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Abstract

Model-based reinforcement learning (RL) methods attempt
to learn a dynamics model to simulate the real environment
and utilize the model to make better decisions. However, the
learned environment simulator often has more or less model
error which would disturb making decision and reduce perfor-
mance. We propose a bootstrapped model-based RL method
which bootstraps the modules in each depth of the planning
tree. This method can quantify the uncertainty of environ-
ment model on different state-action pairs and lead the agent
to explore the pairs with higher uncertainty to reduce the
potential model errors. Moreover, we sample target values
from their bootstrap distribution to connect the uncertain-
ties at current and subsequent time-steps and introduce the
prior mechanism to improve the exploration efficiency. Ex-
periment results demonstrate that our method efficiently de-
creases model error and outperforms TreeQN and other state-
of-the-art methods on multiple Atari games.

Introduction
Model-based reinforcement learning (RL) methods learn a
model of the environment from its experience. Using the
internal model to simulate the environment, the agent can
plan and avoid making poor decisions. However, building
a perfect environment model without errors in complex do-
mains is hard, and it would be harder when the transition
and reward functions of the environment are stochastic. The
model errors would mislead the agent and degrade its perfor-
mances during the process of planning and deciding (Talvitie
2014). Some methods (Tamar et al. 2016; Silver et al. 2017;
Oh, Singh, and Lee 2017; Farquhar et al. 2017) attempt to
replace observation-prediction model with value-prediction
model to decrease prediction error. There are also several
methods trying to quantify the errors (Asadi, Misra, and
Littman 2018) or make robust decisions based on the im-
precise model (Racanière et al. 2017).

Different from above model-based methods, we attempt
to actively find and reduce the potential model errors. We
proposed a bootstrapped model-based RL method which can
utilize bootstrap to quantify the uncertainty of predicted re-
wards and Q-values on the different state-action pairs and
lead the agent to explore the pairs with high uncertainty. The
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core idea is as follows. The method builds up multiple envi-
ronment models with the identical network architectures and
randomly samples different experience replays to train these
models. Each learned model can be seen as a sample from
the environment model’s approximate posterior. Then the
agent randomly samples an environment model and utilizes
it to predict and plan in T steps. For the state-action pairs
with high uncertainty, the rewards or Q-values estimated by
different environment models would fluctuate more greatly.
As a result, they would be more likely to be predicted as
large values by some models, and the pairs would be more
likely to be visited. Thus, this bootstrap method can guide
the agent to explore the state-action pairs which are ‘un-
familiar’ for environment model and reduce the potential
model errors.

We apply this idea to TreeQN (Farquhar et al. 2017),
a model-based RL method which learn a value-prediction
model and utilizes the model to build a look-ahead tree to
plan. The transition, reward and value functions of TreeQN
form the environment model, thus we would quantify the un-
certainty of these functions through the bootstrap method.
Considering that the model errors generally increase with
the planning depth, we establish multiple environment mod-
ule sets to quantify the uncertainty in different depth. Fur-
thermore, we construct the look-ahead trees through sam-
pling modules from each set and using them to generate
the terms in different depth of the tree. Randomly gener-
ated trees are utilized to select the appropriate actions, cal-
culate the target values and optimize the environment model
in the same way of TreeQN. As each module is trained by
the re-sampled transitions, the models assembled by them
can be considered as the bootstrap estimates of the environ-
ment model. Thus, the target Q-values estimated based on
these models reflect the uncertainties of Q-value estimation
at subsequent time-steps. The uncertainties on current and
subsequent time-steps can be connected when the Q-value
is updated using the target Q-values at subsequent states,
which can help our method to learn the uncertainty of Q-
estimator faster.

In addition, we introduce prior mechanism (Osband and
Van Roy 2017; Osband, Aslanides, and Cassirer 2018) by
adding a frozen random prior network, to our bootstrapped
model-based RL method. We add each module in total mod-
ules sets with a prior network which has the same architec-
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ture as the module but the parameters in the prior network
are fixed as random initial parameter.

Experiment results show that our method outperforms
TreeQN and other state-of-the-art methods in multiple do-
mains. Our method can obviously decrease the reward pre-
diction losses, which illustrates that the model errors are in-
deed diminished. Additionally, we prove the importance of
the mechanisms of sampling targets from their bootstrap dis-
tribution and adding prior network through removing them
respectively.

