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Abstract

Quantization has shown stunning efficiency on deep neu-
ral network, especially for portable devices with limited
resources. Most existing works uncritically extend weight
quantization methods to activations. However, we take the
view that best performance can be obtained by applying dif-
ferent quantization methods to weights and activations re-
spectively. In this paper, we design a new activation func-
tion dubbed CReLU from the quantization perspective and
further complement this design with appropriate initialization
method and training procedure. Moreover, we develop a spe-
cific quantization strategy in which we formulate the forward
and backward approximation of weights with binary values
and quantize the activations to low bitwdth using linear or
logarithmic quantizer. We show, for the first time, our final
quantized model with binary weights and ultra low bitwidth
activations outperforms the previous best models by large
margins on ImageNet as well as achieving nearly a 10.85×
theoretical speedup with ResNet-18. Furthermore, ablation
experiments and theoretical analysis demonstrate the effec-
tiveness and robustness of CReLU in comparison with other
activation functions.

Introduction
Deep neural networks have made unparalleled progress in
a variety of computer vision tasks such as image classifica-
tion (Krizhevsky, Sutskever, and Hinton 2012), object de-
tection (Girshick 2015) and semantic segmentation (Long,
Shelhamer, and Darrell 2015). The promising results DNNs
have achieved are often built on a vast number of param-
eters (e.g., AlexNet comes along with nearly 61 million
real-valued parameters and 1.5 billion floating-point opera-
tions to classify an image (Guo et al. 2017)). However, their
complexity is an impediment to widespread deployment on
portable devices with limited memory or computational re-
sources. Recently, substantial research efforts are invested to
alleviate this problem. One common method proven effec-
tive is to quantize the full-precision network directly, which
can greatly save memory requirement and speed up models
using specialized hardware implementation (e.g. FPGA and
Google’s TPU (Jouppi et al. 2017)).
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Figure 1: A graphical illustration of the training process of
our quantized neural networks with binarized weights and
low bitwidth activations.

Some prior works first focus on quantizing weights to
reduce the model size. In particular, (Courbariaux, Ben-
gio, and David 2015) introduce BinaryConnect, a method
which forces the weights to be binary during the forward
and backward propagations. They obtained near state-of-
the-art results on the small datasets like MNIST, CIFAR-10.
Later, (Li, Zhang, and Liu 2016) proposed ternary weight
networks (TWNs) with weights quantized to {−α, 0,+α},
which achieved better performance on large dataset due to
the increased weight precision and scaling factors. How-
ever, it is less effective from the computation saving perspec-
tive due to the activations are still left to be full-precision
(i.e., the input to convolution layers). Recently, BNN (Cour-
bariaux et al. 2016) and XNOR-Net (Rastegari et al. 2016)
explored both weights and activations binarization, which
can not only reduce model size 32 times compared to full-
precision version but cut down execution time since ex-
pensive dot-products can be replaced by bitwise operations.
However, they directly quantize both weights and activations
in the same manner without considering different character-
istics of them. As a result, both works suffer from nontrivial
losses in large-scale classification tasks on ImageNet (from
56.6% to 27.9% and 44.2% respectively). In this paper, we
argue that best performance can be obtained by applying dif-
ferent quantization methods to weights and activations re-
spectively.

For the issue of activations quantization, we observe that
the unbounded output of ReLU function is disadvantageous
for upcoming quantization. Hence, it is necessary to limit
the dynamic range of activations to minimize quantization
error. Motivated by this observation, we propose a novel ac-
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tivation function CReLU from the quantization view, which
adaptively bound the ReLU output by a learnable clamping
parameter to keep the balance between clamping error and
quantization error. In addition, we further quantize the ac-
tivations to low bitwidth representations so as to allow the
trade-offs in different combinations of bitwidth vs. model
accuracy.

For the issue of weights quantization, XNOR-Net pro-
poses to introduce a scale factor for each element of the
weight filter during binarization. As the binarized weights
cannot be used to accumulate the high precision gradients,
the real-valued weights need to be updated using SGD.
However, we find that the impact of this scale factor is com-
pletely omitted in the calculation of the gradient with respect
to the real weight in XNOR-Net. To eliminate the gradient
mismatch, we derive a more effective gradient in the back-
propagation. Moreover, we further propose multi-level bina-
rization to approximate the pre-trained weights with binary
values in the forward pass.

