in convolutions. By switching to
AdaLoss, we improve a much smaller MSDNet33 (details
in the appendix), which costs 4.5e9 FLOPS, to reach 24.5%
final error. The two models also have similar early errors.

AdaLoss can reach the same accuracies with similar or
smaller costs than CONST, because in practice, a linear de-
crease in final error rate may often require an exponential
increase in total computation, and CONST degrades the fi-
nal performances significantly (Table 1). Since AdaLoss re-
quires much smaller models than CONST to reach the same
final errors, and with a fixed final error rate, AdaLoss reaches
each early error rate with less or similar cost, we conclude
that AdaLoss is the better scheme for anytime predictions.

Various base networks on ILSVRC. We compare Re-
sANNs, DenseANNs and MSDNets that have final error rate
of near 24% in Fig. 5f, and observe that the anytime perfor-
mance is mostly decided by the specific underlying model.
MSDNets are more cost-effective than DenseANNs, which
in turn are better than ResANNs. However, AdaLoss is help-
ful regardless of underlying model. Both ResANN50 and
DenseANN169 see improvements switching from CONST
to AdaLoss, which is also shown in Table 2. Thanks to
AdaLoss, DenseANN169 achieves the same final error us-
ing similar FLOPS as the original published results of MS-
DNet38 (Huang et al. 2018). This suggests that (Huang et al.
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(a) EANNs on CIFAR100 (b) EANN on ILSVRC (c) AdaLoss Weights on three data-sets

Figure 6: (a) EANN performs better if the ANNs use AdaLoss instead of CONST. (b) EANN outperforms linear ensembles of
DNNs on ILSVRC. (c) The learned adaptive weights of the same model on three data-sets.

2018) improve over DenseANNs by having better early pre-
dictions without sacrificing the final cost efficiency via im-
pressive architecture insight. AdaLoss brings a complemen-
tary improvement to MSDNets, as it enables smaller MSD-
Nets to reach the final error rates of bigger MSDNets, while
having similar or better early predictions.

5.3 EANN: Closing Early Performance Gaps by
Delaying Final Predictions.

EANNs on CIFAR100. In Fig. 6a, we assemble ResANNs
to form EANNs6 on CIFAR100 and make three observa-
tions. First, EANNs are better than the ANN in early com-
putation, because the ensembles dedicate early predictions
to small networks. Even though CONST has the best early
predictions as in Table 1, it is still better to deploy small
networks. Second, because the final prediction of each net-
work is kept for a long period, AdaLoss leads to significantly
better EANNs than CONST does, thanks to the superior fi-
nal predictions from AdaLoss. Finally, though EANNs de-
lay computation of large networks, it actually appears closer
to the OPT, because of accuracy saturation. Hence, EANNs
should be considered when performance saturation is severe.

EANN on ILSVRC. (Huang et al. 2018) and (Zamir et
al. 2017) use ensembles of networks of linearly growing
sizes as baseline anytime predictors. However, in Fig. 6b,
an EANN using ResANNs of depths 26, 50 and 101 out-
performs the linear ensembles of ResNets and DenseNets
significantly on ILSVRC. In particular, this drastically re-
duces the gap between ensembles and the state-of-the-art
anytime predictor MSDNet (Huang et al. 2018). Compar-
ing ResANN 50 and the EANN, we note that the EANN
achieves better early accuracy but delays final predictions.
As the accuracy is not saturated by ResANN 26, the de-
lay appears significant. Hence, EANNs may not be the best
when the performance is not saturated or when the constant
fraction of extra cost is critical.

6The ResANNs have c = 32 and n = 7, 13, 25, so that they
form an EANN with an exponential base b ≈ 2. By proposition 4.1,
the average cost inflation is E[C] ≈ 2.44 for b = 2, so that the
EANN should compete against the OPT of n = 20, using 2.44
times of original costs.

5.4 Data-set Difficulty versus Adaptive Weights
In Fig. 6c, we plot the final AdaLoss weights of the same Re-
sANN model (25,32) on CIFAR10, CIFAR100, and SVHN
to study the effects of the data-sets on the weights. We ob-
serve that from the easiest data-set, SVHN, to the hardest,
CIFAR100, the weights are more concentrated on the final
layers. This suggests that AdaLoss can automatically decide
that harder data-sets need more concentrated final weights to
have near-optimal final performance, whereas on easy data-
sets, more efforts are directed to early predictions. Hence,
AdaLoss weights may provide information for practitioners
to design and choose models based on data-sets.

