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Abstract
Generative modeling over natural images is one of the most
fundamental machine learning problems. However, few mod-
ern generative models, including Wasserstein Generative Ad-
versarial Nets (WGANs), are studied on manifold-valued im-
ages that are frequently encountered in real-world applica-
tions. To fill the gap, this paper first formulates the problem of
generating manifold-valued images and exploits three typical
instances: hue-saturation-value (HSV) color image genera-
tion, chromaticity-brightness (CB) color image generation,
and diffusion-tensor (DT) image generation. For the proposed
generative modeling problem, we then introduce a theorem of
optimal transport to derive a new Wasserstein distance of data
distributions on complete manifolds, enabling us to achieve a
tractable objective under the WGAN framework. In addition,
we recommend three benchmark datasets that are CIFAR-10
HSV/CB color images, ImageNet HSV/CB color images, UCL
DT image datasets. On the three datasets, we experimentally
demonstrate the proposed manifold-aware WGAN model can
generate more plausible manifold-valued images than its com-
petitors.

Introduction
Building generative models of natural images has been a fun-
damental problem in machine learning. Such generative mod-
els are expected to estimate the probability distributions over
the natural images. One of the most striking techniques is the
family of generative adversarial networks (GANs) such as
(Goodfellow et al. 2014; Radford, Metz, and Chintala 2015;
Zhao, Mathieu, and LeCun 2016; Mao et al. 2017). The state-
of-the-art GANs like (Arjovsky, Chintala, and Bottou 2017;
Gulrajani et al. 2017; Wei et al. 2018; Miyato et al. 2018) are
good at approximating the distributions of Euclidean-valued
(or real-valued) images implicitly by optimizing Wasserstein
distance between the distributions of generated images and
real images under an adversarial training framework.

While the GAN techniques have made great success for
real-valued image generation, they are rarely applied to
manifold-valued images that are of much interest in a va-
riety of applications. For example, one of the most popu-
lar applications is processing phase-valued images, whose
data live on either the Cycle S1 or the Sphere S2, in hue-
saturation-value (HSV) and chromaticity-brightness (CB)
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color spaces. Since such HSV/CB spaces are more adapted
to human color perception than the RGB space, many works
like (Bergmann et al. 2014; Bergmann and Weinmann 2015;
Bansal and Tatu 2015; Bergmann and Weinmann 2016;
Bacák et al. 2016; Laus et al. 2017) have studied that the
image processing models based on HSV/CB components
can surpass the competitors developed in the RGB space.
Analogously, for a better understanding of color seman-
tics, producing HSV/CB images in an unsupervised manner
would be a good alternative for the regular image genera-
tion over the RGB space. Another good application is for
diffusion-tensor magnetic resonance imaging (DT-MRI). In
many DT-MRI works like (Pennec, Fillard, and Ayache 2006;
Arsigny et al. 2007; Hasan et al. 2011; Jayasumana et al.
2013; Priya and Nair 2015), DT images are generally pro-
cessed on the Riemannian manifold of symmetric positive
definite 3× 3 matrices SPD(3). In practice, researchers often
have a severe lack of DT images for better analysis. Hence,
generating photo-realistic DT images would have a high po-
tential to benefit this field.

With the motivation in mind, we focus on generative mod-
eling over manifold-valued images. In general, it proposes
new challenges. One of the most important issues is the
generalization of the classic distribution distance to mani-
folds, while the other major challenge is the exploration on
the manifold setting of the regular GAN objective. To ad-
dress the first issue, we leverage the well-studied optimal
transport (OT) theory (Fathi and Figalli 2010; Loeper 2011;
De Philippis and Figalli 2014; Fitschen, Laus, and Schmitzer
2017) on manifolds to introduce a new Wasserstein distance
on complete manifolds. By adopting the proposed Wasser-
stein distance, we exploit a new model of Wasserstein GANs
(Arjovsky, Chintala, and Bottou 2017; Gulrajani et al. 2017;
Wei et al. 2018) for manifold-valued image generation. With-
out loss of generality, we take three typical types of manifold-
valued images for study, and suggest the proposed manifold-
aware Wasserestein GAN approach to produce plausible sam-
ples residing on such manifolds. In summary, the paper gives
rise to two original contributions:

• To the best of our knowledge, this paper proposes the
novel problem of unsupervised manifold-valued image
generation for the first time in the existing literature.