The major contributions of this work are summarized as
follows:

• we design a new activation function called clamping rec-
tified linear unit (CReLU) from the quantization perspec-
tive and complement this design with appropriate initial-
ization method and training procedure.

• we propose a multi-level binarization method and linear
or logarithmic quantizer for simultaneously binarizing the
weights and quantizing the activations to low bitwdth. The
overall quantization process is illustrated in Figure 1.

• our final quantized model with binary weights and ul-
tra low bitwidth activations outperforms the previous
best models on ImageNet, with nearly 10.85× theoreti-
cal speedup with ResNet-18.

• ablation experiments and theoretical analysis further
demonstrate the effectiveness and robustness of CReLU
in comparison with other activation functions.

Related Work
Network Pruning Pruning is a straightforward method and
has been widely studied to compress the networks by prun-
ing parameters or channels. Parameter pruning removes the
unimportant connections or neurons which value under a
threshold. (Han et al. 2015) presented an simple method
to prune the parameters and reduced the model size by
9× and 16× for AlexNet and VGG-16. Although it is ef-
fective in model compression, such unstructured pruning
may not translate directly to faster inference since special-
ized hardwares and softwares are needed for a network with
intra-kernel sparsity. Channel pruning instead operates at the
level of feature maps and channel to avoid the limitations
of non-structured pruning above. The key of this method
is how to measure the importance of each filters. (Li et al.
2016) pruned unimportant filters by calculating their abso-
lute weight sum. (Molchanov et al. 2016) adopted Taylor
expansion to approximate the influence of each filter to loss
function. However, this kind of methods all need to change

the structure of network. By contrast, any network can au-
tomatically benefit from our quantization schemes without
modifying the network.

Compact Model The main point of this methods is to de-
sign more compact architecture for model compression and
acceleration. Xception (Chollet 2016) first introduce depth-
wise separable convolution to factorize a standard convolu-
tion into depthwise convolution and pointwise convolution.
Depthwise convolution is responsible to extract features
while pointwise convolution merge features. Such architec-
ture is facilitated to meet the resource constraints for an
on-device or embedded applications. Beyond these works,
(Zhang et al. 2017a) propose a general group convolution
algorithm and show that Xception is the special case of their
method. Group operation will block the information flow be-
tween different group convolutions. Recently, (Zhang et al.
2017b) present ShuffleNet, which introduce channel shuffle
operations to maintain the connections between groups to
solve that problem. Our quantization method is orthogonal
to this line of approach. Hence, it can be jointly applied to
achieve better compression results.

Network Quantization There are two meanings about
quantization term in the neural networks. On one hand, it
refers to a many-to-few mapping, which groups weights
with similar values to reduce the number of free parameters.
For example, (Chen et al. 2015) hashed weights into differ-
ent groups before training. The weights are shared within
each group and only the shared weights and hash indexes
need to be stored. (Han et al. 2015) proposed weight shar-
ing method to compress the network by reducing the num-
ber of bits required to represent each weights. The model
parameters they store are the index of cluster centroids in-
stead of the real values. Hence, they can quantize model
to 5-bits or 8-bits (32 or 256 cluster centroids respectively)
compared to 32-bits full-precision counterpart. On the other
hand, it means transferring a full-precision model into its
low-bitwidth representation, our method is in line with this
meaning since a low-precision model not only reduces the
memory storage, but also is more computational efficient.
(Courbariaux et al. 2016) first propose BNN, a purely Bina-
ryNet which constrains both weights and activations to {-1,
+1}. They obtain near state-of-art results on small datasets
while are not very successful on large-scale datasets. There-
fore, (Rastegari et al. 2016) propose XNOR-net, which in-
corporates a real coefficient to compensate for the pure bi-
narization error in BNN. They apply the method to the large-
scale ImageNet dataset and achieve better performance than
previous works. However, it’s straightforward extension of
weight quantization approach to activation makes the bina-
rization procedure complex and inefficient in that it needs
to calculate more scale factors for activation compared to
weight. In order to mitigate this issue, we propose an alter-
native that removes the scale factor in activations, and re-
place the ReLU activation function with a new one called
CReLU, which does not incur accuracy degradation but is
simpler and more efficient than XNOR-net.
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Our Approach
In the section, we present in detail how we binarize the
weights and quantize the activations to low bitwidth. Let
us start with the notion in this paper. For a convolutional
layer, we define the output y = x ∗ w, where the input
x ∈ Rcin×win×hin , weight filter w ∈ Rcout×cin×w×h, the
output y ∈ Rcout×wout×hout , respectively.

