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Abstract

Feature embedding aims to learn a low-dimensional vector
representation for each instance to preserve the information
in its features. These representations can benefit various off-
the-shelf learning algorithms. While embedding models for
a single type of features have been well-studied, real-world
instances often contain multiple types of correlated features
or even information within a different modality such as net-
works. Existing studies such as multiview learning show that
it is promising to learn unified vector representations from all
sources. However, high computational costs of incorporating
heterogeneous information limit the applications of existing
algorithms. The number of instances and dimensions of fea-
tures in practice are often large. To bridge the gap, we pro-
pose a scalable framework FeatWalk, which can model and
incorporate instance similarities in terms of different types
of features into a unified embedding representation. To en-
able the scalability, FeatWalk does not directly calculate any
similarity measure, but provides an alternative way to sim-
ulate the similarity-based random walks among instances to
extract the local instance proximity and preserve it in a set
of instance index sequences. These sequences are homoge-
neous with each other. A scalable word embedding algorithm
is applied to them to learn a joint embedding representation
of instances. Experiments on four real-world datasets demon-
strate the efficiency and effectiveness of FeatWalk.

Introduction
Feature embedding (Zhang et al. 2015b), aka representation
learning (Bengio, Courville, and Vincent 2013) or dimen-
sionality reduction (Hinton and Salakhutdinov 2006), aims
to learn low-dimensional vectors for all instances, such that
instances with similar original features tend to have similar
vector representations. By reducing the redundancy and ex-
tracting meaningful information, it could be efficiently uti-
lized to and enhance the performance of various real-world
applications such as syntactic analysis (Chen, Zhang, and
Zhang 2014), human action recognition (Guo et al. 2017),
and person re-identification (Wu et al. 2018).

Beyond a single data source, real-world systems are of-
ten imbued with multiple types of correlated instance fea-
tures (Guo 2013) or even data of a distinct modality such
as networks (Yang et al. 2015) and images (Srivastava and
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Salakhutdinov 2012). Learning a representation jointly from
all types of features is potentially helpful to make it more
informative, since they often complement each other. For
example, Facebook users have multiple types of features
such as attributes in the introductions, words in posts, con-
tents in photos, and rich friend relationships (Tang et al.
2015). These features are all highly correlated with each
other (Smith, Fischer, and Yongjian 2012), i.e., the con-
tents posted by users would reflect their status described
in the introductions; in turn, the social status have a sig-
nificant impact on users’ words (Hogg and Terry 2000);
and friends tend to share posts with similar topics (McPher-
son, Smith-Lovin, and Cook 2001). In addition, recent work
such as multiview learning (Ding and Fu 2014; Gong et al.
2014) and attributed network embedding (Huang, Li, and
Hu 2017a; Liu, Huang, and Hu 2017) have demonstrated the
benefits of joint learning. Therefore, it is promising to per-
form feature embedding based on instance features collected
from multiple aspects.

However, as it becomes increasingly easier and cheaper to
collect data, existing heterogeneous feature embedding al-
gorithms (Zhang et al. 2015c) face many challenges when
applied to real-world systems. Three major ones are sum-
marized as follows. First, the ever-growing data volume
along with the complex data properties put demands on the
scalability of algorithms. For example, there are 2.23 bil-
lion1 monthly active Facebook users in the second quar-
ter of 2018, and each user could have thousands of posts
and friends. Capacities of existing algorithms such as cou-
pled matrix factorization (Yang et al. 2015) and canoni-
cal correlation analysis (Foster, Kakade, and Zhang 2008;
Yuan, Sun, and Ge 2014) are highly restricted under large-
scale settings. Second, real-world instance features often are
heterogeneous sources or even might be within a different
modality such as networks (Yang et al. 2015). High com-
putational costs of fusing heterogeneous information limit
the applications of existing algorithms. A widely used ap-
proach is to calculate the instance proximity, i.e., similari-
ties between instances, based on each source, and conduct
joint learning based on these homogeneous instance prox-
imities (Huang, Li, and Hu 2017b). But the computations of

1www.statista.com/statistics/264810/number-of-monthly-
active-facebook-users-worldwide/
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instance proximities would lead to high time and space com-
plexity, not to mention the subsequent operations. Another
effective way is to employ deep neural networks (Ngiam et
al. 2011), which is not scalable either. Third, the data spar-
sity problem is significant (Zhang et al. 2015b), e.g., in so-
cial media, a large proportion of words or attributes often
only contribute to a small number of users, providing insuf-
ficient information to accomplish effective embedding.