Related Work
Deep Q-Network (DQN) proposed by (Mnih et al. 2015)
trains deep neural networks to estimate the action-values (or
Q-values) and solves the problem that action-value function
is divergent when it is approximated with neural networks.
The performance of DQN is comparable to human play-
ers on Atari games (Bellemare et al. 2013), which means
that reinforcement learning (RL) approaches can be applied
to complex, high-dimensional environments. Many varia-
tions of DQN are proposed to solve the shortcomings in
DQN or adapt it to specific environments, like (van Hasselt,
Guez, and Silver 2016; Wang et al. 2016; Schaul et al. 2015;
Osband et al. 2016; Fortunato et al. 2017; Bellemare, Dab-
ney, and Munos 2017; Hausknecht and Stone 2015).

Different from the above model-free methods, model-
based RL methods learn an environment model and plan
with the help of this model. Dyna-Q (Sutton 1990) learns
an observation-prediction model and uses the samples gen-
erated by the environment model and obtained from the
real environment for Q-learning. Imagination-augmented
agents (Weber et al. 2017) use the environment model to
generate rollout trajectories and aggregate them to improve
policies through RNN. This kind of environment models
can also be used to improve exploration (Oh et al. 2015;
Chiappa et al. 2017).

As the observation-prediction model is difficult to build
for the environments with large observation space, some en-
vironment models are learned in the abstract state space and
predict future rewards or values instead of future observa-
tions. Predictrons (Silver et al. 2017) learn an abstract en-
vironment model to predict rewards and values over multi-
ple planning depths. However, it can only be used for policy
evaluation. Value Prediction Networks (VPNs) (Oh, Singh,
and Lee 2017) is on the basis of the similar idea but uses
the abstract model to construct a look-ahead tree and aggre-
gate the predicted rewards and values to estimate Q-values.
And these Q-values are used to calculate targets and choose
actions. Like VPNs, TreeQN (Farquhar et al. 2017) also
builds a tree for planning, but it replaces convolutional tran-
sition functions with full-connnected ones to simplify train-
ing. What’s more, the environment model is embedded in
the planning algorithm to optimize.

However, it’s hard to learn an accurate model for the com-
plex environments. Imagination-augmented agents attempt
to make robust decisions based on the imprecise model.
VINs, Predictrons, VPNs and TreeQN replace observation-
prediction models with value-prediction models to reduce

model error. Different from them, our method actively seeks
and reduces the potential model errors.

Background
Deep Q-Network (DQN)
Reinforcement learning (RL) addresses the problem that an
agent learns to interact with the environment to maximize
the return. At each time step t, the agent receives an ob-
servation st from the environment, and responds with an
action at selected from the set of all possible actions A.
Then the agent receives a reward rt and the next observa-
tion st+1. These interactions would continue until the en-
vironment arrives some terminal states. This process can
be viewed as a Markov Decision Process, which is de-
fined by the tuple (S,A, T ,R), where S is the state space,
T = P (st+1 = s′|st = s, at = a) is the transition function,
and R = P (rt = r|st = s, at = a) is the reward function.
The agent’s goal is finding a good policy π to maximize the
return, which is defined as the discounted sum of future re-
wards starting from time step t, Rt =

∑inf
k=0 γ

krt+k, where
γ ∈ (0, 1] is the discount factor.

In value-based reinforcement learning, the agent learns to
estimate the expected return starting from given state st and
action at, denoted as Q-value Q(st, at). DQN uses a convo-
lutional neural network to estimate Q-values. At time step
t, the agent selects an action according to the estimated Q-
values Q(st, ·) under ε-greedy scheme. The neural network
is optimized by minimizing the Q-value loss,

LQ =
(
R̂t −Q(st, at; θ)

)2
, (1)

where R̂t = rt + γmaxaQ(st+1, a; θ
−) is the approxima-

tion of the return, and θ− are target network parameters.
Specially, in the n-step DQN (Mnih et al. 2016), R̂t is set
as
∑n−1

k=0 γ
krt+k + γn maxaQ(st+n, a; θ

−) to improve the
stability and speed of the algorithm.

