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Abstract

Recent advancements in recurrent neural network (RNN) re-
search have demonstrated the superiority of utilizing multi-
scale structures in learning temporal representations of time
series. Currently, most of multiscale RNNs use fixed scales,
which do not comply with the nature of dynamical temporal
patterns among sequences. In this paper, we propose Adap-
tively Scaled Recurrent Neural Networks (ASRNN), a sim-
ple but efficient way to handle this problem. Instead of using
predefined scales, ASRNNs are able to learn and adjust scales
based on different temporal contexts, making them more flex-
ible in modeling multiscale patterns. Compared with other
multiscale RNNs, ASRNNs are bestowed upon dynamical
scaling capabilities with much simpler structures, and are
easy to be integrated with various RNN cells. The exper-
iments on multiple sequence modeling tasks indicate AS-
RNNs can efficiently adapt scales based on different sequence
contexts and yield better performances than baselines without
dynamical scaling abilities.

Introduction
Recurrent Neural Networks (RNNs) play a critical role in
sequential modeling as they have achieved impressive per-
formances in various tasks (Campos et al. 2017)(Chang
et al. 2017)(Chung, Ahn, and Bengio 2016)(Neil, Pfeiffer,
and Liu 2016). Yet learning long-term dependencies from
long sequences still remains a very difficult task (Bengio,
Simard, and Frasconi 1994) (Hochreiter et al. 2001)(Ye et
al. 2017)(Hu et al. 2017). Among various ways that try to
handle this problem, modeling multiscale patterns seem to
be a promising strategy since many multiscale RNN struc-
tures perform better than other non-scale modeling RNNs
in multiple applications (Koutnik et al. 2014)(Neil, Pfeif-
fer, and Liu 2016)(Chung, Ahn, and Bengio 2016)(Chang
et al. 2017)(Campos et al. 2017)(Chang et al. 2014). Multi-
scale RNNs can be roughly divided into two groups based on
their design philosophies. The first group trends to model-
ing scale patterns with the hierarchical architectures and pre-
fixed scales for different layers. This may lead to at least two
disadvantages. First, the prefixed scale can not be adjusted to
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fit the temporal dynamics throughout the time. Although pat-
terns in different scale levels require distinct frequencies to
update, they do not always stick to a certain scale and could
vary at different time steps. For example, in polyphonic mu-
sic modeling, distinguishing different music styles demands
RNNs to model various emotion changes throughout music
pieces. While emotion changes are usually controlled by the
lasting time of notes, it is insufficient to model such patterns
using only fixed scales as the notes last differently at dif-
ferent time. Secondly, stacking multiple RNN layers greatly
increases the complexity of the entire model, which makes
RNNs even harder to train. Unlike this, another group of
multiscale RNNs models scale patterns through gate struc-
tures (Neil, Pfeiffer, and Liu 2016)(Campos et al. 2017)(Qi
2016). In such cases, additional control gates are learned to
optionally update hidden for each time step, resulting in a
more flexible sequential representations. Yet such modeling
strategy may not remember information which is more im-
portant for future outputs but less related to current states.

In this paper, we aim to model the underlying multi-
scale temporal patterns for time sequences while avoiding
all the weaknesses mentioned above. To do so, we present
Adaptively Scaled Recurrent Neural Networks (ASRNNs),
a simple extension for existing RNN structures, which al-
lows them to adaptively adjust the scale based on tempo-
ral contexts at different time steps. Using the causal convo-
lution proposed by (Van Den Oord et al. 2016), ASRNNs
model scale patterns by firstly convolving input sequences
with wavelet kernels, resulting in scale-related inputs that
parameterized by the scale coefficients from kernels. After
that, scale coefficients are sampled from categorical distri-
butions determined by different temporal contexts. This is
achieved by sampling Gumbel-Softmax (GM) distributions
instead, which are able to approximate true categorical dis-
tributions through the re-parameterization trick. Due to the
differentiable nature of GM, ASRNNs could learn to flexi-
bly determine which scale is most important to target outputs
according to temporal contents at each time step. Compared
with other multiscale architectures, the proposed ASRNNs
have several advantages. First, there is no fixed scale in the
model. The subroutine for scale sampling can be trained to
select proper scales to dynamically model the temporal scale
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patterns. Second, ASRNNs can model multiscale patterns
within a single RNN layer, resulting in a much simpler struc-
ture and easier optimization process. Besides, ASRNNs do
not use gates to control the updates of hidden states. Thus
there is no risk of missing information for future outputs.