To bridge the gap, we study the problem of large-scale
heterogeneous feature embedding. We focus on two most
common types of data in practice, i.e., feature matrices and
the topological structure (Yang et al. 2015). We target at
jointly embedding multiple feature matrices and an instance
relation network. It could be summarized as two research
questions. (1) How to effectively utilize heterogeneous in-
stance features and a relation network to learn a unified em-
bedding representation? (2) How to cope with the large scale
issue while maintaining the effectiveness of the joint em-
bedding framework? Guided by these questions, we propose
a scalable heterogeneous feature embedding framework -
FeatWalk. Our major contributions are listed as follows.

• Formally define the problem of large-scale heterogeneous
feature embedding;

• Propose an effective framework FeatWalk to incorporate
multiple types of high-dimensional instance features into
a joint embedding representation;

• Design an efficient algorithm that avoids computing sim-
ilarity measure, and provides an alternative way to sim-
ulate the similarity-based random walks among instances
to model the local instance proximity;

• Empirically validate the efficiency and effectiveness of
FeatWalk on four datasets from real-world systems.

Problem Statement
Notations: We use boldface lowercase alphabets to denote
vectors (e.g., h) and boldface uppercase alphabets to denote
matrices (e.g., H). For a matrix H, its transpose is repre-
sented as H> and its ith row is denoted as hi. We use {X(i)}
and {xi} to represent a sequence of matrices X(i) and scalars
xi. The main symbols are list in Table 1.

Let {X(i)}, for i = 1, . . . , I, be a set of correlated feature
matrices of N instances from I different views. Let the last
one X(I) = G be a weighted adjacency matrix that describes
the relations among theN instances. To have physical mean-
ings, we assume that elements of all matrices in {X(i)} are
non-negative. A specific example would be the products on
Amazon. They have descriptions from multiple sources such
as product information and customer reviews, which com-
plement each other and could be used to construct {X(i)}.
Customer purchase records (Linden, Smith, and Zada 2005)
are also available and could be used to build G.

Given these assumptions, we formally define the large-
scale heterogeneous feature embedding problem as follows.
Given a large number of instances, associated with a set of
instance feature matrices {X(i)} and an instance relation
network G, we aim to learn a low-dimensional represen-
tation hi for each instance i, such that all the meaningful

Table 1: Main symbols and their definitions in the paper.

Notation Definition

N total number of instances
X(i)∈RN×M(i)

+ the ith instance feature matrix
M (i) number of categories in X(i), i = 1, . . . , I

G ∈ RN×N
+ a weighted adjacency matrix, G = X(I)

S(i) ∈ RN×N instance similarity matrix based on X(i)

M , X, S M = M (1), X = X(1), S = S(1)

d dimension of embedding representations
H ∈ RN×d final low-dimensional representation
Q(i) sequences of indices learned from X(i)

W (i) total number of sequences in Q(i)

information in {X(i)} and G could be well preserved in H.
The amount of learned meaningful information in H could
be evaluated based on the performance of H in real-world
applications such as classification and clustering.

Heterogeneous feature embedding can be roughly sep-
arated into two categories, i.e., multiview and multimodal
feature embedding. The former aims to learn a unified rep-
resentation of instances from multiple feature matrices ob-
served from different aspects (Li et al. 2015). The latter fo-
cuses on multiple sources with distinct modalities such as
networks, images, and audio (Ngiam et al. 2011).

Different from these previous studies, in addition to the
multiple feature matrices, our work takes the instance re-
lation network into consideration, which is a common and
crucial type of information in real-world systems. The topo-
logical structure has a different modality than feature ma-
trices. We also target at developing a scalable framework to
make it practical. It is distinct from attributed network em-
bedding (Huang et al. 2018) since the latter focuses on em-
bedding a single network and a single feature matrix.