• We generalize the Wasserestein GAN methodology to the
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Figure 1: Conceptual illustration of real-valued image gen-
eration (a)→(b) where the data lie in Euclidean spaces, and
manifold-valued image generation (a)→(c) where the data
reside on Riemannian manifolds.

Riemannian manifold setting so as to address the proposed
problem of manifold-valued image generation.

Background
Real-valued Image Generation
Natural images are examples of what our visual world looks
like and we refer to these as “samples from the true data
distribution” Pr. Typically, this kind of image values are
Euclidean-valued (or real-valued). In other words, their geo-
metrical structure can be respected well with using classical
Euclidean metric. Accordingly, the image generation problem
is concerned with learning the true data probability distribu-
tion. The classical solution is to learn a probability density,
which may not exist in practice. In contrast, there also ex-
ists another typical approach that directly generates samples
following a certain distribution Pg, which approximates the
true data distribution. As studied in (Arjovsky, Chintala, and
Bottou 2017) it is useful in two ways. First of all, this ap-
proach is able to represent distributions confined to a low
dimensional manifold, which is easier to estimate. Second,
the capability to generate samples easily is often more useful
than estimating the numerical value of the density.

Formally, one can consider a dataset of examples
x1, . . . ,xn sampled from a real data distribution Pr(x). As
shown in Fig.1 (a)→(b), the blue region shows the part of
the image space that, with a high probability consists of real
images, and the elements in the space indicate the data points
(each is one image). Now, the model also represents a dis-
tribution Pg(x) (green) that is defined implicitly by taking
points from a unit Gaussian distribution (red) and mapping
them through a neural network named the generative model
(yellow). The network is a function with parameters θ, and
learning these parameters will learn the generated distribu-
tion of images. The goal is then to seek parameters θ that
produce a distribution that matches the real data distribu-
tion closely. Therefore, the core of the generation process
is how to make the distribution of generated data close to
the true data distribution, that is how to define the distribu-
tion distance. One of the most important measurements is
Wasserstein-1 or Earth-Mover distance

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖x− y‖], (1)

where Π(Pr,Pg) denotes the set of all joint distributions
γ(x,y) whose marginals are Pr,Pg respectively. Intuitively,
γ(x,y) indicates how much mass should be transported from
x to y in order to transform the distributions Pr into the
distribution Pg. The Wasserstein distance then is the cost of
the optimal transport plan.

Wasserstein GANs
For real-valued image generation, the state-of-the-art tech-
niques are Generative Adversarial Networks (GANs) (Good-
fellow et al. 2014; Radford, Metz, and Chintala 2015;
Zhao, Mathieu, and LeCun 2016; Mao et al. 2017). The
standard GAN framework establishes a min-max adversar-
ial game between two competing networks. The generator
network G maps a source of noise to the input space. The
discriminator network D receives either a generated sam-
ple or a true data sample and must distinguish between the
two. The generator is trained to fool the discriminator. The-
oretically, the original GAN framework actually minimizes
Jensen-Shannon divergence between the true data distribution
and generated sample distribution.

By contrast, Wasserstein GANs (Arjovsky, Chintala, and
Bottou 2017; Gulrajani et al. 2017; Wei et al. 2018; Miyato
et al. 2018) studied that minimizing a reasonable approx-
imation of the Wasserstein-1 distance is able to reach the
state-of-the-art GANs. To approximate the Wasserstein-1 dis-
tance, the original Wasserstein GAN imposed weight clipping
constraints on the critic (referred to as the discriminator pre-
Wasserstein) such that the optimal map of the discriminator
is Lipschitz continuous. However, as proved in (Gulrajani
et al. 2017), the set of functions satisfying this constraint
is merely a subset of the k-Lipschitz functions for some k
which depends on the clipping threshold and the critic archi-
tecture and thus inevitably causes some training failures. To
address this issue, improved training of Wasserstein GAN
(Gulrajani et al. 2017) enables a more stable GAN training by
penalizing the norm of the gradient of the critic with respect
to its inputs instead of clipping weights. In particular, this
gradient penalty is simply added to the basic Wasserstein
GAN loss for the following full objective:

min
G

max
D

Ex∼Pr
[D(x)]− EG(z)∼Pg

[D(G(z))]

+ λEx̂∼Px̂
[(‖∇x̂D(x̂)‖2 − 1)2],

(2)
where z is random noise, x̂ is random samples following the
distribution Px̂ that is sampled uniformly along straight lines
between pairs of points sampled from Pr and Pg, ∇x̂D(x̂)
is the gradient with respect to x̂, G(·), D(·) denotes the func-
tions of generator and discriminator respectively.