Bootstrapped DQN
Efficient exploration is an important challenge in reinforce-
ment learning field. The authors of (Osband et al. 2016) be-
lieve that an available solution is quantifying uncertainty
in value estimates and encouraging agent to explore the
state-action pairs with high potential benefits. They pro-
pose bootstrapped DQN which combines DQN with a non-
parametric bootstrap method and can quantify uncertainty
over Q-values. In details, bootstrapped DQN has K ∈ N
Q-value functions Qk(s, a; θ), k = 1, 2, . . . ,K which share
the same network except the last layer. The target network
has the same architecture so that Q-value functions can
be trained against their respective target functions. In each
episode, a Q-value function Qk(s, a; θ) is randomly sam-
pled and guides the agent to select optimal actions estimated
by itself. Before each replay (s, a, r, s′) is added into the re-
play buffer, it is tagged with an independent Bernoulli mask
w1, w2, . . . , wK ∼ Ber(p), where p is the probability of
data sharing. The mask identifies which Q-value functions
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can be trained on the replay. In this way, each Q-value func-
tion is trained by different samples of the total replays and
can be seen as an approximate bootstrap sample.

TreeQN
TreeQN (Farquhar et al. 2017) is a model-based RL method
which uses a recursive architecture for tree planning.
TreeQN contains five main modules: The first module is en-
coder function z0|t = encode(st; θen), which embeds the
observed state st to the state representation z0|t. The sec-
ond one is transition function zd+1|t = t(zd|t, ai; θt), which
generates the next state representation zd+1|t for the action
ad ∈ A in state zd|t. zd|t denotes the predicted state repre-
sentation at time t after d internal simulated transitions. The
third one is reward function r(zd|t, ai; θr), which predicts
the reward for state-action pair (zd|t, ai). The fourth one is
value function v(zd|t; θv), which estimates the value of the
state representation v(zd|t). The last one is backup function
b(x), which mixes the intermediate values and rewards into
the final estimate of Q(st, ai).

TreeQN utilizes the transition and reward functions re-
cursively to set up a D-depth tree containing the predicted
state representations and rewards for all possible action se-
quences {(a1, a2, . . . , aD)|ad ∈ A}, where D is predefined
planning depth. Then TreeQN uses the value function and
the predicted rewards to mix the returns along each path in
the tree:

Q(zd|t, ai) = r(zd|t, ai) + γV (zd+1|t)

V (zd|t) =

{
v(zai

d|t), d = D

(1− λ)v(zai

d|t) + λb(Q(zai

d|t, aj)), d < D

In this way, TreeQN refines its Q-value estimation via inter-
nal transition, reward, and value functions.

It is worth noted that the architecture of TreeQN com-
bining all the five modules is differentiable. Thus it can be
trained with any deep RL algorithm by viewing the whole
planning network as Q-network. To train efficiently the in-
ternal environment model, a reward-prediction loss Lr is
added to the Q-value loss. The reward-prediction loss Lr

is defined as an L2 loss between the predicted reward rd|t
for the actual action sequence, and the true obtained reward
rt+d:

Lr =

D−1∑
d=0

(rd|t − rt+d)
2.

ATreeC (Farquhar et al. 2017) is proposed as an actor-
critic variant of TreeQN, which is implemented by convert-
ing the Q-valuesQ(s, a) to the policy π(s, a) with a softmax
layer.

Approach
Motivation
Model-based reinforcement learning methods focus on
learning a dynamics model to simulate the environment and
planning or making better decisions based on the simula-
tion results. These methods have good interpret-ability of

the obtained policies and can be effective in some domains.
But it is often difficult to build a highly accurate environ-
ment model in complex domains, especially when the transi-
tion and reward functions are stochastic. During the process
of planning and deciding, the model errors would mislead
the agent and degrade its performance (Talvitie 2014). The
model errors still exist whether the model’s prediction is the
next observation or the value of next state. There are some
methods attempting to quantify the errors (Asadi, Misra, and
Littman 2018) or make robust decisions based on the impre-
cise model (Racanière et al. 2017).