Large-scale Feature Embedding
To jointly embed the heterogeneous information in {X(i)},
we propose an efficient framework - FeatWalk. It achieves
scalability by avoiding the computation of instance similar-
ities, and provides an alternative way to simulate similarity-
based random walks among instances. Figure 1 illustrates its
main idea. Although {X(i)} are heterogeneous, proximities
between instances defined by rows of each X(i) are homoge-
neous. FeatWalk first learns the instance proximities defined
by all {X(i)} via Feature Walks, and then jointly incorpo-
rates them into a unified embedding representation H. To
model the instance proximity in X, an intuitive solution is
to construct a new graph S with instance similarities as edge
weights, and then perform random walks on S to learn a set
of sequences Q(1). However, S is often dense because of the
common feature categories. As N keeps increasing, it would
become too expensive to be manipulated. We propose a dis-
tributed algorithm - Feature Walks, which could obtain the
same results as the intuitive solution but avoid the computa-
tion of S. The learned Q(1) consists of instance indices that
record the walking trajectories such as [1, 6, 4, 2, 5].Q(1) pre-
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Figure 1: To avoid the computation of similarity matrices, FeatWalk performs equivalent random walks through features.

serves the information in X. If X(i) is a network, e.g., G,
we conduct random walks on this network directly to learn
the sequences Q(i). Finally, all {Q(i)} are homogeneous. By
considering the instance indices as words and sequences as
sentences, a scalable word embedding technique is applied
to {Q(i)} to learn a joint representation H.

Tackling the Heterogeneity Among Features
{X(i)} are collected from different aspects. They are
not only mutually dependent on and complement each
other (Smith, Fischer, and Yongjian 2012; Guo et al.
2017), but also heterogeneous with each other. To incorpo-
rate the heterogeneous information, a commonly used ap-
proach (Zhang et al. 2015b) is to calculate the instance prox-
imity based on each source respectively, and learn H from
all instance proximities jointly. It could effectively tackle the
heterogeneity since instance proximities are homogeneous.
Definition 1. (Instance Proximity) It refers to the similar-
ities between instances defined by the features of instances,
i.e., the rows of each X(i).

However, the computation and manipulations of sim-
ilarity matrices increase exponentially as N increases.
Thus, existing algorithms such as coupled spectral embed-
ding (Huang, Li, and Hu 2017b) and similarity-based deep
models (Huang, Loy, and Tang 2016; Wu et al. 2018) cannot
be directly applied under large-scale settings.

FeatWalk follows this effective approach and copes with
the scalability issue by sampling local instance proximity in
a distributed manner. We illustrate its basic idea with the first
type of features X and the last one G. It is straightforward
to extend to the scenarios with multiple {X(i)}.

Intuitive Solution As shown in Figure 1, to model the in-
stance proximity defined by X, an intuitive solution is to
compute its similarity matrix to construct a new graph S, and
perform truncated random walks on S to learn and preserve
the instance proximity into a set of sequences Q(1).

Details are introduced as follows. The weight of edge
between instances i and j in S is defined as the similarity
between their instance features. The probability of walking
from instance i to j is determined by the edge weight, i.e.,

P (i→ j) =
sij∑N

n=1 sin
. (1)

Each walk has the same length L. Each sequence in Q(1)

consists of instance indices that record the walking trajecto-
ries. It could capture the local instance proximity, because as
the number of learned sequences keeps increasing, the prob-
ability of index j follows index i in Q(1) would approach to
P (i→ j). Thus, learning an embedding representation based
on the indices’ co-occurrence probabilities is equivalent to
the one based on the instances’ linking probabilities.

However, this intuitive solution has several problems.
First, as N increases, the size of S would increase expo-
nentially. The calculation, storage, and manipulations of S
would become expensive. Second, S is often quite dense,
which makes the random walks on S inefficient. For exam-
ple, when creating feature matrix for Twitter users based
on their tweets, the commonly used words such as “good”
and “think” would make S close to a clique. Then the
time complexity of sampling a neighbor from si would be-
come O(N) (Devroye 1986), which is expensive. Therefore,
we propose a distributed algorithm - Feature Walks, which
solves these problems by avoiding the computation of S.