Manifold-valued Image Generation
Manifold-valued Images
In this paper, we concentrate on three typical instances of
manifold-valued images, which are commonly encountered
in computer vision and medical imaging.

HSV Images: Each pixel in the HSV color model can be
represented by a triple which specifies hue, saturation and
value respectively. As hue value is phase-based, the HSV data
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actually live on the product manifold of a Cyclic manifold and
vector spacesH = S1×[0, 1]2. Since it is known that both the
Cyclic manifold S1 and the vector space [0, 1]2 are compact
Riemannian manifolds, their productH = S1× [0, 1]2 is also
a compact manifold.

CB Images: Each pixel in the CB color model contains
chromaticity and brightness components. Since our focus is
on manifold-valued data, the whole paper studies the chro-
maticity (spherical) component lying on the compact mani-
fold S2 for CB images.

DT Images: In diffusion tensor (DT) images, each voxel
is represented with a 3× 3 tensor, that is symmetric positive
definite (SPD) matrix. Hence, the data of DT images reside
on the manifold SPD(3) of SPD matrices, which is known as
a convex cone instead of a compact manifold.

Problem Formulation
In analogy to real-valued image generation, the task of
manifold-valued image generation is to synthesize samples
respecting a certain distribution for learning the distribution
of real manifold-valued data. As shown in Fig.1 (a)→(c),
the manifold-valued data lie on Riemannian manifolds rather
than a Euclidean space. As the definition of manifold-valued
data distribution is different of that of real-valued data dis-
tribution, it is infeasible to apply the traditional Wasser-
stein distance Eqn.1 directly to measure the distance of
such non-Euclidean data distribution, and the traditional
Wasserstein GANs (Arjovsky, Chintala, and Bottou 2017;
Gulrajani et al. 2017; Wei et al. 2018; Miyato et al. 2018) are
very likely to fail. Accordingly, for the new image generation
task, we should consider two critical problems: 1) the defini-
tion on the distribution of manifold-valued data, and 2) the
generalization of the distribution (Wasserstein) distance to
manifolds.

Fortunately, several Riemannian geometry studies (Pen-
nec, Fillard, and Ayache 2006; Arsigny et al. 2006; 2007;
Huang et al. 2015) have addressed the first issue well. In par-
ticular, they introduce various Riemannian metrics to define
probability density functions on the underlying Riemannian
manifolds. Formally, let x, y be two points of the manifold
that we consider as a local reference and v = −→yx a vec-
tor of the tangent space TyM at the point y. The smoothly
varying family of inner products in each tangent space is
known as the Riemannian metric. According to the theory of
second-order differential equations, there has one and only
one geodesic starting from that point with the tangent vec-
tor. This allows us to span the curved manifold in the flat
tangent space along the geodesics (think of rolling a sphere
along its tangent plane at a given point). The geodesics going
through the reference point y are transformed into straight
lines and the distance along these geodesics is preserved (at
least in a neighborhood of y). The function that maps to each
tangent vector v ∈ TyM the point x of the manifold that
is achieved by the geodesic starting at y with this tangent
vector is named the exponential map. This map is defined in
the whole tangent space TyM but it is generally one-to-one
only locally around 0 in the tangent space (i.e., around the
reference point y in the manifold). For mapping the manifold
data to the tangent space that respects Euclidean geometry,

we denote v = logy(x) as the inverse of the exponential
map: this is the smallest vector such that x = expy v.

For the second issue, we suggest to generalize the
Wasserstein-1 distance to Riemannian manifolds. In theory,
we need to first study whether there exists an optimal map for
the manifold setting. For optimal mass transport on real-
valued data, (Evans 1997; Villani 2008; Lei et al. 2017)
proved the existence of the optimal map, which has a con-
vex potential (i.e. D(x) = ∇φ(x) with φ(x) being convex)
and is shown to be the only map with the convex potential.
Analogously, (McCann 2001; De Philippis and Figalli 2014;
Fathi and Figalli 2010) also studied that there exists an op-
timal map for the manifold case. Furthermore, (Fathi and
Figalli 2010) proved that the optimal transport problem can
be solved for the square Riemannian metric on any complete
manifolds without any assumption on the compactness or
curvature, with the usual restriction on the measures. The
following theorem is given for the existence of the optimal
map on complete manifolds. For its proof, we refer readers
to (Fathi and Figalli 2010) (mainly in Page 18-20).