6 Conclusion and Discussion
This work devises simple adaptive weights, AdaLoss, for
training anytime predictions in DNNs. We provide multiple
theoretical motivations for such weights, and show experi-
mentally that adaptive weights enable small ANNs to out-
perform large ANNs with the commonly used non-adaptive
constant weights. Future works on adaptive weights includes
examining AdaLoss for multi-task problems and investigat-
ing its “first-order” variants that normalize the losses by in-
dividual gradient norms to address unknown offsets of losses
as well as the unknown scales. We also note that this work
can be combined with orthogonal works in early-exit bud-
geted predictions (Guan et al. 2017; Bolukbasi et al. 2017)
for saving average test computation.
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A Sketch of Proof of Proposition 4.1
Proof. For each budget consumed x, we compute the cost x′
of the optimal that EANN is competitive against. The goal
is then to analyze the ratio C = x

x′ . The first ANN in EANN
has depth 1. The optimal and the result of EANN are the
same. Now assume EANN is on depth z of ANN number
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n+ 1 for n ≥ 0, which has depth bn.
(Case 1) For z ≤ bn−1, EANN reuse the result from the end
of ANN number n. The cost spent is x = z +

∑n−1
i=0 b

i =

z+ bn−1
b−1 . The optimal we compete has cost of the last ANN,

which is bn−1 The ratio satisfies:

C = x/x′ =
z

bn−1
+ 1 +

1

b− 1
− 1

bn−1(b− 1)

≤ 2 +
1

b− 1
− 1

bn−1(b− 1)
< 2 +

1

b− 1
.

Furthermore, since C increases with z,

Ez∼Uniform(0,bn−1)[C]

≤ b1−n
∫ bn−1

0

zb1−n + 1 +
1

b− 1
dz

= 1.5 +
1

b− 1
.

(Case 2) For bn−1 < z ≤ bn, EANN outputs anytime results
from ANN number n + 1 at depth z. The cost is still x =
z + bn−1

b−1 . The optimal competitor has cost x′ = z. Hence
the ratio is

C = x/x′ = 1 +
bn − 1

z(b− 1)

≤ 2 +
1

b− 1
− 1

bn−1(b− 1)
< 2 +

1

b− 1
.

Furthermore, since C decreases with z,

Ez∼Uniform(bn−1,bn)[C]

≤ 1 +
1

bn − bn−1

∫ bn

bn−1

bn − 1

z(b− 1)
dz

= 1 +
(b− b1−n) ln b

(b− 1)2

< 1 +
b ln b

(b− 1)2

Finally, since case 1 and case 2 happen with probability 1
b

and (1− 1
b ), we have

sup
B
C = 2 +

1

b− 1
(5)

and

EB∼Uniform(0,L)[C] ≤ 1− 1

2b
+

1

b− 1
+

ln b

b− 1
. (6)

We also note that with large b, supB C → 2 and E[C] → 1
from above.

If we form a sequence of regular networks that grow ex-
ponentially in depth instead of ANN, then the worst case
happen right before a new prediction is produced. Hence the
ratio between the consumed budget and the cost of the op-
timal that the current anytime prediction can compete, C,
right before the number n+ 1 network is completed, is∑n

i=1 b
i

bn−1
n→∞−−−−→ b2

b− 1
= 2 + (b− 1) +

1

b− 1
≥ 4.

Note that (b − 1) + 1
b−1 ≥ 2 and the inequality is tight at

b = 2. Hence we know supB C is at least 4. Furthermore,
the expected value of C, assume B is uniformly sampled
such that the interruption happens on the (n+ 1)th network,
is:

E[C] =
1

bn

∫ bn

0

x+ bn−1
b−1

bn−1
dx

n→∞−−−−→ 1.5 +
b− 1

2
+

1

b− 1
≥ 1.5 +

√
2 ≈ 2.91.

The inequality is tight at b = 1 +
√

2. With large n, since
almost all budgets are consumed by the last few networks,
we know the overall expectation EB∼Uniform(0,L)[C] ap-
proaches 1.5 + b−1

2 + 1
b−1 , which is at least 1.5 +

√
2.

B Implementation Details of ANNs
CIFAR and SVHN ResANNs. For CIFAR10, CI-
FAR100 (Krizhevsky, Nair, and Hinton 2009), and
SVHN (Netzer et al. 2011), ResANN follow (He et al.
2016) to have three blocks, each of which has n residual
units. Each of such basic residual units consists of two 3x3
convolutions, which are interleaved by BN-ReLU. A pre-
activation (BN-ReLU) is applied to the input of the residual
units. The result of the second 3x3 conv and the initial input
are added together as the output of the unit. The auxiliary
predictors each applies a BN-ReLU and a global average
pooling on its input feature map, and applies a linear predic-
tion. The auxiliary loss is the cross-entropy loss, treating the
linear prediction results as logits. For each (n, c) pair such
that n < 25, we set the anytime prediction period s to be 1,
i.e., every residual block leads to an auxiliary prediction. We
set the prediction period s = 3 for n = 25.

ResANNs on ILSVRC. Residual blocks for ILSVRC are
bottleneck blocks, which consists of a chain of 1x1 conv,
3x3 conv and 1x1 conv. These convolutions are interleaved
by BN-ReLU, and pre-activation BN-ReLU is also applied.
Again, the output of the unit is the sum of the input feature
map and the result of the final conv. ResANN50 and 101 are
augmented from ResNet50 and 101 (He et al. 2016), where
we add BN-ReLU, global pooling and linear prediction to
every two bottleneck residual units for ResNet50, and ev-
ery three for ResNet101. We create ResANN26 for creating
EANN on ILSVRC, and ResANN26 has four blocks, each
of which has two bottleneck residual units. The prediction
period is every two units, using the same linear predictors.