Different from them, we attempt to actively find and re-
duce the potential model errors. The bootstrap is a data-
based simulation method for assigning a level of confidence
on the statistics estimates (Efron and Tibshirani 1994). We
consider utilizing bootstrap to quantify the uncertainty of en-
vironment model’s predictions on the different state-action
pairs and guide the agent to explore the pairs with high un-
certainty. As a result, the uncertainty decreases with the sam-
pling number of these pairs increasing.

Bootstrapped Model-Based RL
In this section, we first take a brief look at the idea of our
bootstrapped model-based RL method, and then we would
introduce it in details.

The core idea of bootstrap is to “approximate a population
distribution by a sample distribution” (Efron and Tibshirani
1994; Osband et al. 2016). For a data set D and an estima-
tor ϕ, the bootstrap sample ϕ(D̃) is generated by taking the
estimator ϕ on the data set D̃ which is sampled uniformly
with replacement from D and has the same size as D.

Our goal is quantifying the uncertainty of environment
model through the bootstrap. In this problem, the data set
is the total experience transitions and the estimator is the en-
vironment model. Thus, we build up multiple environment
models and randomly sample the experience transitions to
train these models. In this way, each model can be consid-
ered as an approximate bootstrap sample. When the agent
needs environment model to predict and plan, we randomly
sample an environment model, and the agent will utilize it
in the episode (or T steps).

For the state-action pairs which are less visited or have
more stochastic reward and transition functions, the learned
environment models have more uncertainty on these pairs
and the values estimated by different environment models
would fluctuate more greatly. As a result, the rewards or Q-
values on the pairs are more likely to be estimated as large
value by some environment models and the pairs are more
likely to be visited. Therefore, this bootstrap method can re-
duce model error by guiding the agent’s exploration.

Now, we apply this idea to TreeQN which embeds the
environment model in its Q-network through constructing
a look-ahead tree and aggregating the predicted rewards
and values to estimate Q-values. The overall framework is
shown in Figure 1. TreeQN contains five main modules:
encoder function encode(st; θen), action-dependent transi-
tion function t(zd|t, ai; θt), action-dependent reward func-
tion r(zd|t, ai; θr), value function v(zd|t; θv) and backup
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Figure 1: Overview of our bootstrapped model-based reinforcement learning method. To quantify uncertainty in model esti-
mation, we establish D + 1 environment module sets. Each set contains K groups of modules, each of which is composed of
transition module t(s, a), reward module r(s, a) and value module v(s). Each T steps, we randomly sample a group from each
set and utilize them to build the look-ahead tree. The tree is embedded in the Q-network to guide the action selections. At every
update iteration, we build M different Q-networks, and their parameters are updated by minimizing the n-step Q-value loss and
the reward prediction loss on the experience tuples (st, at, rt, st+1).

function b(x). Among them, the transition, reward and value
functions form the environment model, thus we would quan-
tify the uncertainty of these functions through the bootstrap
method.

Due to the fact that the model errors accumulate with
the times of intermediate transiting, the uncertainty would
also increase with the depth d of the planning tree. In ad-
dition, in the stochastic environment the uncertainty of fu-
ture states st′ and rewards rt′ also increase with the distance
from current time to time t′. Therefore, we establish D + 1
environment module sets to quantify the uncertainty of dif-
ferent planning depth. In particular, the d-th set is built to
quantify the uncertainty of rewards r(zd−1|t, ai) and val-
ues v(zd−1|t) predicted on the state representation zd−1|t.
All modules except encoder function and backup function
use different parameter for different planning depth, like
t(zd|t, ai) = t(zd|t, ai; (θt)

d).
Each environment module set Sd contains K groups of

modules. Each group Gd
k contains independent transition

module tdk(s, a; (θt)
d
k), reward module rdk(s, a; (θr)

d
k) and

value module vdk(s; (θv)
d
k). The modules of each group have

the same network architecture but are randomly initialized
with different parameters. As the environment model is also
used to compute the target values, we establish anotherD+1
environment module sets S−d for target network.

At the beginning of each T steps, we randomly select a
group gdk from the set Sd for each depth d ∈ {1, 2, . . . , D +
1}. Then we build the look-ahead tree to plan and decide
in the similar way of TreeQN. The predictions zd, rd and
vd in each depth of the tree is predicted by the functions
t(zd|t, ai; (θt)

d
k), r(zd|t, ai; (θr)

d
k) and v(zd|t; (θv)dk) in the

sampled group gdk .
At every update iteration, we randomly sample M groups

gdkm
from the set Sd for each depth with replacement.