Theorem 1. LetM be a Riemannian manifold, and consider
the cost c = d2/2, with d being the Riemannian distance
metric that is required to be complete. Given two proba-
bility distributions Pr and Pg supported on the manifold
M, there exists a convex potential function φ : M →
R ∪ {+∞} such that D(x) = expy(∇gφ(x)) is the unique
optimal transport map sending Pr to Pg, where ∇g indi-
cates the gradient with respect to the Riemannian metric
g = 〈logy(x1), logy(x2)〉y on the manifoldM.

Following Theorem 1, we turn to study the complete Rie-
mannain metrics for the existence of optimal transport map on
our studied manifolds where the HSV, CB and DT image data
reside on. It is known that any Riemannian metrics defined on
compact Riemannian manifolds are complete. Therefore, for
HSV and CB images, Riemannian metrics defined on them
are all complete. As to the case of DT images, whose data
reside on a non-compact manifold, we restore to employing
the well-studied Log-Euclidean metric (Arsigny et al. 2006;
2007; Huang et al. 2015), which is actually an inner prod-
uct distance and thus the resulting metric space is complete
(Minh and Murino 2016). For a more general guidance to
satisfy the completeness requirement, readers are suggested
to follow the Hopf–Rinow theorem (Hopf and Rinow 1931).

Consequently, inspired by the original Wasserstein dis-
tance Eqn.1 in a Euclidean setting, we present a new Wasser-
stein distance on the underlying Riemannian manifold. By
leveraging the complete Riemannian metric that generally
applies classic logarithm map to yield Euclidean representa-
tions, the new Wasserstein distance can be derived by:

W (Pr,Pg) = inf
γ∈Π(Pr,Pg)

E(x,y)∼γ [‖ logy(x)− logy(y)‖],

(3)
wherex,y are points on the Riemannian manifold, Π(Pr,Pg)
indicates the set of all joint distributions γ(x,y), and γ(x,y)
denotes how much mass will be transported from x to y.
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Figure 2: Overview of the proposed manifold-aware Wasser-
stein GAN (manifoldWGAN) approach for manifold-valued
image generation. The manifoldWGAN introduces logarithm
map and exponential map between Riemannian manifold and
tangent space to the setting of Wassersten GANs.

Manifold-aware Wasserstein GAN
According to Theorem 1 and the derived Wasserstein dis-
tance Eqn.3, we generalize the objective function Eqn.2 of
Wasserstein GAN1 to Riemannian manifolds

min
G

max
D

Ex∼Pr
[D(logy(x))]

− EG(z)∼Pg
[D(logy(expy(G(z))))]

+ λEx̂∼Px̂
[(‖∇x̂D(x̂)‖2 − 1)2],

(4)

where logy(·) and expy(·) are the logarithm and exponen-
tial maps respectively for the underlying manifold. As the
logarithm map logy(·) projects the manifold-valued data to
Euclidean space, any regular networks can be applied di-
rectly to the resulting data. To generate valid manifold-valued
data using the generative network G, we employ exponential
map expy(·) to transform the data back to the manifold. An
overview of the proposed manifold-aware Wasserstein GAN
(manifoldWGAN) approach is shown in Fig.2. As done in
(Gulrajani et al. 2017), Px̂ is also defined sampling uniformly
along straight lines between pairs of points sampled from
the data distribution Pr and the generator distribution Pg . In
the context of manifold-valued data, we apply logarithm and
exponential maps to the linear sampling:

x̂ = (1− t) logy(x) + t logy(expy(G(z))), (5)

where 0 ≤ t ≤ 1.
In this paper, our focus is on the generation of HSV, CB and

DT images. Therefore, we consider the data on the product
manifoldH = S1 × [0, 1]2, the spherical data on S2 and the
SPD data on SPD(3). Specially, we study the typical forms
for their resulting exponential map and logarithm map to
achieve the objective Eqn.4.

HSV case: Following (Bergmann et al. 2014; Bergmann
and Weinmann 2016), we adopt the representation system
S1 ∼= [−π, π) to interpret any point x ∈ H = S1× [0, 1]2 as
consisting of two components (xS,xR). As a result, the cor-
responding logarithm and exponential maps can be derived
as

logy(x) = [mod(xS − yS, 2π),xR − yR],

expy(v) = [mod(vS + yS, 2π),vR + yR],
(6)

1As studying the generalization of all the Wasserstein GANs
(Arjovsky, Chintala, and Bottou 2017; Gulrajani et al. 2017; Wei
et al. 2018) is beyond the scope of this paper, we choose the most
representative Wasserstein GAN (Gulrajani et al. 2017) for study.