Low Bitwidth Activations
To implement convolution efficiently and speed up CNNs
in the run time, it is indispensable to quantize the activa-
tions. Some previous works such as BinaryNet, XNOR-Net
binarize the activations in the same way as weights by us-
ing the sign function in the forward pass. However, (Zhou et
al. 2016) claims that they fail to reproduce results and find
severe prediction accuracy degradation when applied on Im-
ageNet models like AlexNet. We argue that two reasons can
account for this failure. On one hand, the non-smooth and
non-convex characteristic of the sign function makes it hard
for gradient information to flow from one layer to the next
layer. On the other hand, it is computationally intractable.
Specifically, in order to convolve weight filter w with the
input tensor x, XNOR-Net has to compute the scaling fac-
tor β for all possible sub-tensors with same size as w in x,
which makes the convolution operation inefficient and hard
to implementation in most deep learning frameworks. To al-
leviate the issues above, we resort to an elegant alternative
for activation function.

Clamping Rectified Linear Unit As the first problem we
discussed, sign function is not suitable for activation quan-
tization. The experimental results in (Cai et al. 2017) fur-
ther verify our analysis. Thus, it seems more sensible to rely
on ReLU when it comes to activation function. However,
its unbounded characteristic is disadvantageous for quanti-
zation since some outliers on the tail of distribution can lead
to large quantization errors. This problem has been allevi-
ated by some recent works. (Zhou et al. 2016) simply clamp
activations to [0, 1] for all layers. (Cai et al. 2017) adopt K-
means algorithm to obtain the optimal clamping parameters
for all layers offline, which is based on the observation that
dot-products through batchnorm layer are close to a standard
Gaussian distribution of zero mean and unit variance. How-
ever, in both works, the values of clamping parameters are
deterministic and remain fixed, which could not adapt to the
change of activations during the training process. Hence, we
redesign a new activation function called clamping rectified
linear unit (CReLU) to improve flexibility of the clamping
threshold. It is illustrated in the right part of Figure 2.

Let variable x represent the input, and the forward pass
function of CReLU is defined as:

crelu(x) =

{
cl, x ∈ (cl,+∞)
x, x ∈ (0, cl]
0, otherwise

(1)

where cl is the lth layer-wise learnable parameter, which
places an upper-bound on the outputut.

relu(𝑥)

(a) ReLU

crelu(𝑥 )

𝑐𝑙

(b) CReLU

Figure 2: Illustration of (a) ReLU and (b) CReLU activation
function

The backward pass function of CReLU is given by:

∂crelu(x)

∂x
=

{
1, x ∈ (0, cl]

0, otherwise
∂crelu(x)

∂cl
=

{
1, x ∈ (cl,+∞)

0, otherwise

(2)

Therefore, CReLU could utilize the strength of backprop-
agation to adjust itself dynamically throughout the training
process and achieve the optimal clamping parameter in the
inference time. For interested readers, we briefly provide
theoretical analysis on the effectivenss of CReLU in the sup-
plementary material.

Parameter Training with CReLU In this subsection, we
provide a brief analysis on the initialization method and ap-
propriate training procedure for CReLU to favor upcoming
quantization.