Following the method described above, we can build M
look-ahead trees and the m′-th one is build by the groups
gdkm′ , d = 1, 2, . . . , D + 1. Then we use these trees to
estimate the Q-values Qm(st, at) and rewards rmd|t, respec-
tively. We also generate M look-ahead trees through sam-
pling from the target module sets S−d and utilize them to
estimate target values Q−m(st, at). Then we update the pa-
rameters of the groups sampled from Sd by minimizing the
n-step Q-value loss and the reward prediction loss on the ex-
perience transitions:

Ltotal = Lnstep−Q + Lr

=

M∑
m=1

[
(R̂m

t −Qm(st, at))
2 +

D−1∑
d=0

(rmd|t − rt+d)
2

]
,

where R̂m
t is set as

∑n−1
j=0 γ

jrt+j + γn maxaQ
−
m(st+n, a).

The modules’ parameters in target modules sets S−d are up-
dated by copying the ones in Sd every Ttarget steps. At the
same time, the encoder module in the target network would
be updated.

In this way, each module group is trained with random
samples from total experience transitions and the model as-
sembled by them can be considered as the bootstrapped es-
timates of the environment model. The groups in target sets
are copied from them, so the environment model embedded
in target network can also be considered as the bootstrapped
estimates. The target values estimated based on different
sampled models can seen as a sample from their bootstrap
distribution and reflect the uncertainty at subsequent time-
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(a) Reward Prediction Loss (b) Average Rewards

Figure 2: Results for Box Pusing. The x-axis corresponds to time-step. The y-axes in two figures correspond to average reward
over 100 episodes and average reward prediction loss over 800, 000 time-steps respectively. Lrd means the reward prediction
loss in the d-th planning depth. The results of five repeated experiments are plotted faintly, while the mean of them is plotted in
bold.

steps. When the Q-value is updated using the target Q-values
at subsequent states, the uncertainties of Q-value estimation
on current state and the ones on subsequent states can be
connected. Thus, we expect that our method can propagate
the uncertainty across multiple time-steps and learn the un-
certainty of Q-estimator faster.

To improve the exploration efficiency, we introduce prior
mechanism (Osband and Van Roy 2017; Osband, Aslanides,
and Cassirer 2018), adding a frozen random prior network,
to our bootstrapped model-based RL method. We add each
module f(x; θ) in total modules sets with a network p(x; θ)
which has the same architecture as f(x; θ) but parameters θ
are fixed as random initial parameter. And then the output
of each module f(x; θ) is replaced by f(x; θ) + λpp(x; θ),
where λp ∈ R+ is the prior scale.

Experiments
In this section, We evaluate our method in a box-pushing
environment (Farquhar et al. 2017) and nine complex Atari
environments (Bellemare et al. 2013). The main goals of
the experiments are as follows. The first one is to confirm
whether our method can decrease model errors. The sec-
ond one is to determine whether our method outperforms
TreeQN and other state-of-the-art methods. The last one is
to verifying the rationality of bootstrapping the modules and
analyze the influence of the prior mechanism and the ap-
proach of calculating target values to our method.

Experiment Setting

Environment The nine complex Atari environments are
Alien, Amidar, Crazy Climber, Enduro, Frostbite, Krull, Ms.
Pacman, Q*Bert and Seaquest while the frameskip is set to
10. These environments are also used to evaluate VPN or
TreeQN in (Oh, Singh, and Lee 2017; Farquhar et al. 2017).

The environment of “Box Pushing” is proposed by (Far-
quhar et al. 2017). At the beginning of each episode, the
agent, 12 boxes, 5 goals and 6 obstacles are randomly placed
on the center 6 × 6 tiles of an 8 × 8 grid. The obstacles
are passable, but they would generate a penalty if the agent
or boxes are moved onto them. The agent should push the
boxes into arbitrary goal in as few steps as possible while
avoiding itself and boxes moving on the obstacles or leaving
the grid. The episode would terminate if the agent leaves the
grid, no box exists on the grid or time runs out. More details
can be seen in the original paper (Farquhar et al. 2017).