Algorithm 1 Manifold-aware Wasserstein GAN (manifold-
WGAN), our proposed algorithm. All the experiments in the
paper used the default values λ = 10, ncritic = 5.
Require: α, learning rate. m, the batch size. ncritic, the critic
iterations per generation iteration. λ, the balance parameter
of gradient norm penalty, w0, initial critic parameters. θ0,
initial generator’s parameter.
1: while θ has not converged do
2: for t=0, . . . , ncritic do
3: Sample {x(i)}mi=1 ∼ Pr a batch from the real data.
4: Sample {z(i)}mi=1 ∼ Pg a batch of prior samples.
5: Dw ← ∇w[L] where L is computed by Eqn.4.
6: w ← w + α · AdamOptimizer(w, Dw)
7: end for
8: Sample {z(i)}mi=1 ∼ Pg a batch of prior samples.
9: Gθ ← ∇θ[− 1

mΣmi=1Dw(logy(expy(Gθ(z
(i)))))]

10: θ ← θ + α · AdamOptimizer(θ, Gθ)
11: end while

where mod denotes the modulo operation.

CB case: As studied in (Bhattacharya and Patrangenaru
2002; Lee, Abbott, and Araman 2007; Bacák et al. 2016;
Laus et al. 2017), on the sphere manifold Sn, the logarithm
and exponential maps can be expressed by

logy(x) =
d(x,y)

‖py(x− y)‖F
py(x− y),

expy(v) = cos(‖v‖F )y +
sin(‖v‖F )

‖v‖F
v,

(7)

where ‖ · ‖F indicates the Frobenius norm operation,
py(H) = H − trace(yTH)y.

DT case: (Arsigny et al. 2006; 2007; Huang et al. 2015;
Huang and Van Gool 2017) studied that the Log-Euclidean
metric for the SPD manifold SPD(n) is derived by employ-
ing the Lie group structure. The resulting logarithmic and
exponential maps is expressed with matrix logarithms and
exponential operations:

logy(x) = Dlog(y) exp .(log(y)− log(x)),

expy(v) = exp(log(y) +Dy log .v),
(8)

where Dlog(y) exp . = (Dy log .)−1 is achieved by the dif-
ferentiation of the equality log ◦ exp = I , and here I is the
identity matrix.

Following such basic logarithm and exponential maps2

on the corresponding manifolds of the processed manifold-
valued samples, the algorithm of the proposed manifoldW-
GAN is presented in Algorithm.1.

2For the HSV and CB case, the computational cost of log and
exp operations are cheap as they only include simple operations
like modulo, cosine and sine. For the DT case, the dominant com-
putational complexity of the used log and exp operations lies on
computing the matrix logarithm and exponential on SPD matrix
valued DT image pixels. As the size of each SPD matrix is only
of 3 × 3, the log and exp computation is also cheap for network
training.
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Experiment
For the studied manifold-valued image generation problem,
we suggest three benchmark evaluations that use the HSV
and CB images of the well-known CIFAR-10 (Krizhevsky
and Hinton 2009), ImageNet (Oord, Kalchbrenner, and
Kavukcuoglu 2016), and the popular UCL DT image dataset
(Cook et al. 2006). As our focus is on evaluating the gener-
ative models for image generation, we mainly compare the
proposed manifoldWGAN against the state-of-the-art GAN
techniques including deep convolutional GAN (DCGAN)
(Radford, Metz, and Chintala 2015), least square GAN (LS-
GAN) (Mao et al. 2017) and Wasserstein GAN (WGAN)3

(Gulrajani et al. 2017) that has proved to improve the original
WGAN (Arjovsky, Chintala, and Bottou 2017).

In all the evaluations, we follow (Gulrajani et al. 2017)
to use residual network for all compared models. The set-
ting of the employed residual networks is the same as the
ones used in (Gulrajani et al. 2017). Specially, we utilize
pre-activation residual blocks with two 3×3 convolutional
layers and ReLU nonlinearity. Some residual blocks perform
downsampling (in the critic) using mean pooling after the
second convolutional layer, or nearest-neighbor upsampling
(in the generator) before the second convolution. As done by
(Gulrajani et al. 2017), we employ batch normalization in the
generator but not the critic for WGAN and our proposed man-
ifoldWGAN. We finally optimize the network using Adam
with learning rate 0.0002, decayed linearly to 0 over 100K
generator iterations, and batch size 64. For further architec-
tural details, please refer to the official implementation of
(Gulrajani et al. 2017).