1) From the back propagation view, it is clear that, if cl is
initialized to a very small value, more input activations fall
into the range (cl, +∞) with the nonzero gradient contribut-
ing to cl, leading to unstable cl parameter update in the early
training, potentially causing large accuracy degradation. On
the other hand, if cl is initialized to a very large value, more
input activations fall into the range (-∞, cl) with the zero
gradient contributing to cl, the gradient becomes too small
to update cl parameter in the early training, which may be
stuck at a large value, potentially suffering large quantiza-
tion error.

2) From the forward propagation view, as the clamping
value cl increases, CReLU is closer to ReLU activation func-
tion. Therefore, larger range of activations can be passed to
the next layer causing less clamping error, which is deter-
mined by max(x − cl, 0). On the other hand, the increased
cl means a wider dynamic range thus incurring larger quan-
tization error, which can be determined by cl

2(2k−1) when the
truncated activation output is linearly quantized to k-bits.
This imposes the challenge of finding a proper clamping
parameter to keep the balance between clamping error and
quantization error.

In conclusion, it is intuitive to initialize cl with a relatively
large value to cover a wide dynamic range and avoid unsta-
ble parameter update at the beginning of each layer. Then
we jointly optimize the network weights and these clamp-
ing parameters with enforcing regularization into the latter,
which enables us to reduce the value of cl so as to alleviate
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quantization error and lead to fast convergence. In practice,
we start with an initial value of 8 and the training objective
of our approach is given by

`(w, b) = C(w, b) + λ

L∑
l=1

g(cl) (3)

where C(w, b) is the task-related loss term such as a cross-
entropy loss in the classification task. The second sum-term
corresponds to a regularization term and the parameter λ
balance the relative importance of the two terms. The reg-
ularization term g(·) is a penalty on the clamping parameter,
which can be chosen as L1 or L2-norm.

In our experiment, we find L2 regularization term g(cl) =
c2l is better than L1-norm g(cl) = |cl|. It is reasonable be-
cause L2 regularization term tends to decrease the magni-
tude while L1-norm is widely used to help sparsity. We ob-
serve that cl will decrease gradually and converges to values
much smaller than the initial value in the training process,
thus limiting the dynamic range of activations and minimiz-
ing quantization errors.

A somewhat surprising fact is that although the value of
activations is clamped to cl, we empirically observe that
CReLU is more effective and robust than other activation
functions with and without quantization. The experimental
details can be found in Section 4.2.

Activations Quantization In this part, we detail our
element-wise quantization approach to getting low bitwidth
activations. We first uniformly quantize a real number input
x ∈ [0, cl] to a k-bitwidth output x̃ ∈ [0, cl]. The linear
quantizer is defined as below:

x̃ = round(x · 2
k − 1

cl
) · cl

2k − 1
(4)

Note that in the case of cl = 1, it is the quantizer claimed by
(Zhou et al. 2016), in which they need to limit the activation
of previous layers to [0,1] by passing through a unknown
bounded function h and then use the linear quantizer. In ad-
dition, sometimes we need the activations to be some special
type. For instance, if all the operands are power of two, the
intrinsic benefit is that it can employ cheap bit shift opera-
tions to replace costly MAC operations, which is convenient
to be deployed in FPGA devices. Therefore, we provide an-
other logarithmic quantizer to discrete the activations to be
either powers of two or zero, which is defined as follows:

x̃ = 2 clamp(blog2(x)c, n−2
k, n), n = log2(cl) (5)

where bxc is the greatest integer less than or equal to x, and
clamp(x, a, b) := max(a,min(b,x)). The quantization proce-
dure can be described as: we take logs to the base 2, round
down to the nearest integer, then restrict the value to the
range [2n−2

k

, 2n] according to the bit-width k and the max-
imum value cl and finally invert the log operation by rais-
ing 2 to that power. In short, the core idea is to simply find
the closest neighbor, either power of two or zero, of the in-
put x. In addition, blog2(x)c is just the exponent compo-
nent for a floating-point number and multiplications can be
transformed into inexpensive bitwise shift operations (i.e.,

𝛼1

𝑤

𝑤

(a) Level1

𝑤

𝑤

𝛼1 + 𝛼2

𝛼1 − 𝛼2

(b) Level2

𝑤

𝛼1 − 𝛼2 + 𝛼3

𝛼1 + 𝛼2 − 𝛼3

𝛼1 − 𝛼2 − 𝛼3

𝛼1 + 𝛼2 + 𝛼3

𝑤

(c) Level3

Figure 3: Illustration of multi-level binarization

w × 2x = w << x). Therefore, this quantizer is not only
easy to implement in practical programming and dedicated
hardware but also beneficial to the convolutional operation
in comparison to linear quantization.