To verify the effectiveness of ASRNNs, we conduct ex-
tensive experiments on various sequence modeling tasks, in-
cluding low density signal identification, long-term mem-
orization, pixel-to-pixel image classification, music genre
recognition and language modeling. Our results suggest that
ASRNNs can achieve better performances than their non-
adaptively scaled counterparts and are able to adjust scales
according to various temporal contents. We organize the
rest paper like this: the first following section reviews rel-
ative literatures, then we introduce ASRNNs with details in
next section; after that the results for all evaluations are pre-
sented, and the last section concludes the paper.

Related Work
As a long-lasting research topic, the difficulties of train-
ing RNNs to learn long-term dependencies are considered
to be caused by several reasons. First, the gradient explod-
ing and vanishing problems during back propagation make
training RNNs very tough (Bengio, Simard, and Frasconi
1994) (Hochreiter et al. 2001). Secondly, RNN memory cells
usually need to keep both long-term dependencies and short-
term memories simultaneously, which means there should
always be trade-offs between two types of information. To
overcome such problems, some efforts aim to design more
sophisticated memory cell structures. For example, Long-
short term memory (LSTM) (Hochreiter and Schmidhuber
1997) and gated recurrent unit (GRU) (Chung et al. 2014),
are able to capture more temporal information; while some
others attempt to develop better training algorithms and
initialization strategies such as gradient clipping (Pascanu,
Mikolov, and Bengio 2013), orthogonal and unitary weight
optimization (Arjovsky, Shah, and Bengio 2016)(Le, Jaitly,
and Hinton 2015) (Wisdom et al. 2016)(Qi, Hua, and Zhang
2009)(Wang et al. 2016)(Qi, Aggarwal, and Huang 2012)
etc. These techniques can alleviate the problem to some ex-
tent (Tang et al. 2017)(Li et al. 2017)(Wang et al. 2012).

Meanwhile, previous works like (Koutnik et al. 2014)
(Neil, Pfeiffer, and Liu 2016) (Chung, Ahn, and Bengio
2016) (Tang et al. 2007) (Hua and Qi 2008) suggest learning
temporal scale structures is also the key to this problem. This
stands upon the fact that temporal data usually contains rich
underlying multiscale patterns (Schmidhuber 1991)(Mozer
1992) (El Hihi and Bengio 1996) (Lin et al. 1996) (Hu and
Qi 2017). To model multiscale patterns, a popular strategy
is to build hierarchical architectures. These RNNs such as
hierarchical RNNs (El Hihi and Bengio 1996), clockwork
RNNs (Koutnik et al. 2014) and Dilated RNNs (Chang et
al. 2017) etc, contain hierarchical architectures whose neu-
rons in high-level layers are less frequently updated than
those in low-level layers. Such properties fit the natures of
many latent multiscale temporal patterns where low-level
patterns are sensitive to local changes while high-level pat-
terns are more coherent with the temporal consistencies. In-
stead of considering hierarchical architectures, some mul-

tiscale RNNs model scale patterns using control gates to
decide whether to update hidden states or not at a certain
time step. Such structures like phased LSTMs (Neil, Pfeif-
fer, and Liu 2016) and skip RNNs (Campos et al. 2017), are
able to adjust their modeling scales based on current tem-
poral contexts, leading to more reasonable and flexible se-
quential representations. Recently, some multiscale RNNs
like hierarchical multi-scale RNNs (Chung, Ahn, and Ben-
gio 2016), manage to combine the gate-controlling updating
mechanism into hierarchical architectures and has made im-
pressive progress in language modeling tasks. Yet they still
employ multi-layer structures which make the optimization
not be easy.