Network Architecture The modules of TreeQN mostly
remain their original architecture, so we only give a brief
description. Encoder function is a simple CNN, consisting
of two convolutional layers and a fully-connected layer. Re-
ward function consists of two fully-connected layers, and the
number of hidden and output units are 64 and |A| respec-
tively, where |A| is the size of action space. The i-th out-
put of last layer corresponds to the reward predicted for the
i-th action. Value function consists of one fully-connected
layer. Transition function is composed of a shared action-
independent layer and an action-dependent layer. The state
representations embedded by encoder function or predicted
by transition function are L2 normalized to ensure the sta-
bility of transition function. Backup function is the standard
max function. All nonlinear activation is set to rectified lin-
ear unit.

Hyperparameters Our algorithm is based on syn-
chronous n-step DQN 1, the synchronous variant of asyn-
chronous n-step DQN (Mnih et al. 2016) which has equal
performance but makes effective use of GPUs. tmax in n-
step DQN is set to 5 and the number of threads is set to
16. The target network is updated for each 10,000 steps.

1https://blog.openai.com/baselines-acktr-a2c/
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Figure 3: Learning curves on Atari games. The x-axis and y-axis correspond to step and average reward over 100 episodes,
where one step is equal to 10 atomic Atari time-steps. The results of five repeated experiments are plotted faintly, while the
mean of them is plotted in bold.

ε-greedy exploration decays linearly from 1.0 to 0.0 over
the first 4 million steps. Owing to frameskipping, one step
is equal to atomic Atari timesteps. We use RMSProp opti-
mizer (Tieleman and Hinton 2012), and the learning rate lr,
the decay of α and ε in it are 0.0001, 0.99 and 0.00001.

The hyper-parameters in TreeQN keep identical to orig-
inal paper. The weight of reward prediction loss is set to
1.0. The balance factor λ is set to 0.8. And we only test our
method in the case of planning depth D = 2.

Our method has several more hyper-parameters. We build
upK = 3 groups of modules in each set. Every T = 10, 000
steps, we randomly select D + 1 = 3 module groups to
build look-ahead tree. Then we sample M = 2 different
groups from each set when we optimize the network. For
the domains of Atari and Box Pushing, the prior scale λp is
set to 1.0 and 0.1, respectively.

Box Pushing
In this environment, we only compare our method with
TreeQN in two planning depth. We select the same evalu-

ation mechanism as (Oh, Singh, and Lee 2017; Farquhar et
al. 2017), that is, repeating the experiment five times with
different random seeds and recording the average reward Ri

t
over 100 episodes every 80, 000 time-steps. The results are
shown in Fig. 2a and Fig. 2b respectively.

From Fig. 2a, we observe that the prediction loss increases
with the depth. Thus quantifying the uncertainties of differ-
ent depth separately is a reasonable choice. The losses of
our method are obviously smaller than the ones of TreeQN,
which means that our method can actually improve the ac-
curacy of environment model.

Comparing the learning curves of two methods in Fig. 2b,
our method is only sightly superior to TreeQN. One expla-
nation could be that this environment is relatively simple, so
the improvement of model accuracy has less impact on the
final performance.

Atari
In this environment, we compare our method with DQN, n-
step DQN, VPN, TreeQN and ATreeC. We use the evalua-
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Table 1: Performance on Atari games. Each number represents the best mean score throughout training.

Alien Amidar CrazyClimber Enduro Frostbite Krull MsPacman QBert Seaquest
DQN 1804 535 41658 326 3058 12438 2804 12592 2951
VPN 1429 641 54119 382 3811 15930 2689 14517 5628

n-step DQN 1969 1033 71623 625 3968 7860 2774 14468 3465
TreeQN-1 2321 1030 107983 800 2254 10836 3030 15688 9302
TreeQN-2 2497 1170 104932 825 581 11035 3277 15970 8241

TreeQN-2-wide 2709 1296 111972 864 621 10845 3532 17570 8956
A2C 2673 1525 102776 642 297 5784 4352 24451 1734

AtreeC-1 3448 1578 102546 678 1035 8227 4866 25159 1734
AtreeC-2 2813 1566 110712 649 281 8134 4450 25459 2176