Feature Walks Since the computation and operations of S
are expensive, we design an alternative way to simulate the
similarity-based random walks on S, with details as follows.
I. We normalize the feature matrix X. We use `2 norm to nor-
malize each row of X and get X̄. Since it is hard for random
walks to simulate the probabilities with small values, we re-
move the small elements in X̄, i.e., elements smaller than
βMean(X̄), and get X̂. Mean(X̄) denotes the mean value of
all elements in X̄ and β is a threshold value. We use `1 norm
to normalize each row of X̂ and get a new matrix Y, i.e.,

yim =
x̂im∑M
p=1 x̂ip

. (2)

II. Given an initial instance i, we randomly select a feature
category based on the normalized feature of instance i, i.e.,
x̂i. Let am denote the mth feature category, then the proba-
bility of selecting am is defined as follows,

P (i→ am) = yim. (3)

III. Given that am is selected, we randomly select an in-
stance based on the mth column of Y. The probability of
selecting instance j defined as follows,

P (am → j) =
yjm∑N

n=1 ynm

. (4)
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In such a way, we accomplish the walk from instance i to j.
IV. The length of each walk is set as L. To make sure local
proximities of all instances could be sampled, we select each
instance as the initial index in turns. However, the number
of random walks using instance i as an initial index, i.e.,
wi, is not fixed. We assign it based on the complexity of
corresponding instance, which is defined as follows,

wi =
nnz(xi)W

(1)∑N
n=1 nnz(xn)

, (5)

where nnz(·) denotes the number of non-zero elements, and
W (1) is the total number of walks assigned for modeling X.
We design the function in (5) based on two assumptions.
First, instances with more features tend to have more edges,
and they would require more random walks to simulate its
linking probabilities. For example, if in S, instances 4 and 6
have four and one edges respectively. We need to walk from
instance 4 at least four times and from instance 6 at least one
time to capture their relationships with all neighbors. Sec-
ond, in a network, instances with more edges tend to be more
important (Narayanan, Belkin, and Niyogi 2006). To make
the local proximity of important instances well-preserved,
we sample more sequences for them. Thus, we assign the
numbers of walks {wi} based on the complexity.

Theoretical Analysis of Feature Walks We now prove
that the output of Feature Walks is equivalent to the output
of random walks on S. Let D be a diagonal matrix with the
reciprocal of the sum of each column of Y on the diagonal.
Theorem 1. The probability of walking from instance i to j
via Feature Walks is equal to the one via random walks on
the similarity graph S, with the definition as follows.

S = YDYT. (6)

Proof. In Feature Walks, the process of walking from in-
stance i to feature category am is independent of the process
of walking from am to j. Thus, the probability of walking
from i to j is defined as follows.

P (i→ j) =

M∑
m=1

P (i→ am)P (am → j),

=

M∑
m=1

yimyjm∑N
n=1 ynm

.

(7)

It should be noted that P (i → j) = P (j → i). On the other
hand, for the random walks on S, we have,

sij = [yi1, . . . , yiM ] ◦ [d11, . . . , dMM ]y>j =

M∑
m=1

yimyjm
dmm

, (8)

where notation ◦ denotes the element-wise multiplication
and degree dmm = 1/

∑N
n=1 ynm. Thus, we have P (i → j)

equals the probability of walking from i to j in the random
walks on S, with

∑N
i=1 sij = 1.

Instance Proximity in Network Given the relation net-
work G, we model its instance proximity via conducting
random walk on it directly. It is because instances with
stronger relationships tend to be more similar. Homophily

hypothesis (McPherson, Smith-Lovin, and Cook 2001) and
social influence (Zhang et al. 2015a) have demonstrated that
instances with similar features tend to have similar network
structures, and the latter would also have a significant impact
on the former ones.