Adaptively Scaled Recurrent Neural Networks
In this section we introduce Adaptively Scaled Recurrent
Neural Networks (ASRNNs), a simple but useful extension
for various RNN cells that allows to dynamically adjust
scales at each time step. An ASRNNs is consist of three
components: scale parameterization, adaptive scale learning
and RNN cell integration, which will be covered in follow-
ing subsections.

Scale Parameterization
We begin our introduction for ASRNNs with scale param-
eterization. Suppose X = [x1,x2 · · · ,xT ] is an input se-
quence where xt ∈ Rn. At time t, instead of taking only
the current frame xt as input, ASRNNs compute an alterna-
tive scale-related input x̃t, which can be obtained by taking
a causal convolution between the original input sequence X
and a scaled wavelet kernel function φjt .

More specifically, let J be the number of considered
scales. Consider a wavelet kernel φ of size K. At any time t,
given a scale jt ∈ {0, · · · , J − 1}, the input sequence X is
convolved with a scaled wavelet kernel φjt = φ( i

2jt
). This

yields the following scaled-related input x̃t at time t

x̃t = (X ∗ φjt)t =
2jtK−1∑

i=0

xt−iφ(
i

2jt
) ∈ Rn (1)

where for any i ∈ {t− 2jtK + 1, · · · , t− 1}, we manually
set xi = 0 iff i ≤ 0. And the causal convolution operator ∗
(Van Den Oord et al. 2016) is defined to avoid the resultant
x̃t depending on future inputs. We also let φ( i

2jt
) = 0 iff

2jt - i. It is easy to see that x̃t can only contain information
from xt−i when i = 2jtk, k ∈ {1, · · · ,K}. In other words,
there are skip connections between xt−2jt (k−1) and xt−2jtk

in the scale jt. While jt becomes larger, the connections skip
further.

It is worth mentioning that the progress for obtaining
scale-related input x̃t is quite similar as the convolutions
with the real waveforms in (Van Den Oord et al. 2016). By
stacking several causal convolutional layers, (Van Den Oord
et al. 2016) is able to model temporal patterns in multi-
ple scale levels with its exponential-growing receptive field.
However, such abilities are achieved through a hierarchical
structure where each layer is given a fixed dilation factor that
does not change through out time. To avoid this, we replace
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the usual convolution kernels with wavelet kernels, which
come with scaling coefficients just like jt in equation 1. By
varying jt, x̃t is allowed to contain information from dif-
ferent scale levels. Thus we call it scale parameterization.
We further demonstrate it’s possible to adaptively control jt
based on temporal contexts through learning, which will be
discussed in subsection .

Adaptive Scale Learning
To adjust scale jt at different time t, we need to sample
jt from a categorical distribution where each class proba-
bility is implicitly determined by temporal contexts. How-
ever, it is impossible to directly train such distributions along
with deep neural networks because of the non-differentiable
nature of their discrete variables. Fortunately, (Jang, Gu,
and Poole 2016) (Maddison, Mnih, and Teh 2016) propose
Gumbel-Softmax (GM) distribution, a differentiable approx-
imation for a categorical distribution that allow gradients to
be back propagated through its samples. Moreover, GM em-
ploys the re-parameterization trick, which divides the distri-
bution into a basic independent random variable and a de-
terministic function. Thus, by learning the function only, we
can bridge the categorical sampling with temporal contexts
through a differentiable process.

Now we introduce the process of learning to sample scale
jt with more details. Suppose πt = [πt

0, · · · , πt
J−1] ∈

[0, 1]J are class probabilities for scale set {0, · · · , J − 1}
and zt = [zt0, · · · , ztJ−1] ∈ RJ are some logits related to
temporal contexts at time t. The relationship between πt and
zt can be written as

πt
i =

exp(zti)∑J−1
i′=0 exp(z

t
i′)

(2)

where i ∈ {0, · · · , J − 1}. Let yt = [yt0, · · · , ytJ−1] ∈
[0, 1]J be a sample from GM. Based on (Jang, Gu, and Poole
2016), yti for i = 0, · · · , J − 1 can be calculated as

yti =
exp((log πt

i + gi)/τ)∑J−1
i′=0 exp((log π

t
i′ + gi′)/τ)

(3)

where g0, · · · , gJ−1 are i.i.d. samples drawn from the basic
Gumbel(0, 1) distribution and τ controls how much the GM
is close to a true categorical distribution. In other words, as
τ goes to 0, yt would become jt, the one-hot vector whose
jtth value is 1.