For the backward pass, we directly use STE to estimate
the gradient: ∂`∂x = ∂`

∂x̃ .

Binary Weights
Forward Approximation To approximate the weights
precisely, an effective strategy to binarize the weights in the
forward pass, which we adopt in this work, has been pro-
posed by (Guo et al. 2017). They use multiple binarizations
for weights by tackling the following problem:

min
{αi,bi}m−1

i=0

∥∥∥∥∥w −
m−1∑
i=0

αibi

∥∥∥∥∥
2

,with bi ∈ {−1,+1}n. (6)

However, directly minimizing above problem seems NP-
hard and in particular, they proposes a heuristic (or greedy)
algorithm, in which bi and αi are selected to be the current
optimum by sequentially minimizing the residue ri. That is,

min
αi,bi

‖ri − αi+1bi+1‖2 ,with ri = w −
i−1∑
k=0

αkbk. (7)

Through derivative calculations, the optimal solution is
given as

α∗i =
1

n
‖ri‖`1 and b∗i = sign(ri). (8)

where ri indicates the approximation residue after combin-
ing all the previously generated tensor(s). More details can
be found in (Guo et al. 2017).

Backward Approximation While it is easy to binarize
the weights through sign function in the forward pass, we
have to maintain full-precision values before the discretiza-
tion since binary weights cannot be used to accumulate the
high precision gradients. In backward pass, we need the gra-
dients from binarized weights flow to the original real-value
weights.

However, the quantization function used to binarize
weights w to w̃ contains the sign function, which is in-
compatible with backpropagation, since its derivative is zero
for all non-zero inputs. Generally, incorporating quantiza-
tion steps in feed-forward prevents direct training of neural
network with the BP algorithm, as mathematically any quan-
tization function will have zero derivatives. To remedy this,
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(Courbariaux, Bengio, and David 2015) propose to use the
”straight-through estimator (STE)” to assign non-zero gra-
dients for quantization functions. Assume ` as the cost func-
tion, (Rastegari et al. 2016) adopts the following formula to
calculate the gradient with respect to w. That is,

∂`

∂wi
=

∂`

∂w̃j

∂w̃j

∂wi

=
∂`

w̃i
(
1

n
+ αwi1|wi|≤1)

(9)

Equation (9) does allow the gradient to flow in backward
pass during training. Nevertheless, we find it is still not pre-
cise enough since the deduction process ignores the impact
of other components in the weight filter when introducing
the scale factor α. To eliminate the gradient mismatch, we
derive a more effective gradient with respect to real-valued
weights in the backpropagation.

∂`

∂wi
=

n∑
j=1

(
∂`

∂w̃j

∂w̃j

∂wi
)

=
s(wi)

n

n∑
j=1

(
∂`

∂w̃j
s(wj)

)
+

∂`

∂w̃i
1|wi|≤1α

(10)

where s(wi) denotes the weight’s sign. The detailed deduc-
tion is summarized in the supplementary material. In prac-
tice, we show that training neural network with Equation
(10) can achieve marginally better accuracy.

We call this method multi-level binarization, where m is
the number of level that weights are binarized and Fig. 3
show its forward approximation while the backward pass is
omitted in the graph.

In summary, our overall training procedure is summarized
in Algorithm 1.

Discussion:
Some recent works also proposed similar idea of multi-level
binarization. (Guo et al. 2017), (Li et al. 2017) apply this
strategy to the activations instead of weights, but our choice
is based on such intuition that weights are saved and fixed
after the training, we approximate those real-valued weights
with binary values as much as possible to minimize accu-
racy degradation. Activations, by contrast, change all the
time and no final optimal values to be stored, thus making
them less suitable to be quantized in this way. In comparison
with (Guo et al. 2017), we formulate more precise gradient
of the loss with respect to real-valued weights to alleviate
the gradient mismatch during training.