DenseANNs on ILSVRC. We augment
DenseNet169 (Huang et al. 2017) to create DenseANN 169.
DenseNet169 has 82 dense layers, each of which has a 1x1
conv that project concatenation of previous features to 4k
channels, where k is the growth rate (Huang et al. 2017),
followed by a 3x3 conv to generate k channels of features
for the dense layer. The two convs are interleaved by
BN-ReLU, and a pre-activation BN-ReLU is used for each
layer. The 82 layers are organized into four blocks of size
6, 12, 32 and 32. Between each neighboring blocks, a 1x1
conv followed by BN-ReLU-2x2-average-pooling is applied
to shrink the existing feature maps by half in the hight,
width, and channel dimensions. We add linear anytime
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γ 1/4 1/2 3/4 1 sum
0.0 0.00 0.00 0.00 0.00 0.00
0.05 -20.08 -2.15 2.22 2.43 -17.59
0.15 -23.88 -0.20 5.18 5.17 -13.72

Table 3: Relative percentage increase in error rate by switch-
ing from γ = 0. (lower is better.) A small amount of
γ = 0.5 drastically improves early predictions without in-
creasing late error rate much.

EMA m 1/4 1/2 3/4 1
0.9 0.00 0.00 0.00 0.00

0.99 -0.29 0.25 0.05 0.15

Table 4: Relative percentage increase in error rate by switch-
ing from m = 0.9. (lower is better.) The two options essen-
tially result in the same error rates.

predictions every 14 dense layers, starting from layer 12
(1-based indexing). The original DenseNet paper (Huang et
al. 2017) mentioned that they use drop-out with keep rate
0.9 after each conv in CIFAR and SVHN, but we found
drop-out to be detrimental to performance on ILSVRC.

MSDNet on ILSVRC. MSDNet38 is described in the ap-
pendix of (Huang et al. 2018). We set the four blocks to
have 10, 9, 10 and 9 layers, and drop the feature maps of
the finest resolution after each block as suggest in the origi-
nal paper. We successfully reproduced the published results
to 24.3% error rate on ILSVRC using our Tensorflow imple-
mentation. We used the original published results for MSD-
Net38+CONST in the main text. We use MSDNet33, which
has four blocks of 8, 8, 8 and 9 layers, for the small network
that uses AdaLoss. We predict using MSDNet33 every seven
layers, starting at the fifth layer (1-based indexing).

C Additional Details of AdaLoss

C.1 Weight Regularization

In practice, some expected loss `i could be much larger than
the other losses, so that AdaLoss may assign such `i too
small a weight for it to receive enough optimization to re-
cover. To prevent this, we mix the uniform constant weight
with AdaLoss as a form of regularization as follows in Eq. 7.
Such mixture prevents the weight of `i from being too close
to zero.

min
θ

L∑
i=1

(
α(1− γ) ln `i(θ) + γ`i(θ)

)
, (7)

where α > 0 and γ > 0 are hyper parameters. In practice,
since DNNs often have elaborate learning rate schedules that
assume BL = 1, we choose α = mini ˆ̀

i(θ) at each iter-
ation to scale the max weight to 1. We choose γ = 0.05
from validation sets on CIFAR10 and CIFAR100 from the
set {0, 0.05, 0.15}.

Update period e 1/4 1/2 3/4 1
1 0.00 0.00 0.00 0.00

100 0.71 0.23 0.24 0.45

Table 5: Relative percentage increase in error rate by switch-
ing from e = 0. (lower is better.) The options are essentially
the same on CIFAR10 and CIFAR100.

C.2 Ablation Study of AdaLoss parameters on
CIFAR

We conduct ablation studies for the parameters of AdaLoss:
(1) γ in Eq. 7, which is the mixture weight of the uniform
static weighting, (2) the exponential moving average (EMA)
momentum, m, for updating the expected loss ˆ̀

i at each
stochastic gradient descent (SGD) step, and (3) the number
of SGD steps e to wait between updating AdaLoss weights
Bi using the learned ˆ̀

i. We choose γ ∈ {0, 0.05, 0.15},
m ∈ {0.9, 0.99}, and e ∈ {1, 100}, and evaluate them on
CIFAR10 and CIFAR100 ResANNs whose n ∈ {9, 17, 25}
and c = 32. Over the 72 experiments, we found the effects
of m, and e are almost negligible, as they generate < 0.5%
of relative difference in error rates on average, which trans-
lates to 0.1% absolute error difference on CIFAR100. These
comparisons are in Table 4 and Table 5. In the experiment
sections, we choose m = 0.9 and e = 1.

However, γ does affect the performance significantly, as
show in Table 3. γ = 0 means pure AdaLoss and γ = 1
means CONST. We observe that with γ = 0.05, the small
amount of uniform static weight reduces the error rate at
1/4 of the total cost by 20% relatively, but at the cost of
minor 2.5% relative increase in late predictions. Increasing
γ further to 0.15 has only marginal benefits to early pre-
dictions, but has the same negative impact to late accuracy.
This suggests that while a small γ helps, we should only use
a small amount. Throughout the experiment sections in the
main text, we choose γ = 0.05.
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