Thus with GM, it is clear that the sampled jt is approx-
imated by a differentiable function of zt. We further define
zt with the hidden states ht−1 ∈ Rm and input xt ∈ Rn as

zt = Wzht−1 +Uzxt + bz ∈ RJ (4)

where Wz,Uz are weight matrices and bz is bias vector.
Combing equations 2, 3 and 4, we achieve our goal of dy-
namically changing jt by sampling from GM distributions
that parameterized by ht−1 and xt. Since the entire proce-
dure is differentiable, matrices Wz and Uz can be optimized
along with other parameters of ASRNNs during the training.

Integrating with Different RNN Cells
With both the techniques introduced in previously intro-
duced two subsections, we are ready to incorporate the pro-
posed adaptive scaling mechanism with different RNN cells,
resulting in various forms of ASRNNs. Since both x̃t and
sampling for jt don’t rely on any specific memory cell de-
signs, it’s straightforward to do so by replacing original in-
put frames xt with x̃t. For example, a ASRNN with LSTM
cells can be represented as

ft, it,ot = sigmoid(Wf,i,oht−1+Uf,i,ox̃t+bf,i,o) ∈ Rm

(5)
gt = tanh(Wght−1 +Ugx̃t + bg) ∈ Rm (6)

ct = ft ◦ ct−1 + it ◦ gt (7)
ht = ot ◦ tanh(ct) (8)

while a ASRNN with GRU cells can be written as

zt, rt = sigmoid(Wz,rht−1 +Uz,rx̃t + bz,r) ∈ Rm (9)

gt = tanh(Wg(rt ◦ ht−1) +Ugx̃t + bg) ∈ Rm (10)
ht = zt ◦ ht−1 + (1− zt) ◦ gt (11)

where W∗,U∗ are weight matrices and b∗ are bias vec-
tors, and ◦ means element-wise multiplication. For rest of
this paper, we use ASLSTMs to refer those integrated with
LSTM cells, ASGRUs for those integrated with GRU cells
and so on and so forth. We still call them ASRNNs when
there is no specified cell types. It is also worth mentioning
that a conventional RNN cell is the special case of its AS-
RNN counterpart when J = K = 1.

Discussion
Finally, we briefly analyze the advantages of ASRNNs over
other multiscale RNN structures. As mentioned in section ,
there are many RNNs, including hierarchical RNNs (El Hihi
and Bengio 1996) and Dilated RNNs (Chang et al. 2017)
etc, that apply hierarchical architectures to model multiscale
patterns. Compared to them, the advantages of ASRNNs are
clear. First, ASRNNs are able to model patterns with mul-
tiple scale levels within a single layer, making their spa-
tial complexity much lower than hierarchical structures. Al-
though hierarchical models may reduce the neuron num-
bers for each layer to have the similar size as single layer
ASRNNs, they are harder to train with deeper structures.
What’s more, compared with the fixed scales for different
layers, adapted scales are easier to capture underlying pat-
terns as they can be adjusted based on temporal contexts at
different time steps.

Besides, other multiscale RNN models like phased
LSTMs (Neil, Pfeiffer, and Liu 2016) and skip RNNs (Cam-
pos et al. 2017) etc, build gate structures to manage scales.
Such gates are learned to determine whether to remember
the incoming information at each time. However, this may
lose information which is important for future time but not
for current time. This problem would never happen to AS-
RNNs as according to equation 1, the current input xt will
always be included in x̃ and ht is updated every step. Thus
there is no risk for ASRNNs to lose critical information.
This is an important property especially for tasks with frame
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Table 1: Accuracies for ASRNNs and baselines .