Experiments
In this section, we empirically validate the superiority of the
proposed quantization scheme for CNNs with binary wights
and low bitwidth activations on the CIFAR-10 and ImageNet
(ILSVRC2012) datasets. We report the results in terms of
the top-1 and top-5 errors. We test on several representa-
tive CNNs including: VGGNet (Simonyan and Zisserman
2014), AlexNet (Krizhevsky, Sutskever, and Hinton 2012)
and ResNet (He et al. 2016). For all experiments, we use the

Algorithm 1: Training a L-layers DNN with binary
weights and low-bitwidth activations. Note that, convo-
lutional operation ∗ becomes the fixed-point accumula-
tions or xnor bitwise operation.

Input: Minibatch of inputs & targets (x , y∗); current
weights wt; CReLU parameters ctl ; multi-level
m; task-related loss term C, regulation term
coefficient λ; learning rate ηt.

Output: Updated wt+1, ct+1
l and ηt+1.

Forward propagation:
for l := 1 to L do

Compute multi-level binary weights:
for i := 0 to m− 1 do

Calculate bi and ai using Eq. (8)
Update ri using Eq. (7)

end
w̃l =

∑m−1
i=0 αibi

yl = w̃l ∗ x̃l−1 =
∑m−1
i=0 (αi(bi ∗ x̃l−1))

xl ← CReLU(yl, cl)
Apply activations quantization method:
xl ← x̃l using Eq. (4) or Eq. (5)

end
Compute total loss ` with yL and target y∗:
`← C(yL, y∗) + λ

∑L
l=1 c

2
l

Backward propagation:
Compute gardients of the final layer ∂`

∂x̃L

for l := L to 1 do
( ∂`∂cl

, ∂`∂yl
)← BackCReLU(yl, cl) using Eq. (2)

∂`
∂w̃l

= ∂`
∂yl

x̃T
l−1

∂`
∂x̃l−1

← w̃T
l

∂`
∂yl

Flow the gradients to original real-value weights:
∂`
∂wl
← ∂`

∂w̃l
using Eq. (10)

end
Update the parameters:
wt+1← UpdateWeights(wt, ∂`

∂wl
)

ct+1
l ← UpdateCReLU(ctl ,

∂`
∂cl

, λ)
ηt+1← UpdateLearningRate(ηt, t)

SGD solver with the momentum of 0.9 and set the weight-
decay to 0 since we no longer encourage the weights to be
close to 0. The initial learning rate is set to 0.1 and is di-
vided by 10 once the validation error exceeds the best record.
We remove the standard dropout layer in AlexNet due to the
quantization itself can be considered as a kind of regulariza-
tion. Our implementation is based on Pytorch.

Datasets
CIFAR. The CIFAR-10 dataset (Krizhevsky and Hinton
2009) is image classification benchmark dataset containing
32×32RGB images in a training set of 50000 and a test set
of 10000. It consists of 10 categories, like airplanes,trucks,
birds, frogs, cats, horses, deer, dogs, ships and automobiles.
Each category contains 5000 training images and 1000 test-
ing images. For each image in the CIFAR-10 dataset, we
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Figure 4: The error curves of training (thin) and test (thick) for relu, crelu and relu with fix clamping values (denoted as relu+c)
activation functions on CIFAR-10 dataset. (a)(b) and (c)(d) are trained without and with quantization, respectively.

adopt the standard data augmentation scheme: we pad 2 pix-
els in each side of images and randomly crop 32×32 size
from padded images during training. Original 32×32 images
are used to test the networks during inference.

ImageNet. ImageNet is one of the most challenging im-
age classification benchmarks, which has about 1.2million
training images and 50 thousand validation images, and
these images cover 1000 object classes. In all ImagNet ex-
periments, we resize all the images to 256×256. The images
are then randomly clipped to 224×224 patches with mean
subtraction and randomly flipping. No other data augmenta-
tion tricks are used in the training.