Similar to Feature Walks, the length of each walk is set as
L, and the total number of walks assigned to model G is set
as W (I). The number of walks using i as the initial index,
i.e., ŵi, is defined as follows,

ŵi =
nnz(gi)W

(I)∑N
n=1 nnz(gn)

. (9)

Joint Learning with Multiple Feature Matrices
All the sequences in all the sets {Q(i)} are homogeneous
with each other. Thus, we could put them together to jointly
perform the instance proximity learning. Let W be the total
number of sequences that we could sample. To balance the
contributions of X and G, W (1) and W (I) are defined as,

W (1) = αW and W (I) = (1− α)W. (10)

By applying a scalable word embedding method (Mikolov
et al. 2013), we could learn a joint embedding representation
H from {Q(i)}. Word embedding (Pennington, Socher, and
Manning 2014) aims to map each word in a set of sentences
into a low-dimensional vector, so that words with simi-
lar semantic meaning would have similar vector represen-
tations. Since massive amounts of documents are available
in practice, many scalable word embedding algorithms such
as word2vec (Mikolov et al. 2013) and GloVe (Pennington,
Socher, and Manning 2014) have been proposed. We could
take advantage of these efficient algorithms to learn joint
low-dimensional representations of instances from {Q(i)},
by considering the instances in {Q(i)} as words in sentences.

It is straightforward to extend FeatWalk to multiple in-
stance features {X(i)}. We could perform Feature Walks on
each X(i) and learn multiple sets of homogeneous sentences.
Then a joint H could be learned from these sentences.

Complexity Analysis
LetN (i)

X be the numbers of nonzero entries in X(i). Let T de-
note the number of operations required to obtain H based on
theW learned sentences. In the tasks of sampling from a dis-
crete probability distribution, we use the alias method (De-
vroye 1986). The time complexity of the setup of alias
method isO(N (i)

X ) and each sampling takesO(1) time. Then,
the time complexity of modeling X(i) is O(N (i)

X + W (i)L).
Thus, the time complexity of generating all sequences is lin-
ear with the numbers of nonzero entries in {X(i)}. The total
time complexity of FeatWalk is O(

∑
iN

(i)
X + WL + T ). It

should be noted that the processes of learning any two se-
quences are independent of each other. We could implement
them in parallel to further accelerate FeatWalk.

Experiments
We now empirically validate the efficiency and effectiveness
of FeatWalk. There are three major questions we aim to an-
swer. (1) How efficient is FeatWalk in performing hetero-
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(a) Flickr (b) ACM (c) Yelp (d) Number of workers

Figure 2: Running time of FeatWalk and different heterogeneous feature embedding methods on Flickr, ACM, and Yelp.

geneous feature embedding compared with the state-of-the-
art embedding methods? (2) How effective is the representa-
tions learned by FeatWalk compared with other embedding
methods in applications such as classification? (3) What are
the impacts of parameters α, the window size, L, the number
of sentences per instance W/N , and d on FeatWalk?

Four Real-world Datasets

The four real-world datasets that we employed in the exper-
iments are all publicly available. The first dataset contains
two feature matrices. Each of the last three datasets contains
one feature matrix and one network.
Reuters (Amini, Usunier, and Goutte 2009): 18,758 docu-
ments from Reuters are used as instances. They are origi-
nally written in English. We employ their Italian translations
as X, withM = 11,452, and the Spanish translations as X(2),
withM (2) = 9,243, via the bag-of-words model. To make the
embedding task more challenging, the original top 10% fre-
quent features have been removed. Each document is from
one of the six populous classes.
Flickr (Huang, Li, and Hu 2017b): 7,564 Flickr users are
employed as instances. They share photos online, and attach
many related tags to their photos. These tags reflect the in-
terests of instances. We use them as X, with M = 12,047.
Instances also follow each other and form a network G natu-
rally, with 239,365 undirected edges in total. The nine groups
that instances have joined are employed as their labels.
ACM (Tang et al. 2008): 48,579 papers published in ACM
are utilized as instances. We employ paper abstracts as X,
with M = 10,000, and construct an undirected G based on
the citation links, with 288,374 edges in total. All instances
are from nine areas such as Artificial Intelligence (AAAI,
IJCAI, etc.), Data Mining (KDD, ICDM, etc.), and Machine
Learning (ICML, COLT, etc.), which serve as the labels.
Yelp (Yelp 2017): 249,012 Yelp users are used as instances.
They have written reviews for different businesses. We set
the reviews as X, with M = 20,000. Their friend relation-
ships are employed to construct G, with 1,779,803 edges in
total. All businesses are categorized into eleven classed such
as Nightlife and Services. Categories of the businesses that
an instance has reviewed are set as his/her labels.