HSV Image Generation
For HSV color image generation, we choose the CIFAR-
10 and ImageNet datasets, both of which are standard
benchmarks in real-valued image generation. The CIFAR-
10 dataset consists of 60000 32 × 32 colour images in 10
classes, with 6000 images per class. We use the 64× 64 ver-
sion of ImageNet, which contains 1,281,149 training images
and 49,999 images for testing. To gather HSV color images
whose values are onH = S1× [0, 1]2, we transfer the images
from the RGB space to the HSV space.

For generating valid elements on H = S1 × [0, 1]2, the
proposed manifoldWGAN suggests to use the corresponding
logarithm and exponential maps Eqn.6 (where each pixel
value of the reference point y is set to [π, 0, 0]4) during the
optimization of the objective Eqn.4, while the state-of-the-art
generation technique WGAN treats the data as real-valued
data with its original Wasserstein-based GAN loss.

Fig.3 qualitatively shows the generation results of WGAN
and the proposed manifoldWGAN on CIFAR-10 and Im-
ageNet. The results justify that our manifoldWGAN can
generate more visually pleasing HSV images, whose result-
ing RGB images appear to be better in both terms of image
quality and semantic.

3The official code is available at https://github.com/igul222/
improved wgan training

4We empirically find varying the value of anchor point impacts
the performance of our model slightly.

Method CIFAR-10 ImageNet

DCGAN-RGB 37.7 95.5
LSGAN-RGB 31.9 82.4
WGAN-RGB 29.3 71.2

WGAN-HSV 38.4 76.7
manifoldWGAN-HSV 27.2 68.4
WGAN-CB 80.7 101.3
manifoldWGAN-CB 59.4 89.2

Table 1: FIDs of compared methods performing generation
on RGB images or HSV images of CIFAR-10 and ImageNet.
The FIDs of all the HSV/CB-based models are computed by
translating their produced HSV/CB images to RGB images.

In addition, we follow (Heusel et al. 2017; Lucic et al.
2017) to adopt Fréchet inception distance (FID)5 to com-
pare the WGAN and our manifoldWGAN quantitatively on
the CIFAR-10 dataset. As the original FID metric is com-
puted on RGB images6, we transfer the produced HSV im-
ages of generative models to the corresponding RGB im-
ages. Besides, we also present the FIDs of the state-of-the-art
GANs (Radford, Metz, and Chintala 2015; Mao et al. 2017;
Gulrajani et al. 2017)7 that are all originally designed for
RGB images. The results reported in Tab.1 demonstrate our
manifoldWGAN performs better than WGAN for HSV image
generation on both of the CIFAR-10 and ImageNet datasets.
More interestingly, the performances of our manifoldWGAN-
HSV on such two datasets are also consistently better than
those of the state-of-the-art GANs (e.g., WGAN) that work
for RGB images directly. This is because our manifoldW-
GAN for HSV-based image generation targets a better under-
standing on color semantics. From this perspective, studying
HSV-based image generation would be a good direction to
enhance the regular image generation.

We finally show the training curves of negative Wasserstein
GAN loss (Wasserstein distance) and generated samples at
different stages of training in Fig.4. As we can see, the loss
decreases constistently as training progresses and sample
quality increases. This verifies a strong correlation between
lower loss and better sample quality.

CB Image Generation
To evaluate our manifoldWGAN for image generation on the
sphere manifold S2, we collect CB images from CIFAR-10
and ImageNet. The basic settings on them are the same with

5The FID uses the statistics (i.e., mean and covariance) of real
world samples and compare it to the statistics of synthetic samples.

6While it might be possible to adapt the FID computation on
manifold-valued images, we leave it as one of future works due to
the absence of effective manifold-valued inception model.

7We also evaluated spectral normalized WGAN (SN-WGAN)
(Miyato et al. 2018) and our manifold-enhanced SN-WGAN. Due
to the space limit, we only report that their FIDs are 31.3 and 24.2
resp. for the CIFAR-10 HSV case, showing our method can enable
other WGANs to work well for manifold-valued image generation.
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Figure 3: Generated samples of WGAN (Gulrajani et al. 2017) and the proposed manifoldWGAN for HSV/CB image generation
on CIFAR-10/ImageNet with translated RGB images. Please refer to supplementary material for more visual results.
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Figure 4: Training curves and generated samples at different
training stages of our manfioldWGAN on CIFAR-10 HSV
image set (left) and CB image set (right). The value on y-axis
denotes the negative critic cost (Wasserstein distance), and
the value on the x-axis indicates the iteration number.

those of the last evaluation. For the task, we extract the chro-
maticity component of the CB images so that the generation
problem on pure spherical data can be better studied.