ACCURACY (%) RNN SRNN ASRNN
LSTM 81.3 83.6 97.7
GRU 84.1 88.1 98.0

labels. In such cases previously irrelevant information may
become necessary for later frame outputs. Thus information
from every frame should be leveraged to get correct outputs
at different time.

Experiments
In this section, we evaluate the proposed ASRNNs with five
sequence modeling tasks: low density signal type identifi-
cation, copy memory problem, pixel-to-pixel image classi-
fication, music genre recognition and word level language
modeling. We also explore how the scales would be adapted
along time. Unless specified otherwise, all the models are
implemented using Tensorflow library (Abadi et al. 2016).
We train all the models with the RMSProp optimizer (Tiele-
man and Hinton ) and set learning rate and decay rate to
0.001 and 0.9, respectively. It is worth mentioning that there
is no techniques such as recurrent batch norm (Semeni-
uta, Severyn, and Barth 2016) and gradient clipping (Pas-
canu, Mikolov, and Bengio 2013) applied during the train-
ing. All the weight matrices are initialized with glorot uni-
form initialization (Glorot and Bengio 2010). For ASRNNs,
we choose Haar wavelet as default wavelet kernels, and set
τ of Gumbel-Softmax to 0.1. We integrate ASRNNs with
two popular RNN cells, LSTM (Hochreiter and Schmidhu-
ber 1997) and GRU (Chung et al. 2014) and use their con-
ventional counterparts as common baselines. Besides, the
baselines also include scaled RNNs (SRNNs), a simplified
version that every jt is set to J − 1. Additional baselines
for individual tasks will be stated in the corresponding sub-
sections if there are. For both SRNNs and ASRNNs, The
maximal considered scale J and wavelet kernel size K are
set to 4 and 8, respectively.

Low Density Signal Type Identification
We begin our evaluation for ASRNNs with some synthetic
data. The first task is low density signal type identification,
which demands RNNs to distinguish the type of a long se-
quence that only contains limited useful information. More
specifically, consider a sequence with length of 1000, first
we randomly choose p subsequences at arbitrary locations
of the sequence where p ∈ {3, 4, 5}. Each subsequence has
different length T where T ∈ Z+ ∩ [20, 100] and we make
sure that subsequences don’t overlap with each other. For
one sequence, all of its subsequences belong to one of the
three types of waves: square wave, saw-tooth wave and sine
wave, but with different amplitude A sampled from [−7, 7].
The rests of the sequence are filled with random noises sam-
pled from (−1, 1). The target is to identify which type of
wave a sequence contains. Apparently, a sequence carries
only 6% ∼ 50% useful information, requiring RNNs capa-
ble of locating it efficiently.

Following above criterion, we randomly generate 2000
low density sequences for each type. We choose 1600 se-
quences per type for training and the remaining are for test-
ing. Table 1 demonstrates the identification accuracies for
baselines and ASRNNs. We can see the accuracies of both
ASLSTM and ASGRU are over 97.5%, meaning they have
correctly identified the types for most of sequences without
being moderated by noise. Considering the much lower per-
formance of baselines, it’s confident to say that ASRNNs
are able to efficiently locate useful information with adapted
scales. Besides, we also observe there are similar patterns
among some waves and their scale variation sequences. Fig-
ure 1 gives such an example, from which we see the scale 0
and 1 are more related to noises while the scale 2 and 3 only
appear in the region with square form information. More-
over, the subsequence where the scale 2 is located is harder
to identify as its values are too close to the noise. We believe
such phenomena implies the scale variations could reflect
some certain aspects that are helpful for understanding un-
derlying temporal patterns.