Baseline Methods
To study the performance of FeatWalk, we compare it with
three categories of baselines. First, to investigate the impact
of each type of features, we include three single feature em-
bedding methods, i.e., NMF, Spectral, FeatWalk X. Second,
to study the impact of the networks, we include two net-
work embedding methods, i.e., DeepWalk and LINE. Third,
to analyze the efficiency and effectiveness of FeatWalk, we
include three state-of-the-art heterogeneous feature embed-
ding methods, i.e., LCMF, MultiSpec, and AANE, and a
variation of FeatWalk named w/o FW. No deep models are
included since they are not scalable (Tu et al. 2018).
• NMF (Pedregosa et al. 2011): It is a scalable version of

non-negative matrix factorization, optimized by the hi-
erarchical alternating least squares algorithms. It reduces
the dimension of X (or X(2)) to learn H.

• Spectral (von Luxburg 2007): It calculates the cosine sim-
ilarities between vectors xi (or x

(2)
i ) to construct a new

graph, and applies spectral embedding on it to learn H.
• FeatWalk X: It learns the embedding representation H

only from the feature matrix X (or X(2)) via FeatWalk.
• DeepWalk (Perozzi, Al-Rfou, and Skiena 2014): It per-

forms random walks on G and learns sequences of in-
stance indices. word2vec is applied to them to learn H. It
is a variant of FeatWalk that only uses G.

• LINE (Tang et al. 2015): It learns H from G by jointly
modeling its first and second order instance proximity.

• LCMF (Zhu et al. 2007): It conducts classical coupled ma-
trix factorization between X and G to learn H jointly.

• MultiSpec (Kumar, Rai, and Daume 2011): It computes
all instance similarity matrices and jointly models them
via coupled spectral embedding.

• AANE (Huang, Li, and Hu 2017a): It is the state-of-the-art
embedding method for networks with node attributes.

• w/o FW: FeatWalk without using Feature Walks. Instead,
it calculates S directly, and performs random walks on S.

Experimental Settings
To analyze the effectiveness of FeatWalk and baselines, we
apply their learned embedding representations H to per-
form classification, following the commonly-used way of
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Table 2: Classification performance of FeatWalk and all baselines on Flickr, ACM, and Yelp-sub in terms of micro-average.

Flickr ACM Yelp-sub Yelp

Training 25% 50% 100% 25% 50% 100% 25% 50% 100% 10% 25% 50% 100%
# Instances 3,026 4,538 7,564 19,432 29,147 48,579 19,921 29,881 49,802 69,723 99,605 149,407 249,012

NMF 0.629 0.718 0.773 0.653 0.660 0.664 0.680 0.686 0.688 0.678 0.692 0.694 0.689
Spectral 0.771 0.813 0.846 0.688 0.700 N.A. 0.683 N.A. N.A. N.A. N.A. N.A. N.A.

FeatWalk X 0.803 0.841 0.868 0.676 0.675 0.667 0.701 0.710 0.714 0.706 0.691 0.703 0.699

DeepWalk 0.373 0.465 0.535 0.576 0.630 0.684 0.310 0.318 0.350 0.324 0.345 0.366 0.368
LINE 0.332 0.421 0.516 0.549 0.624 0.693 0.243 0.264 0.294 0.295 0.313 0.336 0.354

LCMF 0.676 0.725 0.749 0.690 0.706 N.A. 0.680 0.686 N.A. N.A. N.A. N.A. N.A.
MultiSpec 0.720 0.800 0.859 0.709 0.719 N.A. 0.667 N.A. N.A. N.A. N.A. N.A. N.A.

AANE 0.811 0.854 0.885 0.701 0.715 0.722 0.694 0.703 0.711 0.698 0.709 0.711 0.714
FeatWalk 0.831 0.865 0.893 0.722 0.738 0.751 0.700 0.710 0.717 0.708 0.691 0.704 0.701

validating feature embedding methods (Xia et al. 2010;
Zhang et al. 2015b). The classification task aims to classify
a new instance into one or multiple categories, based on its
embedding representation and the trained classifier. The per-
formance is measured by two standard metrics, i.e., micro-
average and macro-average (Huang, Li, and Hu 2017b).