As done in the last evaluation, we compare our manifold-
WGAN against the state-of-the-art GAN technique WGAN.
Our manifoldWGAN proposes to make use of the mani-
fold geometry-aware logarithm and exponential maps Eqn.7
(where each pixel value of the anchor point y is set to

[ 1√
3
, 1√

3
, 1√

3
]8) on the sphere manifold during the sample

generation. As shown in Fig.3, we discover that the WGAN
approach generates samples with low-chromaticity, while
the proposed manifoldWGAN can generate higher-quality
samples. This shows the clear advantage of our method.

Similar to the last evaluation, in Tab.1 we also employ
the FID metric to compare our manifoldWGAN against the
state-of-the-art methods quantitatively for CIFAR-10 and
ImageNet. For the FID computation, we translate CB images
back to RGB images. By comparing with the models that
work for RGB images directly, we can see both the WGAN-
CB and our manifoldWGAN-CB performs relatively worse.
This is reasonable because the CB-to-RGB translation is non-
trivial and lossy. Nevertheless, our proposed manfioldWGAN-
CB can still surpass the real competitor WGAN-CB, showing
the clear superiority of our proposed model when working
for CB images.

We also show the correlation between the proposed
manifold-ware Wasserstein GAN loss and the quality of gen-

8The performance of our model changes slightly when varying
the reference point.
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Groundtruth WGAN Proposed

Figure 5: Groundtruth DT images (left) , Generated samples of WGAN (Gulrajani et al. 2017) (middle) and the proposed
manifoldWGAN (right) for DT image generation on the UCL DT image dataset. The figure is better viewed via zooming in. For
more visual results, please refer to supplementary material.

10. Nov 2016 1

Figure 6: Training curves and generated samples at different
stages of training of the proposed manfioldWGAN on UCL
DT image set. The values on y-axis and x-axis denote the
negative critic cost (Wasserstein distance) and the iteration
number respectively.

erated CB images in Fig.4. From the result, we can observe
that the quality of generated CB samples tend to be better as
the iteration number increases.

DT image Generation
We employ Camino brain DT image set (Cook et al. 2006) to
evaluate our proposed manifoldWGAN for the SPD-valued
image generation on SPD(3). The Camino project (Cook et
al. 2006) provides a dataset of a Diffusion Tensor Magnetic
Resonance Image (DT-MRI) of human heads, which is freely
available9. The UCL DT image database contains 50 brain
DT images in total. For data augmentation, we extract 26,080
DT slices of size 32× 32 from the original DT images. Some
ground truth DT slice images are listed in Fig.5 (a). Among
the sampled DT slice images, there are around 0.6% non-SPD
voxels in each DT slice on average, and only 2,399 samples
contain no non-SPD voxels.

For generating visually favorable DT images, our manifold-
WGAN suggests to introduce logarithm map and exponential
map Eqn.8 (where each pixel value of the reference point
y is set to the identity matrix of size 3 × 3) on SPD mani-
folds to the Wasserstein GAN setting. In contrast, the original
WGAN treats the SPD data as real-valued data. In order to
make the generated samples of WGAN to become valid DT
(SPD-valued) images, we additionally employ our presented
exponential map to transform the outputs of WGAN to the

9To obtain the data, one can follow the tutorial at http://cmic.cs.
ucl.ac.uk/camino//index.php?n=Tutorials.DTI

data on SPD manifolds. In Fig.5, we quantitatively compare
these two different approaches on the UCL DT image set.
Note that, to plot the generated DT images, we leverage the
Manifold-valued Image Restoration Toolbox10. From the re-
sults, we can discover that the generated samples of WGAN
is not plausible, while our manifoldWGAN can often synthe-
size highly realistic DT samples, which would be very useful
to the field of DT-MRI that generally lacks of DT images for
analysis.

As the last two evaluations, we also study the relationship
between the proposed manifold-aware Wasserestein loss and
the generated sample quality in Fig.6. As the network training
iterations increases, the negative Wasserstein loss goes up
quickly and the visual quality of the generated DT images
is also improved, again showing there are clear correlations
among our manifoldWGAN loss, the convergence property
and the quality of its generated samples.