Copy Memory Problem
Next we revisit the copy memory problem, one of the origi-
nal LSTM tasks proposed by (Hochreiter and Schmidhuber
1997) to test the long-term dependency memorization abil-
ities for RNNs. We closely follow the experimental setups
used in (Arjovsky, Shah, and Bengio 2016) (Wisdom et al.
2016). For each input sequence with T + 20 elements, The
first ten are randomly sampled from integers 0 to 7. Then the
rest of elements are all set to 8 except the T+10th to 9, indi-
cating RNNs should begin to replicate the first 10 elements
from now on. The last ten values of output sequence should
be exactly the same as the first ten of the input. Cross entropy
loss is applied for each time step. In addition to common
baselines, we also adopt the memoryless baseline proposed
by (Arjovsky, Shah, and Bengio 2016). The cross entropy of
this baseline is 10 log(8)

T+20 , which means it always predict 8 for
first T +10 steps while give a random guess of 0 to 7 for last
10 steps. For each T , we generate 10000 samples to train all
RNN models.

Figure 2 demonstrates the cross entropy curves of base-
lines and ASRNNs. We notice that both LSTM and GRU
get stuck at the same cross entropy level with the memo-
ryless baseline during the entire training process for both
T = 200 and T = 300, indicating both LSTM and GRU are
incapable of solving the problem with long time delays. This
also agrees with the results reported in (Graves, Wayne, and
Danihelka 2014) and (Arjovsky, Shah, and Bengio 2016).
For SRNNs, it seems like fixed scales are little helpful since
only the SGRU at T = 200 can have a lower entropy after
250 hundred steps. Unlike them, cross entropies of ASRNNs
are observed to further decrease after certain steps of stay-
ing with baselines. Especially for T = 200, ASGRU almost
immediately gets the entropy below the baseline with only
a few hundreds of iterations passed. Besides, comparing fig-
ure 2a and 2b, ASGRUs are more resistant to the increasing
of T as ASLSTMs need more time to wait before they can
further reduce cross entropies. Overall, such behaviors prove
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(a) A square wave sample. (b) The corresponding scale variations.

Figure 1: The similar patterns between a raw square wave and its scale variations.

(a) T = 200 (b) T = 300

Figure 2: Cross entropies for copy memory problem. Best
viewed in colors.

ASRNNs have stronger abilities for memorizing long-term
dependencies than baselines.

Pixel-to-Pixel Image Classification
Now we proceed our evaluation for ASRNNs with real
world data. In this subsection, we study the pixel-to-pixel
image classification problem using MNIST benchmark (Le-
Cun et al. 1998). Initially proposed by (Le, Jaitly, and Hinton
2015), it reshapes all 28 × 28 images into pixel sequences
with length of 784 before fed into RNN models, resulting in
a challenge task where capturing long term dependencies is
critical. We follow the standard data split settings and only
feed outputs from the last hidden state to a linear classifier
(Xing, Pei, and Keogh 2010). We conduct experiments for
both unpermuted and permuted settings.

Table 2 summarizes results of all experiments for pixel-
to-pixel MNIST classifications. The first two blocks are the
comparisons between common baselines and ASRNNs with
different cell structures. Their numbers of weights are ad-
justed to keep approximately same in order to be compared
fairly. We also include other state-of-the-art results of sin-
gle layer RNNs in the third block. It is easy to see that both
SRNNs and ASRNNs achieve better performances than con-
ventional RNNs with scale-related inputs on both settings.
This is probably because causal convolutions between inputs
and wavelet kernels can be treated as a spatial convolutional
layer, allowing SRNNs and ASRNNs to leverage informa-
tion that is spatially local but temporally remote. Moreover,
the adapted scales help ASRNNs further reach the state-
of-the-art performances by taking dilated convolutions with
those pixels that more spatially related to the current posi-

Figure 3: Statistics of scale selections between each music
genre. The height of each bar indicates the ratio of how much
times the scale is selected in the corresponding genre. Best
viewed in colors.

tion. It is also worth mentioning the proposed dynamical
scaling is totally compatible with the techniques from the
third part of the table 2 such as recurrent batch normaliza-
tion (Cooijmans et al. 2016) and recurrent skip coefficients
(Zhang et al. 2016). Thus ASRNNs can also benefit from
them as well.