We apply 5-fold cross-validation on all datasets, i.e., ran-
domly select 4

5
of all instances as a training group and the

remaining as a test group. If the dataset has a network, then
the edges between the training and test groups would be
kept. We concatenate feature matrices in two groups to cre-
ate new instance feature matrices. To evaluate an embed-
ding method, we apply it to the new instance feature ma-
trices to learn H, which contains vector representations for
instances in the training group Htrain and instances in the test
group Htest. To perform classification, we build an SVM (Pe-
dregosa et al. 2011) classifier based on Htrain and correspond-
ing labels. Then we apply the learned classifier to predict the
labels of instances in the test group based on Htest.

We use the original papers’ default settings to determine
the parameters of baselines. FeatWalk X and w/o FW use
the same parameters as FeatWalk. If it is not specified, d is
set as 100 and 100% of the instances in the training group
are used. We performed ten test runs and used the arithmetic
average as the final experimental results. We ran the experi-
ments on a Dell OptiPlex 9030 i7-16GB desktop.

Efficiency of FeatWalk
To investigate the first question proposed at the beginning
of this section, we compare FeatWalk with the three state-
of-the-art heterogeneous feature embedding methods and
w/o FW. The running time of all methods as a function of the
number of instances N on Flickr, ACM, and Yelp is shown
in Figure 2. The result on Reuters is similar, so we omit it.

From the results in Figure 2, we have three major obser-
vations. First, the running time of FeatWalk is almost lin-
ear to N , which demonstrates its scalability. For example, in
Figure 2c, the slope of the green curve (FeatWalk) remains
invariable as N increases. As N keeps increasing, LCMF,
MultiSpec, and w/o FW run out of time since their running
time increase exponentially. Second, the distributed sam-
pling algorithm Feature Walks has significantly accelerated
FeatWalk and made it scalable. When N is small, as shown

Table 3: LCMF and AANE can not be applied to Reuters.

# Instances 7,503 (25%) 11,255 (50%) 18,758 (100%)

X(1) X(2) X(1) X(2) X(1) X(2)

NMF 0.658 0.673 0.684 0.689 0.695 0.695
Spectral 0.679 0.689 0.694 0.704 0.710 0.714

FeatWalk X 0.698 0.700 0.727 0.728 0.744 0.745

MultiSpec 0.707 0.727 0.740
FeatWalk 0.720 0.748 0.771

in Figure 2a, w/o FW has almost the same running time as
FeatWalk, since the manipulations of similarity matrix S are
cheap at this time. However, when N keeps increasing, as
shown in Figure 2b, the running time of w/o FW increases
exponentially until it runs out of time. FeatWalk has signif-
icantly less running time than w/o FW on both ACM and
Yelp. Third, FeatWalk always has the least running time
when N is large. When N is small, AANE might have less
running time than FeatWalk. FeatWalk has almost the same
running time as AANE on Flickr, and is always faster than
AANE on ACM. On Yelp, FeatWalk needs more running
time than AANE when N < 82,000, but it becomes faster
than AANE when N ≥ 82,000 since it is almost linear to N .
It should be noted that AANE is designed for embedding a
single feature matrix with a single network, while FeatWalk
is general to multiple ones, e.g., FeatWalk could be applied
to Reuters, while AANE can not.

The running time of FeatWalk can be further reduced by
using the multi-thread implementation. Figure 2d shows the
relative running time of FeatWalk as a function of the num-
ber of workers c on all datasets. From the results, we have
three observations. First, FeatWalk becomes more efficient
as c increases. Second, as c increases from 1 to 2, the running
time decreases less than 50%. It is because the multi-thread
implementation only accelerates the learning of sequences
{Q(k)}, not the word embedding process. Third, the running
time of FeatWalk on Flickr keeps increasing when c ≤ 5. It
is because N = 7,564 is relatively small and it takes extra
time for the communications between the coordinator and
workers. It should be noted that word2vec can be replaced
by other more efficient algorithms to make FeatWalk faster.
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(a) α and window size (b) Walk length L and W/N (c) Embedding representation dimension d

Figure 3: The impacts of parameters α, window size, walk length L, number of sentences per instance W/N , and d on FeatWalk.