Discussion and Outlook
We introduced a new generative modeling problem over
manifold-valued images, which are often encountered in a
wide variety of applications including HSV/CB color and
DT-MRI image processing. To address the new problem, we
generalize the Wasserstein GAN methodology to manifold-
valued generation by introducing the manifold geometry-
aware optimal transport theory. We finally suggested three
benchmarks to evaluate the generative power of our proposed
method, and clearly show the superiority of our approach
over the state-of-the-art Wasserstein GAN.

For future works, inspired by (Shrivastava et al. 2017) that
leverage generative modeling to improve other visual tasks,
we will further exploit the practical benefits of our proposed
generative models to a broad number of classical manifold-
valued data processing tasks like denoising, inpainting and
segmentation. In addition, we hope our work could open the
path for more manifold-valued image generation tasks like
shape and Grassmann manifold-valued data generation. Last
but not least, like real-valued image generation, we also en-
courage more works to extend our framework to conditional

10The toolbox is available at http://www.mathematik.uni-kl.de/
imagepro/members/bergmann/mvirt/.

3892



settings and even semi-supervised learning.
Acknowledgement: We would like to thank Nvidia for do-
nating the GPUs used in this work.

References
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
generative adversarial networks. In ICML.
Arsigny, V.; Fillard, P.; Pennec, X.; and Ayache, N. 2006. Log-
Euclidean metrics for fast and simple calculus on diffusion tensors.
Magnetic resonance in medicine 56(2):411–421.
Arsigny, V.; Fillard, P.; Pennec, X.; and Ayache, N. 2007. Geometric
means in a novel vector space structure on symmetric positive-
definite matrices. SIAM journal on matrix analysis and applications
29(1):328–347.
Bacák, M.; Bergmann, R.; Steidl, G.; and Weinmann, A. 2016. A
second order nonsmooth variational model for restoring manifold-
valued images. SIAM Journal on Scientific Computing 38(1):A567–
A597.
Bansal, S., and Tatu, A. 2015. Active contour models for manifold
valued image segmentation. Journal of Mathematical Imaging and
Vision 52(2):303–314.
Bergmann, R., and Weinmann, A. 2015. Inpainting of cyclic data
using first and second order differences. EMMCVPR, Lecture Notes
in Computer Science 155–168.
Bergmann, R., and Weinmann, A. 2016. A second-order TV-type
approach for inpainting and denoising higher dimensional combined
cyclic and vector space data. Journal of Mathematical Imaging and
Vision 55(3):401–427.
Bergmann, R.; Laus, F.; Steidl, G.; and Weinmann, A. 2014. Sec-
ond order differences of cyclic data and applications in variational
denoising. SIAM Journal on Imaging Sciences 7(4):2916–2953.
Bhattacharya, R., and Patrangenaru, V. 2002. Nonparametic estima-
tion of location and dispersion on Riemannian manifolds. Journal
of Statistical Planning and Inference 108(1):23–35.
Cook, P.; Bai, Y.; Nedjati-Gilani, S.; Seunarine, K.; Hall, M.; Parker,
G.; and Alexander, D. 2006. Camino: open-source diffusion-mri
reconstruction and processing. In 14th scientific meeting of the
international society for magnetic resonance in medicine, volume
2759. Seattle WA, USA.
De Philippis, G., and Figalli, A. 2014. The monge–ampère equation
and its link to optimal transportation. Bulletin of the American
Mathematical Society 51(4):527–580.
Evans, L. C. 1997. Partial differential equations and Monge-
Kantorovich mass transfer. Current developments in mathematics
1997(1):65–126.
Fathi, A., and Figalli, A. 2010. Optimal transportation on non-
compact manifolds. Israel Journal of Mathematics 175(1):1–59.
Fitschen, J. H.; Laus, F.; and Schmitzer, B. 2017. Optimal trans-
port for manifold-valued images. In International Conference on
Scale Space and Variational Methods in Computer Vision, 460–472.
Springer.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley,
D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Generative
adversarial nets. In NIPS.
Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; and Courville,
A. 2017. Improved training of Wasserstein GANs. NIPS.
Hasan, K. M.; Walimuni, I. S.; Abid, H.; and Hahn, K. R. 2011.
A review of diffusion tensor magnetic resonance imaging compu-
tational methods and software tools. Computers in biology and
medicine 41(12):1062–1072.

Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and Hochre-
iter, S. 2017. GANs trained by a two time-scale update rule converge
to a local nash equilibrium. In NIPS.
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