Music Genre Recognition
The next evaluation mission for ASRNNs is music genre
recognition (MGR), a critical problem in the music infor-
mation retrieval (MIR) (McKay and Fujinaga 2006) which
requires RNNs to characterize the similarities between mu-
sic tracks across many aspects such as cultures, artists and
ages. Compared to other acoustic modeling tasks like speech
recognition, MGR is considered to be more difficult as the
boundaries between genres are hard to distinguish due to dif-
ferent subjective feelings among people (Scaringella, Zoia,
and Mlynek 2006). We choose free music archive (FMA)
dataset (Defferrard et al. 2017) to conduct our experiments.
More specifically, we use the FMA-small, a balanced FMA
subset containing 8000 music clips that distributed across
8 genres, where each clip lasts 30 seconds with sampling
rate of 44100 Hz. We follow the standard 80/10/10% data
splitting protocols to get training, validation and test sets.
We compute 13-dimensional log-mel frequency features
(MFCC) with 25ms windows and 10ms frame steps for each
clip, resulting in very long sequences with about 3000 en-
tries. Besides, inspired by recent success of (Van Den Oord
et al. 2016) and (Sainath et al. 2015), we are also encour-
aged to directly employ raw audio waves as inputs. Due to
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Table 2: Classification accuracies for pixel-to-pixel MNIST.N stands for the number of hidden states. Italic numbers are results
reported in the original papers. Bold numbers are best results for each part. ACC=accuracy, UNP/PER=unpermuted/permuted.

RNN N
# OF

WEIGHTS
MIN.

SCALE
MAX.
SCALE

AVG.
SCALE

UNP
ACC(%)

PER
ACC(%)

LSTM 129 ≈ 68K 0 0 0 97.1 89.3
SLSTM 129 ≈ 68K 3 3 3 97.4 87.7
ASLSTM 128 ≈ 68K 0 3 0.92 98.3 90.8
GRU 129 ≈ 51K 0 0 0 96.4 90.1
SGRU 129 ≈ 51K 3 3 3 97.0 89.8
ASGRU 128 ≈ 51K 0 3 0.75 98.1 91.2
TANH-RNN (LE, JAITLY, AND HINTON 2015) 100 - - - - 35 .0 33 .0
URNN (ARJOVSKY, SHAH, AND BENGIO 2016) 512 ≈ 16K - - - 95 .1 91 .4

FULL-CAPACITY
URNN (WISDOM ET AL. 2016) 512 ≈ 270K - - - 96 .9 94 .1

IRNN (LE, JAITLY, AND HINTON 2015) 100 - - - - 97 .0 82 .0
SKIP-LSTM (CAMPOS ET AL. 2017) 110 - - - - 97 .3 -
SKIP-GRU (CAMPOS ET AL. 2017) 110 - - - - 97 .6 -
STANH-RNN (ZHANG ET AL. 2016) 64 - - - - 98 .1 94 .0

RECURRENT
BN-RNN (COOIJMANS ET AL. 2016) 100 - - - - 99.0 95.4

Table 3: Music genre recognition on FMA-small. N stands for the number of hidden states. ACC=accuracy.

FEATURES METHODS N
# OF

WEIGHTS
MIN.

SCALE
MAX.
SCALE

AVG.
SCALE

ACC(%)

MFCC

LSTM 129 ≈ 74K 0 0 0 37.1
SLSTM 129 ≈ 74K 3 3 3 37.7
ASLSTM 128 ≈ 74K 0 3 1.34 40.9
GRU 129 ≈ 56K 0 0 0 38.2
SGRU 129 ≈ 56K 3 3 3 38.5
ASGRU 128 ≈ 56K 0 3 1.39 42.4
MFCC+GMM (AUCOUTURIER AND PACHET 2002) - - - - - 21.3

RAW

LSTM 129 ≈ 68K 0 0 0 18.5
SLSTM 129 ≈ 68K 3 3 3 18.9
ASLSTM 128 ≈ 68K 0 3 1.47 20.1
GRU 129 ≈ 51K 0 0 0 18.8
SGRU 129 ≈ 51K 3 3 3 18.4
ASGRU 128 ≈ 51K 0 3 1.59 19.5
RAW+CNN (DIELEMAN AND SCHRAUWEN 2014) - - - - - 17.5

limited computational resources, we have to reduce the sam-
pling rate to 200 Hz for raw music clips while resultant se-
quences are still two times longer than MFCC sequences.