Our method 3291 2059 133190 1095 2889 12010 5406 27285 6415
simplified ensemble 3261 1188 129936 1107 1165 12437 4918 26718 4610
w.o. sampling target 2964 1527 130065 1111 4279 9590 4523 25844 5683

w.o. prior 3229 1888 132569 1079 6039 11981 5213 25723 7313

tion mechanism mentioned above to draw learning curves.
Like (Oh, Singh, and Lee 2017; Farquhar et al. 2017), we
calculate the mean of average rewards in the same time-
steps, Rt = 1

5

∑5
i=1R

i
t and select the best mean value

maxtRt of each game as the performance on the game.
Table 1 shows the results on nine Atari games. TreeQN-

d and ATreeC-d means the methods’ planning depth is d.
TreeQN-2-wide means a wide version of TreeQN which
doubles the size of the embedding dimension (1024 instead
of 512) and roughly has the same number of parameters as
the entire model of us. Our method outperforms TreeQN
baseline on 8 out of 9 Atari games, especially on Alien, Ami-
dar, Crazy Climber, Ms. Pacman and Q*Bert. Compared
with other state-of-the-art methods, our method still outper-
forms each of them on more than 7 games. We also find
that TreeQN-2-wide is slightly superior to TreeQN-2, but its
performance is weaker than our method except on Seaquest.
Thus, the performance boost of our method cannot merely
be attributed to the increase of the number of parameters.

Fig. 3 shows learning curves of DQN, TreeQN-2 and
our method. Our method learned significantly faster than
TreeQN on Amidar, Crazy Climber, Enduro, MS. Pacman
and Q*Bert. It is noteworthy that the learning curves of
TreeQN and our method are similar on all games in the first
4 million steps. At this stage, selecting actions is affected by
the ε-greedy strategy. After that, it depends entirely on our
bootstrap method and the results begin to increase rapidly on
most games. This phenomenon suggests that our exploration
strategy is better for model-based RL method than ε-greedy
strategy.

To verifying the rationality of bootstrapping the modules
at each depth, we test a simplified ensemble approach, boot-
strapping the entire TreeQN. This method is weaker than our
method except on Krull. And on Krull, the performances of
two method are roughly equal. One explanation could be that
our method can be seen as an ensemble ofKD models rather
than K models. More models mean higher performances.
But for some games, K models are enough.

To weigh the influence of sampling target values from
their bootstrap distribution, we directly select the groups
which have the same index as the groups sampled for the

online network. In other word, each module would have a
fixed target module for itself as the way in (Osband et al.
2016). After replacement, the performances on 6 out of 9
games are severely decreased. It suggests that our bootstrap
approach is well suited for model-based RL methods.

In addition, we also test to remove the prior mecha-
nism from our method. Without this mechanism, the per-
formances are obviously degraded on the games of Ami-
dar, Q*Bert and Ms. Pacman, and are improved on Frostbite
and Seaquest while the ones on the remaining games basi-
cally keep unchanged. Comparing the learning curves of the
methods with and without the mechanism, we observe that
the latter one is more unstable, especially on Amidar and
Crazy Climber. One explanation of these phenomena could
be that the prior mechanism encourages the agent to explore
the state-action pairs rarely visited. Thus, it can help the al-
gorithm to escape the local optimum and improve the stabil-
ity. However, it also increases the uncertainty of the predic-
tions on the rare state-action pairs, which reduces the exploit
efficiency on some games.

Conclusion

We propose a bootstrapped model-based RL method which
utilizes bootstrap to quantify the uncertainty of environment
model on different state-action pairs and reduce the model
errors by increasing the number of visiting the pairs with
high uncertainty. To improve exploration efficiency, we in-
troduce prior mechanism (Osband, Aslanides, and Cassirer
2018) into our bootstrapped method. We also de-correlate
bootstrapped samples between online planning and com-
puting bootstrapped targets. Experiment results show that
our method outperforms TreeQN and other state-of-the-art
methods in multiple domains. Additionally, our method can
efficiently decrease the prediction losses on rewards, which
suggests that the model errors are indeed diminished. When
bootstrapping the modules at each depth is replaced with
bootstrapping the entire TreeQN, the performances decrease
significantly, which illustrates our bootstrap method is more
reasonable.
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