Effectiveness of FeatWalk

To answer the second proposed question, we compare
the classification performance of all methods on the four
datasets, which are list in Tables 2 and 3. Since Spectral,
LCMF, and MultiSpec are not capable of embedding the
dataset Yelp, we randomly sample 20% of it and construct a
new dataset named Yelp-sub. DeepWalk, LINE, LCMF, and
AANE could not be applied to the dataset Reuters since it
has no network.

From the results in Tables 2 and 3, we have three major
findings. First, FeatWalk X performs better than single fea-
ture embedding methods, i.e., NMF and Spectral. By taking
advantage of the extra information (G or X(2)), FeatWalk
further improves the performance. For example, on Reuters,
FeatWalk achieves 3.6% of improvements than FeatWalk X
and 10.9% of improvements than NMF. Second, by in-
corporating the heterogeneous information, FeatWalk out-
performs all network embedding methods, i.e., DeepWalk
and LINE. For example, FeatWalk achieves 9.8% of im-
provements than DeepWalk on ACM. Third, on all datasets
except Yelp, FeatWalk achieves better performance than
all heterogeneous feature embedding methods, i.e., LCMF,
MultiSpec, and AANE. For example, on Flickr, FeatWalk
achieves a gain of 0.9% over AANE. It demonstrates that
the way that FeatWalk has used to incorporate the heteroge-
neous information is effective.

To study the performance of all methods w.r.t. differ-
ent training set percentages, i.e., the percentage of in-
stances in the training group (among the four folds in
the cross-validation) that have been used, we vary it as
{25%, 50%, 100%}. The results on the four datasets are
shown in Tables 2 and 3. From the results, we observe that
the aforementioned findings hold consistently as the train-
ing set percentage increases. FeatWalk undeviatingly out-
performs all baselines on all datasets except Yelp. For ex-
ample, on Reuters, when the training set percentage is 50%,
FeatWalk achieves 6.3% of improvements than Spectral and
2.9% of improvements than MultiSpec. On Yelp, the per-
formance of FeatWalk decreases when the training set per-
centage increases from 10% to 25%. It is because the se-
quence sets reach the memory limit and an online version
of word2vec is used to learn H.

Parameter Analysis

We now study the third proposed question. Performance of
FeatWalk on Flickr as a function of the first instance feature
matrix weight α and window size, a function of L and W/N ,
and a function of d are shown in Figures 3a, 3b and 3c.
Results on other datasets are similar, so we omit them.

First, we vary α from 0 to 1 and the window size from
1 to 10. When α = 0, only G is used to learn H. When
α = 1, only X is used to learn H. The window size denotes
the maximum distance that is used to define context words
in word2vec. From the results in Figure 3a, we observe that
FeatWalk achieves the best performance when α = 0.62, i.e.,
when the contributions of X and G are balanced. When α is
fixed, the performance of FeatWalk keeps stable as the win-
dow size increases from 1 to 10. Second, we vary the walk
length L as from 2 to 60 and the number of sentences per
instance W/N from 2 to 20. From the results in Figure 3b,
we find that the performance of FeatWalk keeps increasing
as the product of L and W/N increases, and keeps stable
when the product is sufficiently large. Third, we vary d as
{20, 60, 100, 140, 180}. From the results in Figure 3c, we ob-
serve that, as d increases from 20 to 180, the performance of
FeatWalk keeps stable and is always better than all baselines.

Conclusion And Future Work
We investigate the problem of heterogeneous feature embed-
ding and propose a scalable framework - FeatWalk. It could
encode multiple instance feature matrices and even network
relations into unified instance vector representations. With-
out calculating any similarity measure among instances, we
design an alternative way to simulate the similarity-based
random walks among instances, which samples the local in-
stance similarities and preserves them in walking trajecto-
ries. Along with the trajectories learned via random walks
on the network relations, we apply a scalable word em-
bedding algorithm to learn the joint representations of in-
stances from these trajectories. Experiments on the four real-
word datasets validate the scalability and effectiveness of
FeatWalk. Our future work is to explore semi-supervised
frameworks to incorporate label information and dynamic
algorithms to cope with streaming environments.
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