We demonstrate all the MGR results on FMA-small in the
Table 3. Besides RNN models, we also include two base-
lines without temporal modeling abilities (GMM for MFCC
and CNN for raw). We can see when using MFCC features,
both the ASLSTM and ASGRU can outperform SRNNs and
their conventional counterparts with about 3 ∼ 4% im-
provements. This is an encouraging evidence to show how
adapted scales can boost the modeling capabilities of RNNs
for MGR. However, the recognition accuracies drop sig-
nificantly for all models when applying raw audio waves
as inputs. In such cases, the gains from adapted scales are
marginal for both the ASLSTM and ASGRU. We believe it
is due to the low sampling rate for raw music clips since too
much information is lost. However, increasing sampling rate
will significantly rise the computational costs and make it

eventually prohibitive for training RNNs.
To further understand the patterns behind such variations,

we do statistics on how many times a scale has been selected
for each genre, which is normalized and illustrated in figure
3. In general, all genres prefer to choose scale 0 and 3 since
their ratio values are significantly higher than the other two.
However, there are also obvious differences between gen-
res within the same scale. For example, instrumental music
tracks have more steps with scale 0 than Pop musics, while
it’s completely opposite for scale 3.

Word Level Language Modeling
Finally, we evaluate ASRNNs for the word level language
modeling (WLLM) task on the WikiText-2 (Merity et al.
2016) dataset, which contains 2M training tokens with a
vocabulary size of 33k. We use perplexity as the evalua-
tion metric and the results are summarized in the Table 4,
which shows ASRNNs can also outperform their regular
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Table 4: Perplexities for word level language modeling on WikiText-2 dataset. Italic numbers are reported by original papers.

METHODS N
# OF

WEIGHTS
MIN.

SCALE
MAX.
SCALE

AVG.
SCALE

PPL

LSTM 1024 ≈ 10M 0 0 0 101.1
SLSTM 1024 ≈ 10M 3 3 3 97.7
ASLSTM 1024 ≈ 10M 0 3 1.51 93.8
GRU 1024 ≈ 7.8M 0 0 0 99.7
SGRU 1024 ≈ 7.8M 3 3 3 95.4
ASGRU 1024 ≈ 7.8M 0 3 1.38 92.6

ZONEOUT + VARIATIONAL LSTM (MERITY ET AL. 2016) - - - - - 100.9
POINTER SENTINEL LSTM (MERITY ET AL. 2016) - - - - - 80.8
NEURAL CACHE MODEL (GRAVE, JOULIN, AND USUNIER 2016) 1024 - - - - 68.9

Figure 4: Visualized scale variations for a sampled sentence form WikiText-2 dataset.

counterparts. Besides, Figure 4 further visualizes captured
scale variations for a sampled sentence. It indicates scales
are usually changed at some special tokens (like semicolon
and clause), which comfirms the flexibility of modeling dy-
namic scale patterns with ASRNNs. What’s more, although
state-of-the-art models (Merity et al. 2016) (Grave, Joulin,
and Usunier 2016) perform better, their techniques are or-
thogonal to our scaling mechanism so ASRNNs can still
benefit from them.

Conclusion
We present Adaptively Scaled Recurrent Neural Networks
(ASRNNs), a simple yet useful extension that brings dy-
namical scale modeling abilities to existing RNN structures.
At each time step, ASRNNs model the scale patterns by
taking causal convolutions between wavelet kernels and in-
put sequences such that the scale can be represented by
wavelet scale coefficients. These coefficients are sampled
from Gumbel-Softmax (GM) distributions which are param-
eterized by previous hidden states and current inputs. The
differentiable nature of GM allows ASRNNs to learn to ad-
just scales based on different temporal contexts. Compared
with other multiscale RNN models, ASRNNs don’t rely on
hierarchical architectures and prefixed scale factors, mak-
ing them simple and easy to train. Evaluations on various
sequence modeling tasks indicate ASRNNs can outperform
those non-dynamically scaled baselines by adjusting scales
according to different temporal information.
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