Results for Binary Weights
We firstly compare the performance of our binarization
method with that of other binary-weight models: Binary-
Connect (Courbariaux, Bengio, and David 2015), BWN-
net (Rastegari et al. 2016) and a recent work Sketch (Guo
et al. 2017). In this section, all models only binarize the
weights and keep the activations to be of full-precision.
We start training with pre-trained model rather than from
scratch. We use a variant of VGG-Net with only 3 convolu-
tional layers rather than 5. Table 1 shows that the accuracy of
our binary model is improved as the number of levels is in-
creased and even outperforms its full-precision counterpart.

We also report our results with ResNet-18 in Table 2. It
can be observed that our results have better performance
than a recent state-of-the-art work Sketch by a little mar-
gin though we adopt the same weights binarization method
as them in the forward pass except the backward pass. We
conjecture that it is possible (and even likely) that our re-
fined backpropagation maybe better suited for gradient to
flow. The results of BWN-net and Ours (m = 1) in Table 1
validate this point again.

Although, the better results can be achieved by increas-
ing the number of level, it also increases some extra com-
putational overhead during training and inference, which is
a trade-off between accuracy and complexity. Therefore, we
adopt two-level (m = 2) binarization to keep the balance in
the following experiments.

Comparison with the state-of-the-art
We then integrate the proposed weights and activations
quantization into the training of neural networks. We present

Network Top1 error Top5 error Top1 gap
VGG-variant ref 7.24% 0.90% -
Binary-Connect 8.12% 1.23% 0.88%

BWN-net 7.84% 1.09% 0.60%

Ours
m = 1 7.60% 0.78% 0.36%
m = 2 6.86% 0.73% -0.38%
m = 3 6.42% 0.67% -0.82%

Table 1: This table compares top1 and top5 error of binary
weight models on Cifar-10. m is the number of level that
weights are binarized.

Network Top1 error Top5 error Top1 gap
ResNet-18 ref 31.2% 11.0% -

BWN-net 39.2% 17.0% 8.0%
Sketch (dir.) 32.7% 11.8% 1.5%
Ours (m = 2) 32.5% 11.4% 1.3%

Table 2: This table compares top1 and top5 error of binary
weight models on ImageNet. The test error of BWN-net &
Sketch are directly cited from (Guo et al. 2017).

a comparison between our quantized model with other
state-of-the-art models, including XNOR-Net, DoReFa-
Net (Zhou et al. 2016), HWGQ-Net (Cai et al. 2017) on the
ImageNet classification task. Note that we keep the gradients
being full-precision in DoReFa-Net and follow the practice
that leaving the first and last layer in full precision during
training since quantizing those layers have been reported to
significantly degrade accuracy. The results are shown in Ta-
ble 3. It can be seen that with binary weights and 2-bit activa-
tions, the proposed approach achieves lower accuracy degra-
dation that demonstrates the superior performance relative to
previous state-of-the-art works.

Ablation study
In this subsection, we try to empirically analyze the impact
of CReLU activation function and bitwidth of activations,
which are tightly correlated with our proposed quantization
approach.

The effect of activation function While we have provided
theoretical analysis on why our CReLU works, it is neces-
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Network Bit-width Top1 error Top5 error Top1 gap Top5 gap

AlexNet

reference 32 + 32 42.8% 19.7% - -
XNOR-Net 1 + 1 55.8% 30.8% 13.0% 11.1%
DoReFa-Net 2 + 2 53.6% 23.2% 10.8% 3.5%
HWGQ-Net 1 + 2 47.3% 23.7% 4.5% 4.0%

Ours 1 + 2 46.2% 22.4% 3.4% 2.7%

ResNet-18

reference 32 + 32 31.2% 12.4% - -
XNOR-Net 1 + 1 46.8% 28.8% 15.6% 16.4%
DoReFa-Net 2 + 2 39.1% 17.6% 7.9% 5.2%
HWGQ-Net 1 + 2 40.4% 17.8% 9.2% 5.4%

Ours 1 + 2 38.4% 16.6% 7.2% 4.2%

Table 3: Comparison with the state-of-the-art models with binary weights and low-bitwidth activations using AlexNet and
ResNet-18. The bit-width before and after “+” is for weights and activations respectively. Note that all the comparing results
are reported in terms of accuracy in the original papers, which are converted to corresponding error herein.

sary to empirically demonstrate its effectiveness relative to
other activation functions. To this end, we carry out a com-
parative study with ReLU and ReLU with fixed clamping pa-
rameters. Both of them are widely used in previous methods
of quantizing activations for CNNs and achieve state-of-the-
art results. Note that, for a fair comparison, the experiment
setting is identical differing only the activation function.

The results are summarized in Fig. 4, in which we present
the training and test errors for the ResNet-20 and ResNet-32
with appropriate changes for the 10-class Cifar-10 dataset.
Fig. 4(ab) show that CReLU achieves comparable perfor-
mance with ReLU without quantization, which is also ver-
ified by our theoretical analysis. In Fig. 4(cd), when quan-
tization is applied during training, it can be observed that
the significant accuracy degradation when ReLU is used as
activation function.

In short, this comparative study illustrates the effective-
ness and robustness of CReLU relative to other activation
functions with and without quantization.

The effect of activation bitwidth This set of experiment
is performed to explore the influence of different combina-
tions of bitwidth for the final accuracy. We adopt linear acti-
vation quantizer with ResNet-50 on ImageNet for analysis.
The results are provided in Table 4. Generally, with binary
weights and increasing bitwidth of activations, we can find
the accuracy degradation is steadily reduced. For example,
with binary weights and 5-bit activations, the top-1 accu-
racy drop is only 0.3% and the top-5 accuracy even increases
0.2% relative to its full-precision counterpart.

Bit-width Top1 error Top5 error Top1 / Top5 gap
32 + 32 23.1% 6.9% - / -

1 + 2 27.8% 9.5% 4.7% / 2.6%
1 + 3 26.0% 8.8% 2.9% / 1.9%
1 + 4 24.7% 7.4% 1.6% / 0.5%
1 + 5 23.4% 6.7% 0.3% / -0.2%

Table 4: Validation accuracy for ResNet50 on ImageNet
with different bitwidths of activations.

Computation Complexity Analysis
In this section, we measure computational complexity by
FLOPs, the number of floating-point operations, which is
widely used in previous papers. For a standard convolution,
we have coutcinwhwouthout floating point operations (the
multiplication and addition are considered as a single cy-
cle operations herein). On the modern CPUs, we can per-
form 64 binary operations in one clock of CPU (Rastegari et
al. 2016), which means one floating-point operation roughly
equals to 64 binary operations within one clock cycle. When
we adopt m-level binarization for weights and 1-bitwidth ac-
tivations, we have mcoutcinwhwouthout binary operations.
In addition, we needmwouthout scaling floating-point oper-
ations. Therefore, the speedup ratio can be computed as:

s =
coutcinwhwouthout

m
64coutcinwhwouthout +mwouthout

(11)

Considering ResNet-18 for example, the full precision
baseline has 1.81 × 109 FLOPs and our corresponding low
precision network has only 1.67× 108 FLOPs, thus we gain
10.86× theoretical speedup. Note that the speedup ratio will
relatively reduce for some small non-binary bitwidth of ac-
tivations (e.g. k = 2, 4), but fixed-point addition or bit shift
operation are still enough efficient to reduce inference time
for specialized hardwares.

Conclusions
In this paper, we firstly design a new activation function,
namely CReLU, to keep the balance between clamping error
and quantization error. We further complement this design
with experimental results and theoretical analysis to ver-
ify its tremendous advantage over conventional ReLU func-
tion. Moreover, we propose multi-level binarization method
and linear or logarithmic quantizer for simultaneously bi-
narizing the weights and quantizing the activations to low
bitwidth. Extensive experimental results demonstrate that
the proposed approach show superiority over the state-of-
the-art methods.

In future, we will explore the possibility of generating the
work to other computer vision tasks such as object detection
and semantic segmentation.
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